首页 > 学术期刊知识库 > 基因编辑婴儿论文题目

基因编辑婴儿论文题目

发布时间:

基因编辑婴儿论文题目

为背了人类伦礼道德,相当于培育了新品种。

百害而无一利

当前技术太过不成熟,不应当把人当实验品。

最近,关于一起称为“世界首例免疫艾滋病基因编辑婴儿”的事件一经爆出,国内外媒体均反响剧烈。从克隆起,对于我们人而言,这样的恐惧始终围绕着我们,随着上世纪克隆动物的出现,即第一只克隆动物多利羊的成功克隆,让我们在而后的一段时间对基因生物学产生了巨大的恐惧。 这可以说是个脑洞大开的事情,一说到基因生物学,人们的第一反应很可能是西方的某某电影里的疯狂科学博士,泯灭人性的做着各种号称是用尽一生心血的实验,而更多的成果是让我们大众无法接受的。 就拿这次事件而言,免疫艾滋病的确是一个好消息,但我们必须知道的是,我们畏惧“基因编辑”,就像电影里的那样,人会变异,那岂不是都成了城市英雄,没有弱者,全都是捍卫世界的人?要知道,从古至今,有正派便有反派,我们唯一要明白的是,我们不是因为自己是弱者才去基因编辑,不是因为惧怕某种疾病就用基因编辑去篡改让自己免疫,虽说今后的技术成熟了,可能会开放部分技术造福人类,但作为临床,这样的行为很无道德,甚至可以说毫无人性可言。 作为一个人,生活在社会集体里的人,我们必须意识到什么该做,什么不该做,我们是谁,我们全人类的共同目标是什么。当然,人生在世,总会有人不知道或者不明确这些问题的答案,因此,他们不明白什么是对的,什么是错的。 基因编辑就目前来看前景十分开阔,然而这样强大的技术会让我们明白一个东西,那就是,利用好了便是造福于人类,用得不好便会对整个社会造成一定的危害,我们必须要在面对我们自身的拷问中找到一个平衡的支点,明确什么是有益于人类,什么不益于社会,这样我们便能在这样的技术成熟时,享受这一成果带来的好处,而不至于因为本心的好意坏了大事。 我们并不谴责那些有前瞻性的人,因为他们是我们人类社会的进步的引领者,但我们也必须明白一点,反人道而行的最终结果会是我们人类自食其果。

基因编辑婴儿死了

现在非常的健康,生活和普通人没有什么非常大的区别,希望他们可以健康快乐的长大。

现在这对婴儿已经长大了。而且生活的非常的幸福。

克隆人为什么不可以,违反伦理学!而且基因编辑婴儿也不可以保证婴儿本身不出现问题,本身是个实验而已,拿婴儿做实验?怎么可以允许?

先说基因编辑:基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。由于基因敲除(剪刀CRISPR/Cas9)具有不稳定性,经常脱靶,因此对人的伤害不小;而且,敲除这个靶点后有没有其他潜在威胁,可能会产生蝴蝶效应。同时,包括《科技日报》在内的科学界媒体也在质疑:基因编辑是否能完全有效地防止感染艾滋病病毒?如何来证明?“人是目的本身,而不是手段”,应该是基因领域的金科玉律。一个是活生生的人,拥有自己独立的人格和价值,不是实验的材料。基因被编辑过的婴儿降临人间,打开的可能是一个潘多拉的魔盒,当慎之又慎,哪怕盒子里装的是希望。

基因编辑婴儿一岁了

基因编辑婴儿会带来的风险:有严重缺乏科学评估验证,安全性存在不可预知风险。

在伦理与道德上,在严重缺乏科学评估验证,安全性存在不可预知风险的情况下,贸然开展以生殖为目的的人类生殖细胞基因编辑临床操作,严重违背了基本伦理规范和科学道德。

扩展资料:

