首页 > 学术期刊知识库 > 极限思维方式的应用毕业论文

极限思维方式的应用毕业论文

发布时间:

极限思维方式的应用毕业论文

极限思想应用五例唐永 利用极限思想处理某些数学问题往往能化难为易。 引例 两人坐在方桌旁,相继轮流往桌面上平放一枚同样大小的硬币。当最后桌面上只剩下一个位置时,谁放下最后一枚,谁就算胜了。设两人都是高手,是先放者胜还是后放者胜?(G·波利亚称“由来已久的难题”) G·波利亚的精巧解法是“一猜二证”: 猜想(把问题极端化) 如果桌面小到只能放下一枚硬币,那么先放者必胜。 证明(利用对称性) 由于方桌有对称中心,先放者可将第一枚硬币占据桌面中心,以后每次都将硬币放在对方所放硬币关于桌面中心对称的位置,先放者必胜。 从波利亚的精巧解法中,我们可以看到,他是利用极限的思想考察问题的极端状态,探索出解题方向或转化途径。极限思想是一种重要的数学思想,灵活地借助极限思想,可以避免复杂运算,探索解题新思路,现举五例说明极限思想的应用。 例1 已知00不是恒成立的,排除②,选①③。 例3 已知数列{an}中,a1=1,且对于任意正整数n,总有 ,是否存在实数a,b,能使得 对于任意正整数n恒成立?若存在,给出证明;若不存在,说明理由。 分析 极限思想: 如果这样的 ,b存在的话,则 由 , 对 两边取极限,得 , 解得 若 0,则数列{ }应该是以1为首项,以 为公比的等比数列。 可知 , 显然, ,不合题意舍去; 若 ,将 代入 ,可求得b=-3, 此时 , 同样验证 亦可得出矛盾。因此,满足题意的实数 ,b不存在。 例4 正三棱锥相邻两侧面所成的角为 ,则 的取值范围是( ) 分析 如图1所示,正三棱锥S-ABC中, 是过底面正三角形ABC中心且垂直于底面的垂线段。当 时,相邻两个侧面的夹角趋近于 ,当 时,正三棱锥无限接近一个正三棱柱,显然相邻两个侧面的夹角无限接近 ,故正三棱锥相邻两个侧面所成角的取值范围为( ),故选(D)。 例5 已知长方形的四个顶点A(0,0)、B(2,0)、C(2,1)和D(0,1),一个质点从AB的中点P0沿与AB夹角为 的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角),设点P4的坐标为(x4,0),若1

把你跟宇宙相比你就没了!把一滴水与大海相比

1、极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。

2、数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体体积等问题),正是由于它采用了极限的思想方法。

有时我们要确定某一个量,首先确定的不是这个量的本身而是它的近似值,而且所确定的近似值也不仅仅是一个而是一连串越来越准确的近似值;然后通过考察这一连串近似值的趋向,把那个量的准确值确定下来。这就是运用了极限的思想方法。

