首页 > 学术期刊知识库 > 蜡样芽孢杆菌的检测论文

蜡样芽孢杆菌的检测论文

发布时间:

蜡样芽孢杆菌的检测论文

平板应该至少做3个平行样涂布,三个中有2个长1个菌落,按100cfu/g计算结果,如果两个不长,可以按<100cfu/g计算。

食品中蜡样芽胞杆菌的检测实验目的。1、掌握蜡样芽孢杆菌检验的主要步骤与方法。2、了解蜡样芽孢杆菌菌落特点和掌握生化反应结果的判断方法。

一般按照最高的计算

巨大芽孢杆菌论文范文

巨大芽孢杆菌(Bacillus megaterium),为革兰氏阳性菌,属于芽孢杆菌属(Bacillus)。它能够形成芽孢,其芽孢的抗辐射能力是的36倍。工业上用于生产葡萄糖异构酶,同时也是有机磷的分解菌,因此,在农业上可用于制造磷细菌肥料。应用作物 :生姜、兰花;防治对象 :生姜细菌性青枯病、兰花炭疽病病。

返修是论文能否成功发表的关键。学科虽有所不同,但撰写返修稿却有类似的流程和规律。掌握一些回复的方法和技巧可以增加审稿人的好感和认同感,提升中稿概率。,找北京译顶科技去做,花的钱也不多

服务价格设定方面,考虑了不同文稿类型的差异性,以保证可以更加合理地安排不同编辑、根据不同文稿提供相应的最为专业的润色服务。,找北京译顶科技去做,花的钱也不多

巨大芽孢杆菌和枯草芽孢杆菌的区别性质不同、生理特征不同、应用不同。1、巨大芽孢杆菌属于类芽孢杆菌属,是一种产芽孢的革兰氏阳性细菌。是一类生理特性多样的杆状细菌,也是土壤与植物微生态的优势种群之一。2、枯草杆菌是芽孢杆菌属的一种,广泛分布在土壤及腐败的有机物中,易在枯草浸汁中繁殖而得名。