科技工作者必须加强科学道德自律,强化自我管束,在探索和创新活动中必须遵守相应的伦理道德准则和法律法规。针对科学技术发展中出现的新情况、新挑战,科技界要深入思考,认真研究,未雨绸缪,加强教育,完善相关行业规范和伦理指南,以保证科技界从事负责任的研究。

有关部门要动态完善相关法规,严格审查监管程序,适时推进有关立法工作,严密防范科研伦理不端行为发生。

参考资料:中国新闻网-工程院:“基因编辑婴儿”严重违背伦理和科学道德

最近,关于一起称为“世界首例免疫艾滋病基因编辑婴儿”的事件一经爆出,国内外媒体均反响剧烈。从克隆起,对于我们人而言,这样的恐惧始终围绕着我们,随着上世纪克隆动物的出现,即第一只克隆动物多利羊的成功克隆,让我们在而后的一段时间对基因生物学产生了巨大的恐惧。 这可以说是个脑洞大开的事情,一说到基因生物学,人们的第一反应很可能是西方的某某电影里的疯狂科学博士,泯灭人性的做着各种号称是用尽一生心血的实验,而更多的成果是让我们大众无法接受的。 就拿这次事件而言,免疫艾滋病的确是一个好消息,但我们必须知道的是,我们畏惧“基因编辑”,就像电影里的那样,人会变异,那岂不是都成了城市英雄,没有弱者,全都是捍卫世界的人?要知道,从古至今,有正派便有反派,我们唯一要明白的是,我们不是因为自己是弱者才去基因编辑,不是因为惧怕某种疾病就用基因编辑去篡改让自己免疫,虽说今后的技术成熟了,可能会开放部分技术造福人类,但作为临床,这样的行为很无道德,甚至可以说毫无人性可言。 作为一个人,生活在社会集体里的人,我们必须意识到什么该做,什么不该做,我们是谁,我们全人类的共同目标是什么。当然,人生在世,总会有人不知道或者不明确这些问题的答案,因此,他们不明白什么是对的,什么是错的。 基因编辑就目前来看前景十分开阔,然而这样强大的技术会让我们明白一个东西,那就是,利用好了便是造福于人类,用得不好便会对整个社会造成一定的危害,我们必须要在面对我们自身的拷问中找到一个平衡的支点,明确什么是有益于人类,什么不益于社会,这样我们便能在这样的技术成熟时,享受这一成果带来的好处,而不至于因为本心的好意坏了大事。 我们并不谴责那些有前瞻性的人,因为他们是我们人类社会的进步的引领者,但我们也必须明白一点,反人道而行的最终结果会是我们人类自食其果。

现在非常的健康,生活和普通人没有什么非常大的区别,希望他们可以健康快乐的长大。

希望当作实验标本继续观察,既然已经可以编辑出婴儿了,就是一项科研成果了,以后可以继续研究!

基因编辑婴儿参考文献

早期的基因工程技术只能将外源或内源遗传物质随机插入宿主基因组,基因编辑则能定点编辑想要编辑的基因。

基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂(DSB),诱导生物体通过非同源末端连接(NHEJ)或同源重组(HR)来修复DSB,因为这个修复过程容易出错,从而导致靶向突变。这种靶向突变就是基因编辑。

基因编辑以其能够高效率地进行定点基因组编辑, 在基因研究、基因治疗和遗传改良等方面展示出了巨大的潜力。

扩展资料

2018年11月26日,贺建奎宣布,一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生,这对双胞胎的一个基因经过修改,使她们出生后即能天然抵抗艾滋病。

2019年12月30日,“基因编辑婴儿”案在深圳市南山区人民法院一审公开宣判。贺建奎、张仁礼、覃金洲等3名被告人因共同非法实施以生殖为目的的人类胚胎基因编辑和生殖医疗活动,构成非法行医罪,分别被依法追究刑事责任。

