首页 > 学术期刊知识库 > 激光分离同位素论文范文

激光分离同位素论文范文

发布时间:

激光分离同位素论文范文

根据分离原理可分为五类:①根据分子或离子的质量差进行分离,有电磁法、离心分离等方法。②根据分子或离子运动速度的不同进行分离,有孔膜扩散、质量扩散、热扩散、喷嘴扩散、分子蒸馏、电泳等方法。③根据热力学同位素效应进行分离,有精馏、化学交换、气相色谱、离子交换、吸收、溶剂萃取、分级结晶、超流动性等方法。④根据动力学同位素效应进行分离,有电解法、同位素化学交换法、光化学法、激光分离法等。⑤根据生物学同位素效应进行分离。(见同位素分离、铀同位素分离)

有的人抓住机会,有的人抓不住,这不是运气的问题,而是个人眼光和能力的问题。作家杨大侠杨科说明,机会只亲耐优秀的人。

三分能耐,六分运气,一分贵人扶持。现在能算上数的这个富豪啊,哪个不是抓住了机遇的呢?这机遇啊太重要了,小富靠努力,除了努力还得看机遇。人生在世十年行一大运,但是你有多少个十年呢?

同位素分离isotope separation 不论该同位素是稳定的还是放射性的,是天然的还是人工制造的,只要被分离的同位素属同一元素,这种分离过程都属于同位素分离的范畴。同一元素的各种同位素有相同的核内质子数和核外电子数,故其化学性质极为相似,分离难度很大。但它们的核内中子数不同,因而其原子量不同,这就引起同位素或其分子在热力学性质上的差异,利用同位素间在物理性质和化学性质上的细微差别,可以达到分离的目的。同位素分离方法可分为四类:(1)直接利用同位素质量差别,如电磁分离,离心分离;(2)利用平衡分子传递性质的差别;如扩散、热扩散、离子迁移,分子蒸馏;(3)利用热力学性质上的差别(化学平衡和相平衡),如精馏、化学交换、萃取、吸收、吸附、离子交换、结晶;(4)利用同位素化学反应动力学性质上的差别,如电解、光化学分离(包括激光分离)。实践表明,前两类适用于重元素分离,后两类对轻元素的同位素分离比较有效。将某元素的一种或多种同位素与该元素的其他同位素分离或富集的过程。同位素的发现依赖于同位素分离的实现。直至20世纪30年代初,同位素分离的目的主要是为了分析、研究元素的同位素组成。1931年发现重氢后,建立了重水生产工厂。在.尤里提出同位素化学交换的理论后,建立了各种化学交换法分离同位素的装置。40年代以来,由于核工业的需要,同位素分离技术得以长足发展。铀235、重水、锂 6、硼 10以吨量级生产,并建立了大规模分离同位素过程的级联理论。碳13、氮 15、氧18、硫34等以千克量生产,主要作示踪原子。