微生物学报凝结芽孢杆菌

给你一些检测汁中的嗜热芽孢杆菌的资料参考一下:耐酸耐热菌(库克)的检测方法1 适用范围本方法适用于清汁、浊汁、水和浓缩果汁中的耐酸耐热菌的检测。2 仪器和试剂 恒温水浴:80±1℃。 恒温培养箱:40±1℃。 灭菌培养皿:直径为90mm。 灭菌试管:18×180mm。 滤膜:水系一次性滤膜。 酵母粉。 蛋白胨。 琼脂粉。 葡萄糖。 吐温80。 苹果酸。 灭菌蒸馏水。 K氏培养基平板:在1000ml的三角瓶中放入500ml蒸馏水,加入酵母粉、蛋白胨、琼脂粉、 葡萄糖和吐温80,使其溶解,轻轻盖上三角瓶的盖子,在121℃灭菌25分钟;在一个小烧杯中加入10ml蒸馏水和克的苹果酸,搅拌直至溶解,将苹果酸的水溶液用的滤膜过滤,将处理过的苹果酸水溶液加入到灭菌的K氏培养基中,搅拌均匀,使其pH值达到±。当冷却到大约50℃时,将K氏培养基倾注到培养皿中,凝固后在0-5℃的冰箱中储存,有效期60天,并记录配制日期。3 操作步骤 样品处理 浓缩清汁:打开水浴锅,调整温度到80±1℃。以无菌操作,取10ml浓缩清汁于15ml灭菌的试管中,再移取10ml浓缩清汁于另一带有温度计的15mL的试管中,作为温度控制用,盖上样品试管的盖子。将上述样品试管和温度控制试管放在水浴锅中,当温度达到80±1℃,开始计时,维持13分钟(用计时器计时)。冷却至室温,用90-100ml的灭菌蒸馏水将热处理过的样品转入灭菌容器中,摇匀。将稀释后的样品溶液用的滤膜真空过滤。 清汁、水:打开水浴锅,调整温度到80±1℃。以无菌操作,取150ml清汁(或水)于已灭过菌的玻璃样品瓶中,再移取150ml清汁(或水)于另一带有温度计的玻璃样品瓶中,作为温度控制用,盖上样品瓶的盖子。将上述样品试管和温度控制试管放在水浴锅中,当温度达到80±1℃,开始计时,维持13分钟(用计时器计时)。将热处理过的样品冷却至室温,用的滤膜真空过滤。 浊汁:打开水浴锅,调整温度到80±1℃。以无菌操作,取20ml浊汁于已灭过菌的试管中,再移取20ml浊汁于另一带有温度计的20mL的试管中,作为温度控制用,盖上样品试管的盖子。将上述样品试管和温度控制试管放在水浴锅中,当温度达到80±1℃时,开始计时,维持13分钟(用计时器计时)。冷却至室温,将热处理的样品用的滤膜真空过滤。 培养及计数取掉过滤器的上部装置,用灭菌的镊子,将过滤膜从过滤器上取下放在K氏培养基上,轻敲数次,以保证滤膜与培养基接触。倒置于40-41℃恒温培养箱中,在恒温培养箱底部放置一个有水的盘子,以调整恒温培养箱的湿度,培养5天。培养结束后,记录该培养温度下滤膜上的菌落数。根据对样品的污染情况,可选择稀释度。用灭菌吸管吸取25ml样品,加入到225ml灭菌蒸馏水中,做成1:10的稀释度;用灭菌吸管吸取1:10的稀释液25ml,加入到225ml灭菌蒸馏水中,做成1:100的稀释度,稀释后的样品的检测方法同上。培养结束后,记录滤膜上的菌落数,并按相应的稀释度进行计算。4 数据处理结果报告10ml的浓缩清汁样品中含有的菌落数,报告单位为cfu/10ml。结果报告150ml的清汁(或水)样品中含有的菌落数,报告单位为cfu/150ml。结果报告20ml的浊汁样品中含有的菌落数,报告单位为cfu/20ml。

不是,地衣芽孢杆菌活菌胶囊是地衣芽孢杆菌活菌制剂。一个是抗生素(是微生物代谢次级产物,不是微生物),一个是细菌(主要是芽孢),不是同一个概念。

凝结芽孢杆菌并非肠内固有的微生物,其在肠道中所起的生理作用是通过分泌多种有益物质以及与肠道其他益生菌协同作用的结果,并非是某种物质起作用。凝结芽孢杆菌经口服进入胃后,在胃液的作用下被活化,芽孢衣膨胀,芽孢形状增大,水分增加,代谢加快。当凝结芽孢杆菌进入十二指肠时,其孢子萌发成营养细胞。营养细胞进入小肠后开始生长繁殖,大约30min 繁殖一代 。凝结芽孢杆菌为兼性厌氧菌,当其进入肠道后会消耗游离氧而进行肠道繁殖,有利于厌氧微生物乳酸菌和双歧杆菌的生长,从而调节肠道内微生物菌群的平衡,提高机体的免疫力和抗病力,减少肠道疾病的发生。凝结芽孢杆菌在肠道繁殖的过程中还会分泌淀粉酶和蛋白酶,促进机体对营养物质的消化和吸收;其产生的B 族维生素、氨基酸、短链脂肪酸等物质能增加小肠的蠕动速度,从而改善肠道的消化功能。另外,凝结芽孢杆菌在肠道内定居后还能产生大量抑制有害菌的凝固素(Coagulin)和L(+)乳酸等抑菌物质,因此,对胃肠道炎症有一定的治疗作用。