参考资料来源:百度百科-基因编辑婴儿

参考资料来源:百度百科-基因编辑

这个问题中包含的“首例”和“在中国”字眼,这些字眼是很具有感染力的。我现在最担心的是,在缺乏专业知识(包括相关伦理知识)的外行人眼里,这个试验被解读为重大的、跨越式的、突破式的科学进步创举;而突破各种伦理约束被包装成我国科学家赶超外国同行,实现弯道超车的重要途径。国际上已有的完善周密的伦理制度反而会被解读成“白左势力”对中国科学发展的约束和迫害。于是这件事不仅不是特定科研人员、院校医院乃至相关领导的丑闻,反而成了重大的、值得歌颂的成果和政绩。如果一个试验在科学上可以吹嘘成突破创举;政治上被包装成政绩;还能带动潜在商业利益和商业模式、收割大把金钱,各位觉得会不会有前赴后继的无数模仿者?所以这件事的险恶之处,远远不限于在科学和技术层面,不限于这个试验和相关技术有没有瑕疵、缺陷、争议;而在于这件事是个政治和商业投机。

基因编辑的话会让父母觉得孩子并不算是自己的孩子了而且在伦理道德上也存在着一些严重的伦理道德问题比如说基因因问题还有就是遗传问题

我认为这个事情真的是太疯狂了。首先就是用人体做实验真是让人觉得这个世界都要疯了。每个人的生命都是宝贵的,在未知的条件下进行试验并不能对人体的安全有任何的保障。而且这也是违背人类的伦理纲常的,我觉得没有人会用自己的生命去做实验的羔羊,那么试验的人体只能是那些实在是没有办法的人,只能用出卖身体的方法来保全自己。还有就是这种实验的未知性,在付出这么大的代价情况下并不知道能不能成功,那是不是很得不偿失呢?最后就是如果这样的试验成功了,那么这样的人在人群中该怎么样自处?他会不会对原本的人类世界造成不好的影响?这些都是未知的,所以我觉得在这些问题搞清楚之前还是不要进行这个试验了。

crispr基因编辑

CRISPR的全称Clustered Regularly Interspaced Short Palindromic Repeats,意为成簇规律间隔短回文重复序列,Cas则是CRISPR-associated (Cas) systems。 CRISPR/Cas 系统是原核生物的免疫系统,这个系统可以识别出外源 DNA,并将它们切断,沉默外源基因的表达,用来抵抗外源遗传物质比如噬菌体病毒和外源质粒的入侵。这与真核生物中RNA干扰(RNAi)的原理是相似的。正是由于这种精确的靶向功能,CRISPR/Cas 系统被开发成一种高效的基因编辑工具。在自然界中,CRISPR/Cas系统拥有多种类别,其中 CRISPR/Cas9 系统是研究最深入,应用最成熟的一种类别。 CRISPR/Cas9 利用一段小 RNA 来识别并剪切 DNA 以降解外来核酸分子。现在使用的 CRISPR/cas 9 系统是由最简单的 type II CRISPR 改造而来,该系统由单链的 guide RNA 和有核酸内切酶活性的 Cas 9 蛋白构成。 ⚠️nature video视频: CRISPR: 基因编辑原理及应用 基因敲除:sgRNA+Cas9 基因敲入:sgRNA+Cas9+目的基因(HDR模版) 5‘端开始数20个碱基这一段是需要设计的,这一段用来识别目的基因上的靶标,并通过碱基互补配对原理与靶点位置结合。 gRNA再往后数76个碱基,是另一段transactiviting RNA (tracrRNA)。它的序列是一定的,就像转运RNA一样可以形成空间结构,然后就可以和Cas9酶相结合。 这样一条完整的gRNA就可以识别靶点,并且把与它自身结合的Cas9酶带到这个靶点,引导Cas9酶在靶点处对目的基因的双链DNA进行切断,从而达到基因编辑的目的。 目前又很多在线工具可以用于设计sgRNA 不同的导入方式基因标记效率和脱靶效率不同 参考: CRISPR实验究竟怎么做?手把手教给你 CRISPR/Cas9 基因编辑全套操作和解决方案(TAKARA 讲解)