激光论文范文论文

投影技术的发展,全息投影技术也在不断的发展,它是真正呈现立体的影像。下面是我为大家整理的全息投影技术论文,欢迎大家阅读。全息投影技术论文篇一:《试谈全息投影技术应用研究》 【摘 要】目前,全息成像工艺复杂,制作成本高,暂不能普遍应用到生活娱乐中,而消费者对新的视觉体验形式的需求越来越急迫,因此我们以一种可以方便实现,视觉效果与全息成像相近的的技术来满足消费者的需求,这就是全息投影技术。本文从全息投影技术构成、视觉效果、应用例举等方面论述了全息投影技术应用的可行性。 【关键词】全息投影;展示;应用;全息投影照片 科幻影片中常常出现全息技术,人或物体以及图形文字以三维的形式在空气中显示,就像电影《星球大战》中的全息通讯、《钢铁侠》中的全息电脑、《普罗米修斯》中全息沙盘等等。科幻电影中的技术多数是虚构的,而往往这些虚构的、幻想的技术却表达社会的需求,指引着科研的方向,全息也是一样。 目前,全息成像工艺相当复杂,制作成本高,还不能普遍地应用到在社会生活和娱乐中,因此全息投影有了其生长和发展的空间。全息投影技术不同于平面银幕投影仅仅在二维表面通过透视、阴影等效果实现立体感,它是真正呈现立体的影像,理论上可以360°观看影像。[1]这种全息投影技术可以呈现出图像浮现在空中的效果,但是所投射出的影像需要依靠透明的介质作为载体,并且对空间的光环境要求相对较高。虽然这样,但这种全息投影技术的优点在于实现成本底、制作方便、趣味性高、视觉效果逼近全息等等,在无介质全息技术应用到我们的生活中之前,全息投影技术有较高的应用空间。看似简单的产品只要能够满足人们的需求,那就会有较高的应用价值。 一、全息投影主要构成 全息投影显示设备是多块透明的 显示器 ,通过多块透明显示器的围合,形成的一个锥体,椎体的每一面对应显示影像内容的每一个面,形成了全息投影的两个视觉特点,一是可以全方位的显示立体影像,二是可以使虚拟影像与周围的现实环境融合到一起,形成虚拟与现实的互动。形成“全息”的视觉效果。 全息投影其简单的构成和实现方式是其能够普及应用的优势之一。全息投影的技术构成分两部分,一是硬件,二是软件。硬件部分包括成像、显示、控制、电源等设备,软件部分为内置控制软件和分屏影像。成像设备、显示设备、分屏影像为其核心构成。 成像设备,即可以生成影像的设备,如显示器、显示屏、投影仪、幻灯机等等,理论上来说可以自发光显示图像的设备都可以用作全息投影,但成像设备的优劣会直接影响全息投影影像的视觉效果。成像设备起到将数字影像内容第一次成像的作用,为显示设备提供充足的光线。 显示设备,即前文中提到的“透明显示器”,这里的“透明显示器”其实是一种高反光的透明膜或者透明板,甚至是玻璃。我们不必在意它是由什么原料制成,我们只要求它具备两个特性,一是良好的通透性,二是尽量的高反光。这两点是全息投影能够实现虚拟与现实融合的核心。显示设备可以反射成像设备所投射出的画面和光线,并且由于其透明的特性,将虚拟影像与实体环境空间形成视觉上的融合,给人新的视觉感受。 分屏影像,全息投影所用的影像是在我们常见的平面影像的基础上进行了再设计,通过多个将物体的多视角画面先分别拍摄再组合拼接到一起,同时播放和控制,这样的影像配合全息投影特殊的多面锥体显示器就能呈现出一个多视角可视的影像,影像给观众一种体量感,并且能够清晰分辨其在空间中的位置。 二、全息投影应用举例 目前全息投影技术和批量生产条件相对成熟,但其应用范围还相对较窄,国内主要将全息投影技术应用到小型展柜、小型舞台中。 全息投影在展柜的商业运用中,多是用于展示企业标识、小型电子产品、珠宝首饰的360°展台和270°展台,内容多数是比较简单的旋转动画,当然也有用于展示游戏角色的,角色有比较简单的动作。在舞台的商业运用中,为满足舞台的观赏角度,以180°的单片全息幕居多。应用方式有虚拟表演、虚拟与真人互动、真人表演全息特效等。2011年3月,日本世嘉公司举办了一场名为“初音未来日感谢祭(Miku's Day)”的全息投影演唱会引起了社会的强烈反响和热烈追捧。 