一、成分不同

1、地衣芽孢杆菌活菌:每粒含地衣芽孢杆菌活菌数不低于亿。辅料为乳糖、淀粉。

2、凝结芽孢杆菌活菌:每片含凝结芽孢杆菌活菌数不低于×10CFU。辅料为微晶纤维素、无水葡萄糖、羧甲淀粉钠、硬脂酸镁。

二、规格不同

1、地衣芽孢杆菌活菌:每粒 克(亿活菌数)。

2、凝结芽孢杆菌活菌:规格为。

三、性状不同

1、地衣芽孢杆菌活菌:胶囊内药粉为白色或灰白色粉末。

2、凝结芽孢杆菌活菌:本品为白色或灰白色片剂。无异臭。

参考资料来源:

百度百科-地衣芽孢杆菌活菌胶囊

百度百科-凝结芽孢杆菌活菌片

枯草芽孢杆菌研究论文英文

枯草芽孢杆菌Bacillus subtilis

枯草芽孢杆菌 [词典] Bacillus subtilis; [例句]研究了枯草芽孢杆菌、假单孢菌和曲霉对低品位磷矿粉的分解作用。Decomposition of low-grade rock phosphate with three strains of Bacillus subtilis, Pseudomonas sp.

张西锋,李万芬. 枯草芽孢杆菌葡萄糖酸操纵子突变株的构建,江苏农业科学,2011.(已接受)张西锋,李万芬. 枯草芽孢杆菌核黄素操纵子rib operon的克隆与表达,生物技术,2011.(已接受)张西锋, 李万芬. 枯草芽孢杆菌GMP 还原酶基因(guaC)突变株的构建,安徽农业科学,2011,1,146-148.章寒琼,张西锋,潘博,孙晓凤,沈伟,李兰. BPA不影响卵母细胞减数分裂相关基因Dazl的甲基化,青岛农业大学学报,2011. (已接受)张西锋, 李万芬, 郭蔼光.透明颤菌vgb基因在枯草芽孢杆菌中的整合表达,西北农林科技大学学报,2009,37(9):199-203.张西锋,郭蔼光.同源重组法构建枯草芽孢杆菌核黄素操纵子突变株,武汉大学学报(理学版),2009,55(3):354-358.杨明明,杨朝霞,张西锋,王晶,刘锦妮,岑沛霖. 枯草芽孢杆菌bioW基因在大肠杆菌中的表达及其对宿主生长的抑制作用,西北农林科技大学学报:自然科学版, 2009:37(1):56-60.张西锋,李万芬,袁新宇,张炜炜,刘 波,王 俊,杨明明. 枯草芽孢杆菌生物素操纵子的初步改造,西北农林科技大学学报(自然科学版), 2007,35(7):169-174.张西锋, 张炜炜, 杨明明, 樊俊华. 生物素生物合成的研究,生物技术,2006,4:84-86.张西锋,李万芬,杨明明,张炜炜,樊俊华. 大肠杆菌、枯草杆菌穿梭表达载体的构建及改造,生物技术,2005,6:5-8.

芽孢杆菌添加剂研究现状论文

在加工食品中,难免会有食品添加剂的存在。很多人对于食品添加剂有较深的担忧,认为它对健康是有害的,也有人持相反的意见。那么我们应该怎么看待食品添加剂,食品添加剂有害吗