CRISPR技术再分子生物学发挥重要的作用,许多细菌免疫复合物都相对复杂,其中科学家掌握了对一种蛋白Cas9的操作技术,并先后对多种目标细胞DNA进行切除。CRISPR/Cas9基因编辑系统具有非常精准、廉价、易于使用,并且非常强大的特点。其迅速成为生命科学最热门的技术;给科研工作者提供暨大帮助。

[](javascript:void(0);)

|

CRISPR/Cas系统是细菌和古菌特有的一种天然防御系统,用于抵抗病毒或外源性质粒的侵害。当外源基因入侵时,该防御系统的 CRISPR 序列会表达与入侵基因组序列相识别的 RNA,然后 CRISPR 相关酶(Cas)在序列识别处切割外源基因组DNA,从而达到防御目的。

根据Cas蛋白的特点,可将CRISPR/Cas系统分为Ⅰ、Ⅱ、Ⅲ型。Ⅰ型和Ⅲ型系统需要借助复杂的蛋白复合体发挥作用,Ⅱ型系统仅借助 Cas9蛋白和sgRNA即可对靶目标进行编辑,结构简单,操作容易,因此目前主要使用Ⅱ型CRISPR/Cas9 系统。

CRISPR/Cas自诞生以来,迅速发展,已经成为生命科学领域最耀眼、最有前景的技术。尤其是近两年,在全世界科学家的共同努力下,CRISPR/Cas相关新进展新突破不断涌现。

一、基因编辑技术的发展史

基因编辑可以分为三代,第一代:ZFN;第二代:TELEN;第三代:CRISPR/Cas。这三个基因编辑技术都利用了DNA修复机制,所以我们先来了解一下DNA修复机制( 图1 )。[图片上传失败...(image-8dab49-1625385468208)]

图1-NHEJ修复(左),HDR修复(右)

NHEJ(Non-homologous end joining)

非同源性末端接合

NHEJ修复机制不需要任何模版,修复蛋白直接将双股裂断的DNA末端彼此拉近,在DNA连接酶的帮助下重新接合( 图1 )。

HDR(Homology directed repair)

同源重组修复

当细胞核内存在与损伤DNA同源的DNA片段时,HDR才能发生。

NHEJ的机制简单又不依靠模版,因而NHEJ的活性相对于HDR高出许多。但NHEJ修复出错的概率较高,容易造成移码突变等,基因编辑正是利用了这一点( 图1 )。

的识别切割机制

融合锌指模块和FokI切割结构域形成ZFN ;以二聚体的形式靶向切割每个锌指结构;特异识别3个碱基 ;组装多个锌指结构(识别12-18bp)形成的ZFN对可特异切割基因组靶点 ( 图2 )。

[图片上传失败...(image-3f1d8d-1625385468209)]

图2-ZFN基因编辑原理图

的识别切割机制

两个TALE靶向识别靶点两侧的序列;每个TALE融合一个FokI内切酶结构域;FokI通过TALE靶向形成二聚体切割靶点;设计灵活识别特异性强( 图3 )。

[图片上传失败...(image-6dcfc-1625385468209)]

图3-TELEN基因编辑原理图

的识别切割机制

crRNA通过碱基配对与 tracrRNA结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA( 图4 )。

[图片上传失败...(image-c85235-1625385468209)]

图4-CRISPR/Cas9基因编辑原理图

ZFN、TELEN、CRISPR/Cas9比较

[图片上传失败...(image-dd6344-1625385468209)]

图5-三种基因编辑的比较

二、CRISPR/Cas技术的介绍

CRISPR/Cas9 系统的发现

1987年,在大肠杆菌的基因组中首次发现了一个特殊的重复间隔序列——CRISPR序列,随后,在其他细菌和古菌中也发现了这一特殊序列。

2005年,发现这些CRISPR序列和噬菌体的基因序列匹配度很高,说明CRISPR 可能参与了微生物的免疫防御。

2011年,CRISPR/Cas系统的分子机制被揭示:当病毒首次入侵时,细菌会将外源基因的一段序列整合到自身的CRISPR的间隔区;病毒二次入侵时,CRISPR 转录生成 前体crRNA (pre-crRNA), pre-crRNA 经过加工形成含有与外源基因匹配序列的crRNA,该crRNA与病毒基因组的同源序列识别后,介导 Cas 蛋白结合并切割,从而保护自身免受入侵。