扩展资料

极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。

但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N定义)。

从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。

参考资料来源:百度百科-极限理论

参考资料来源:百度百科-极限思想

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

极限的思想论文题目

生命无极限生命本是一泗清泉,只有勇于拼搏的人才能尝出它的甘洌。在奥运场上,四年一次的舞台,给了他们生命的展示。如果说只有冠军才能有王者的风韵。那么,这变是人类史上最大的遗憾。多少年来,人们为着同一个目标努力着。可是,金牌,只有一个,然而想拥有它的人,却有一群。但在我的心里,登上奥运战场,他们,便是王者。也许为了这最后的胜利,他们付出了毕生的努力,他们为了成功,牺牲了最动人的年华。我国的竞走运动员,为了奥运,离开了她仅4个月大的女儿。墙上多少个"正"字才能换回与女儿的相见一面。那是一种穿心的痛,作为一个母亲她将自己献给了体育。面对窗外出升的新月,却只能孤独地想象,我的亲人在哪儿,他们是否也在念挂着我。可是,为了奥运,我要拼搏,即使是最后一名,跑道上也要留有我的身影。留想奥运,那是一种拼搏的精神。 生命本是一米阳光,只有把握住机会的人才能体会它的灿烂。最后一枪,是扣人心弦的,也就是这最后一枪,改变了人一生的命运,最后一枪,使全世界知道了杜丽的名字。在最后一枪之前,还有0。6环的差距。可是对手没有把握住。杜丽,你赢了!奥运,是懂得怎样把握住机会的竞技场。 生命本是那坚硬的石头上的一颗小水珠,只有永不放弃的人才能拥有水滴石穿之时。21:23,在前三局中国以1:2败与俄罗斯,这是至关重要的一局,如果输了,中国只能跟金牌擦身而过。许多人不想看到女排一败涂地的结局,纷纷转换了频道。然而,上帝在创造女排姑娘之前,为她们安装了一颗永不服输的心。就是这颗坚韧的心,陪着女排姑娘们度过了最艰难的一关。窗外发出一阵激烈的掌声。我知道,我们一定是赢了。是她们,顶着巨大的压力,在大比分落后的情况下,挽回了致命的一局。我注意到了这样一个镜头:在拦网过程中,李婷摔倒,她用双拳向地面使劲地一锤,是啊,每一分对于她们来说是多么重要。李婷站了起来,重新开始了她的征途。当时,我是用一颗感恩的心来看待这些姑娘的。感恩,感谢你们为祖国添加了本届奥运会第一枚团体金牌;感恩,感谢教练的微笑,给了她们莫大的支持;感恩,感谢上苍赐予她们一颗永不言弃的心。今天,是感恩节。是奥运健儿为我们带来了胜利的曙光,使自豪填满我们的胸膛。 在人生的旅途中,有太多的也许,也许曾经得到,也许就这样错过。蓦然会首中,依旧不变的,是一颗无悔的心。他们选择了体育,从此就等待希望。他们没有后悔,哪怕放弃拥有。他们创造了太多的奇迹,那是生命的真谛,那是生命的根源:生命无极限!

(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。编写要点编写毕业论文提纲有两种方法:一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。

极限与哲学的高等思维

极限的毕业论文

其实我觉得你用软件翻译就ok啦~~

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。编写要点编写毕业论文提纲有两种方法:一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。

毕业论文的开题报告一般会涉及到题目的研究背景及研究意义等。该公式一般适用于*/∞型数列极限和0/0型数列极限的计算和证明问题。

关于求极限的方法毕业论文

采用洛必达法则求极限。

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。

存在准则

单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

这是一个幂指函数的极限,底数的极限是1,指数的极限是∞。

先取对数,考虑极限lim(x→∞)

x×ln(sin(2/x)+cos(1/x)),其中ln(sin(2/x)+cos(1/x))等价于sin(2/x)+cos(1/x)-1

所以lim(x→∞)

x×ln(sin(2/x)+cos(1/x))=lim(x→∞)

x×(sin(2/x)+cos(1/x)-1)=lim(x→∞)

x×sin(2/x)-lim(x→∞)

x×(1-cos(1/x))=lim(x→∞)

x×(2/x)-lim(x→∞)

x×1/2×(1/x)^2=2-0=2

所以,原极限等于e^2,其中使用的等价无穷小是:x→0时,ln(1+x)~x,sinx~x,1-cosx~1/2×x^2

二元函数的极限成一元函数的极限,即将二重极限化成累次极限,在很多情专况下方便求极限可是在某些情况下直接计算二重极限比较方便,

例如:lim(x→0,y→1)[(x^2+3x)/xy]=lim(x→0,y→0)[(x+3)/y]=3这个可以在最后一步时将x,y的极限值直接代入,并且前面说了二重极限化累次极限是有限定条件的,不满足条件则不能化成累次极限。

扩展资料:

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。

参考资料来源:百度百科-函数极限

毕业论文的开题报告一般会涉及到题目的研究背景及研究意义等。该公式一般适用于*/∞型数列极限和0/0型数列极限的计算和证明问题。

如下

毕业论文求函数极限的方法

随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系

响应面法是指通过一系列确定性实验,用多项式函数来近似隐式极限状态函数。通过合理地选取试验点和迭代策略,来保证多项式函数能够在失效概率上收敛于真实的隐式极限状态函数的失效概率。

当真实的极限状态函数非线性程度不大时,线性响应面具有较高的近似精度。二次不含交叉项的响应面法基本思想: 与线性响应面法类似,只不过它选取二次不含交叉项的多项式来近似隐式功能函数。

扩展资料:

响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件。

要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图。建模最常用和最有效的方法之一就是多元线性回归方法,对于非线性体系可作适当处理化为线性形式。

参考资料:百度百科-响应面法

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

  • 索引序列
  • 极限思维方式的应用毕业论文
  • 极限的思想论文题目
  • 极限的毕业论文
  • 关于求极限的方法毕业论文
  • 毕业论文求函数极限的方法
  • 返回顶部