经过对全息投影的研究、试验以及调查,本人认为全息投影在如今这个社会经济条件下可以得到更大的应用空间,甚至达到普及的程度,下面笔者试举出一些领域和行业,探讨如果将全息投影应用到这些行业中去,全息投影所带来的作用及其意义。 1.房地产展示 房地产行业可以涉及到的有全息沙盘、全息样板间、三维全息平面图、三维全息结构图等。 目前我国房地产行业所使用的沙盘主要为电子沙盘,对于样板房,房地产行业的普遍是以三维效果图、样板间模型和实地参观考察来向客户展示样板房。而几乎所有的楼盘宣传资料上都配有房屋平面图以及一些效果图。综合来看,房地产行业高速发展,但其展示手段相对传统,将全息投影应用到其中将极大提升展示效果。 如沙盘,传统沙盘和电子沙盘都是以实体模型为主要展示方式,模型固定不可变,不能向客户展示细节。从环保和节能方面看,沙盘模型都是根据每个楼盘订制的,不可重复利用,一旦楼盘售馨就沦为废品,这是对资源的浪费和对环境的污染。再如样板间,有的开发商基于实际情况的考虑,将样板间直接建设在建筑工地中,客户需要看样板间就需要进入建筑工地,而普通客户对于建筑工地的安全常识和意识并不专业,相对增加了危险度。而样板间模型则和沙盘有同样的问题。 全息投影沙盘的模块化硬件可以实现重复使用,而且展示内容以数字影像方式存在,展示内容灵活可变,展示内容量巨大,还可以很好的完成客户与楼盘间的互动。全息投影沙盘可将传统的沙盘展示、建筑动画、样板间展示、房屋结构展示等融合到一起,只用一套全息投影沙盘即可满足整个楼盘的从外至内、从大环境到局部细节的展示。全息投影沙盘唯一的消耗就是电能,不但起到了很好的展示效果,也顺应环保节能的时代趋势。 2.全息投影照片 社会经济高速发展的今天,摄影摄像技术的简化和人们日益增长的审美需求加快了摄影摄像的普及,我们可以轻易的在身边找到摄影摄像设备,我们的生活被无数的影像所包围,有趣的是我们对于胶卷相机和纸制照片的需求越来越少,我们将数字形式的照片放在电脑、电子相框、手机等设备上来欣赏,这可以看出消费者对于新技术的认可和追捧。 在电子相框、MP4等设备的基础上,全息投影照片将传统的二维平面图像转变为动态的、有体感的、可全方位视角观看的图像,消费者可将自己、亲友甚至偶像的全息投影照片放置在全息投影相框中,操作方式同将电子照片放电子相框一样方便简单,但相对于电子照片,全息投影照片的视觉效果和感官体验是全新的、震撼的。 将全息投影应用到摄影中让消费者得到一种全新的视觉体验,给予消费者更高一级的美的享受。全息投影照片可以像站在巨人的肩膀上一样,在高度普及的平面摄影的基础上向社会进行推广,让更多的人得到全息投影带来的视觉享受与体验乐趣。 其实,全息投影的应用还有很多方式,如全息投影博物馆、全息投影伴舞、全息投影视频电话、全息投影智能引导员等,全息投影不光可以单独使用,也可以同 其它 多媒体设备一同配合使用,其应用的目的在于在真正的全息影像技术普及之前以一种方便的、低廉的、新颖的技术,使人们体验到一种有别于平面媒体的视觉享受。 【参考文献】 [1]许秀文,薄建业,杨铭,等.浅析3D、全息、虚拟现实技术[J].中国 教育 信息化高教职教,2011(7). 全息投影技术论文篇二:《试谈分析全息投影技术在演艺活动中的应用》 摘 要:科技的发展推动影视媒体、新媒体的产生和发展,虚拟艺术体验也应运而生。技术的进步,媒体艺术中的虚拟体验也呈现出多元化趋势,人们可以体验到身临其境的真实感。尤其是在演艺活动中开始逐渐应用全息投影技术,制造逼真立体的艺术情境,使观看者的视觉、听觉产生震撼感受。该文针对全息投影技术进行分析, 总结 出全息投影技术在演艺活动中的优势和发展前景。 关键词:虚拟世界;艺术体验;全息投影;三维立体;演艺活动 虚拟艺术体验广泛应用于影视艺术和多媒体艺术中,人们通过沉浸感和存在感强化了体验的真实感。科技的发展推动影视媒体、新媒体的产生和发展,虚拟艺术体验也应运而生。