2013年,发现CRISPR/Cas9系统可高效地编辑基因组。随后张锋等使用CRISPR系统成功的在人类细胞和小鼠细胞中实现了基因编辑。

从此开始,CRISPR/Cas9技术给生命科学领域带来了巨大冲击,CRISPR/Cas9相关研究成果频频登上CNS等顶级期刊,近两年更是成为诺贝尔奖热门候选。

CRISPR/Cas技术的原理

CRISPR/Cas9系统的工作原理是 crRNA( CRISPR-derived RNA )通过碱基配对与 tracrRNA(trans-activating RNA )结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。而通过人工设计 crRNA 和 tracrRNA 这两种 RNA,改造成具有引导作用的sgRNA (single guide RNA ),从而引导 Cas9 对 DNA 的定点切割(图4)。

CRISPR/Cas技术的优势

设计简单,简明的碱基互补设计原则,识别不受基因组甲基化影响,能靶向几乎任意细胞任意序列,方便同时靶向多个靶点,切割效率高。

三、CRISPR/Cas的脱靶效应

PAM**** (Protospacer adjacent motif )

前间区序列邻近基序

PAM序列区是CRISPR/Cas9系统行使切割功能的基本条件。如果靶序列 3′端没有PAM序列,即使靶序列与sgRNA序列完全匹配,Cas9蛋白也不会切割该序列位点。 PAM序列主要影响CRISPR/Cas9的DNA切割效率。在细胞水平上,NGG介导的切割效率是最高的。

sgR****NA ****(Single guide RNA )

向导 RNA

sgRNA与目标基因组相结合的 20nt 序列区决定着 CRISPR/Cas 系统的靶向特异性。CRISPR/Cas9与靶位点识别的特异性其实主要依赖于sgRNA与靠近PAM区的10~12 bp的碱基配对,而其余远离PAM序列 8~10 bp 碱基的错配对靶位点识别的影响并不明显。目前研究结果均提示,可能靠近 PAM 的 8~14 bp 序列是决定特异性的关键,其他序列也均在不同程度上影响脱靶效应。

CRISPR/Cas9的脱靶效应给研究带来了一定程度上的不确定性,也是限制其发挥更大潜力的主要原因之一。

2017年5月30日, Nature 杂志子刊 Nature Methods 刊登了美国哥伦比亚大学研究人员的一篇文章,研究人员通过CRISPR/Cas9成功修复了导致小鼠失明的基因后,对小鼠进行全基因测序,发现修复后的小鼠基因组有超过1500个单核苷酸突变,以及超过100个位点发生大片段插入或缺失( 图6 )。文章的结论无疑引发了巨大震动,也给正在进行中的CRISPR/Cas9带来了不确定性。

[图片上传失败...(image-f21b76-1625385468208)]

图6--动物体内实验中CRISPR/Cas9编辑后发生意想不到的突变

仔细分析后,发现该文章并不十分严谨,文章仅有两只小鼠作为实验组,一只作为对照组,数量不足以证明结论是否只是个例。而且单碱基突变是生物体内自然现象,不能全归于CRISPR/Cas9。整个实验只基于一个sgRNA数据,且该sgRNA特异性评分很低,造成脱靶效应也应该在预料之中( 图7 )。

[图片上传失败...(image-751d94-1625385468208)]