这种事情我不会帮你的

我们常可在某些食品广告或食品标签上见到这样的字样:“本品不含添加剂”、“本品纯天然”、“本品不加防腐剂”,给人的印象似乎是天然食品必定安全的,合格的,而加入食品添加剂的则是有毒有害的,其实不然。 食品添加剂有化学合成和天然两大类。天然食品添加剂是利用动物、植物或微生物的代谢产物为原料,经提取后获得。化学合成食品添加剂都是化学的方法将某种元素或某几种化合物通过一定化学反应而制得。 我国现今允许使用的食品添加剂有22类1500余种(美国有45类2000余种),其中绝大多数是用人工合成的方法制得,它们都是经过多次严密的安全性实验并规定程序审批才-被允许使用的。这里举二个例子低盐酱菜很易变质,国家允许在每公斤低盐酱菜中加化学防腐剂山梨酸克。那么山梨酸的毒性有多大呢?经过对大白鼠实验结果证实,可使一半大鼠死亡的山梨酸剂量是每公斤体重克,如果折算到50公斤体重的人,要达到中毒致死剂量是365克山梨酸,相当于吃加了山梨酸的低盐酱菜1460公斤,可想而知,没人会一下子吃那么多酱菜。再从吃太浓山梨酸会使酱菜口感不佳及引起吃的人咽喉部不适等方面考虑,最后才定下来既不影响口味,又不会对人产生危害,还有良好防腐作用的加入剂量。又不会对人产生危害,还有良好防腐作用的加入剂量。又如使用很广的人工合成色素,在使用大剂量的情况下虽可干扰机体脂肪、蛋白质的及致泻致癌作用,但允许使用的剂量较小,因此,在规定剂量使用的前提下也是很安全的。 天然食品添加剂绝大多数是安全的,但在提取过程中常需使用一些化学试剂,成品中很可能会有试剂残留,且天然植物也可能曾使用过农药并有残留。有的天然食品添加剂的毒性不亚于合成食品添加剂,例如从豆科种子中提取的天然香料香豆素对肝脏有明显的毒性,故而不准被使用。现在可以从天然植物中提取的香料有近2000种,而经过认定属安全范围而允许作为食品添加剂使用的则是屈指可数的几种,就是这个道理。天然食品添加剂常有一个显著弱点即是要用较大的量才能获得理想的效果,例如天然色素不但稳定性差、着色力低,需用比人工合成色素大几十至几百倍才能达到理想的着色效果,即使加的量很大,仍很容易褪色。由于其有这些弱点,故而要想达到人工合成色素相同的效果必须花更多的成本,这就限制了它的实用价值。 现代食品生产已离不开食品添加剂,人们的口福也离不开食品添加剂,否则你就吃不到香松的面包,鲜香的火腿,细嫩的豆腐.....总之,食品添加剂,不论是天然的还是人工合成的,只要是按规定作过安全性实验并经批准,且按规定使用的都是定全的,超范围、超剂量使用都可能是有害的。当然,未经批准的任何所谓“食品添加剂”都是绝对禁止使用的。例如,不法之徒用硫磺或盐酸为荔枝保鲜;用吊白块使粉丝变白;用甲醛为水发产品防腐等都是有害的,是违法的这是资料啦,论文还是自己写比较好, 近期的读者有一篇文章叫《日本添加剂之神的背叛》可以借鉴

自己参考这些!微生物(microorganism简称microbe)是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、环保等诸多领域。 一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。能引起人和动物致病的微生物叫病源微生物有八大类: 1.真菌:引起皮肤病。深部组织上感染。 2放线菌:皮肤,伤口感染。 3螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。 4细菌:皮肤病化脓,上呼吸道感染 ,泌尿道感染,食物中毒,败血压症,急性传染病等。 5立克次氏体:斑疹伤寒等。 6衣原体:沙眼,泌尿生殖道感染。 7病毒:肝炎,乙型脑炎,麻疹,艾滋病等。 8支原体:肺炎,尿路感染。 生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。有些人误将真菌当作细菌,是一种比较普遍的误解。尤其以80年代以前未受过系统生物学教育者。微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想像一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50 亿个细菌。微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大!从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。 工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。 农业微生物基因组研究认清致病机制发展控制病害的新对策 据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。 经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。 环境保护微生物基因组研究找到关键基因降解不同污染物 在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。 极端环境微生物基因组研究深入认识生命本质应用潜力极大 在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。 有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。

  • 索引序列
  • 蜡样芽孢杆菌的检测论文
  • 巨大芽孢杆菌论文范文
  • 微生物学报凝结芽孢杆菌
  • 枯草芽孢杆菌研究论文英文
  • 芽孢杆菌添加剂研究现状论文
  • 返回顶部