图7--针对 Nature Methods 文章的回应

经过一系列的研究和改进,目前CRISPR系统的脱靶性已经很低,当然,要想达到理想的状态,还有很长的路要走。

四、CRISPR/Cas技术的进展

2016年6月,张锋在 Science 发表文章,发现CRISPR/Cas13a能有切割细菌的特定RNA序列。

2016年9月,Jennifer Doudna在 Nature 发表文章,证实CRISPR/Cas13a可以用于RNA检测。

2017年2月22日,美国纪念斯隆.凯特林癌症中心(MSK)研究人员在 Nature 杂志发文,使用腺相关病毒(AAV)介导,将CRISPR/Cas9基因编辑技术应用于CAR-T疗法。该研究既解决了传统CAR-T疗法的随机整合可能存在的潜在危害,又大大降低了CAR-T细胞发生分化或癌化的风险,赋予了CAR-T技术全新的高效性、稳定性、安全性。

2017年8月2日,Shoukhrat Mitalipov在 Nature 发表长文,使用CRISPR/Cas9技术修正了植入子宫前的人类胚胎中一种和遗传性心脏病有关的变异。该研究证实了通过编辑人类胚胎进行治疗遗传病是安全可行的。值得一提的是,该成果受到了基因编辑领域大牛George Church等人的质疑。

2017年8月11日,杨璐菡等在 Science 发表文章,通过CRISPR/Cas9技术敲除猪基因组中的内源逆转录病毒(PERV)序列,并克隆出多只PERV失活小猪。向最终实现使用猪器官进行人体器官移植的终极目标迈进了一大步。

2017年9月,杂交水稻之父”袁隆平院士宣布使用CRISPR/Cas9技术敲除与镉吸收和积累相关基因的水稻育种成功。该研究从根本上解决了水稻镉污染的问题,将扭转我国部分农作物重金属超标的问题,进而改善部分人群重金属慢性中毒的问题。

2017年10月4日,张锋在 Nature 发表论文证实CRISPR/Cas13a能够在哺乳动物细胞中编辑特定的RNA。CRISPR/Cas13a能够达到RNAi相似的降低基因表达的效率,而且有更强的特异性,且对细胞内天然的转录后调控网络的影响更小。

2017年10月19日,Jennifer Doudna在 Nature 发表文章,设计了高精确性的Cas9变体—HypaCas9。该研究极大地降低了Cas9的脱靶效应,且不降低靶向切割效率。

2017年10月25日,张锋在 Science 发表文章介绍CRISPR新系统--REPAIR,可以高效的进行RNA的单碱基修复。因为不改变DNA序列,所以为通过基因编辑治疗遗传病而又不永久影响基因组提供了新可能。

2017年10月25日,哈佛大学Broad研究所的David Liu实验室在 Nature 发表长文,报道了新型腺嘌呤基因编辑器——ecTadA-dCas9,可以将A·T碱基对转换成G·C碱基对,该技术首次实现了不依赖DNA断裂即可进行基因编辑的技术,即单碱基基因编辑技术。该技术高于其它基因组编辑方法的效率,且几乎没有随机插入、删除或其它突变等不良副作用,因此为今后大范围治疗点突变遗传疾病提供了极大的便利。

五****、展望

近几年CRISPR/Cas基因编辑技术飞速发展,推广应用到了生物、医学、农业以及环境等多个领域,造就了一批批科研奇迹,尤其是在遗传病的治疗、疾病相关基因的筛查与检测、肿瘤治疗以及动植物的改造、病原微生物防治等领域有着巨大的潜力,也将深远地影响整个世界。

特别感谢:BioArt主编给予的帮助和意见以及吉满生物吴晨提供图1-图5的图片。

|

| |

重写生命的“剪刀”被发现,剪断基因重新组合,脑洞之大你敢信?但却有人做到了,改变生命的链接,一起来看本期的“剪刀”-CRISPR/Cas9基因编辑技术。

  • 索引序列
  • 基因编辑婴儿论文题目
  • 基因编辑婴儿死了
  • 基因编辑婴儿一岁了
  • 基因编辑婴儿参考文献
  • crispr基因编辑
  • 返回顶部