技术的进步,媒体艺术中的虚拟体验也呈现出多元化趋势,演艺活动中开始逐渐应用全息投影技术,许多演唱会晚会等大型演艺活动都运用了全息投影技术,营造虚拟幻象与表演者之间互动的效果,亦真亦假,惟妙惟肖,使表演产生震撼的效果。 1 全息投影技术的应用 全息投影技术创造的是一种以艺术美学标准营造虚拟世界的 方法 。全息投影技术实质是一种虚拟成像技术,主要是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。目前一般通过两种方式实现虚拟成像,一种方式是直接用投影机背投在全息投影膜上,产生虚拟场景或者虚拟影像;另一种方式通过投影机、LED 屏折射光源至45度成像在幻影成像膜,产生全息投影,全息投影技术不仅可以产生立体的空中幻象,还可以营造连续动态的影像。全息投影构建的虚拟世界可以是基于现实的艺术场景,也可以是超现实的、任凭想象的场景,这种营造过程就是艺术场景实现的过程,技术人员通过计算机图形技术和动作捕捉和表情捕捉系统,最终展现出一个或逼真或梦幻或新奇的艺术世界,这种虚拟艺术体验给人们带来新奇有趣,逼真震撼的视听感受。 在媒体艺术中,全息投影产生的虚拟影像给观众带来的感官刺激最直接,这种艺术感官体验可以源自对现实世界的模拟再现,也可以是超现实的,艺术创造者想象中的各种新奇场景的创造,要实现这些场景或者影像的艺术体验是离不开技术支持的。艺术家可以通过全息投影技术构建或者营造各类艺术情境和场景,引导观众进入虚拟情境中,使人产生身临其境的逼真感觉,仿佛真的置身于营造的虚拟世界中。尤其是在演艺活动中,艺术家或者设计者,通过全息投影技术的营造,引导观众进入虚拟情境中,体验前所未有的虚拟艺术体验和感官刺激。 2 影像互动式虚拟体验在演艺活动中的运用 20世纪中期,互动式虚拟体验最早运用于美国军事模拟训练,尤其是空军飞行训练。美国军方为了降低飞行训练中的损失以及人员伤亡,发明了虚拟飞行驾驶系统。模拟出真实的飞行训练过程,进行飞行员训练。随着技术的发展,模拟训练已经延伸到了其他军事训练领域中,可以模拟出复杂的战斗情境,提高实战水平,同时也减少真实训练或者演习中的损失和伤亡。这种互动式虚拟技术的真实体验使得现实世界和虚拟世界之间的建立起了一座互相作用的桥梁。 随着技术的发展以及媒体艺术的发展,虚拟体验与媒体艺术擦出了绚丽的火花。虚拟感官体验创造的虚拟世界非常接近人类观察体验,在技术的推动下衍生出全新的媒体表现形式和艺术情境,这些新奇的艺术创作方式和艺术表达方式为观众营造了更加丰富多彩的实体体验和感受。虚拟艺术体验作为一种传播方式和手段,彻底颠覆了传统形式的影像体验,擦出了新的传播艺术的火花。 例如,2011年在某国际知名服装品牌的新品发布会上,设计者就把全息投影技术搬上了T台秀,模特表演秀中通过全息投影营造出虚拟模特和真人模特交替出现的场景,在灯光和特效技术的配合下,一场惟妙惟肖、亦真亦假的服装表演完美演绎。在T台上人物和艺术场景忽而产生、忽而消失,模特在虚拟和真实交替中完成瞬间换装的效果,给观看者的视觉和听觉产生了意想不到的震撼效果,观看者完全沉浸于这种逼真立体的影像和真人秀中,这场秀给观者带来了前所未有的魔幻效果,在整个艺术传播领域开创了一个全新的场景。 在我国国内演艺活动中,全息投影营造的互动式虚拟情境的舞台也给观众留下深刻印象。湖南卫视2011跨年演唱会中,有一首歌曲表演中就很成功地运用了全息投影技术,《再见我的爱人》这首歌是邓丽君早起经典作品之一,被观众熟知,许多观众都十分怀念邓丽君深情的演绎,湖南卫视的技术人员就通过全息投影技术把立体逼真的邓丽君演唱的场景搬上舞台,场景中看起来如同邓丽君与歌手的同台对唱,并且两人之间还有恰当的动作眼神交流。在舞台上实现了歌手与影像的完美互动,呈现在观众面前的就是真实的表演场景,给观看者的视觉、听觉带来极大的满足。同样,我们记忆深刻的还有2012龙年春晚就在LED的基础上加入全息投影的电视美术布景,晚会的多数歌舞都动用了全息技术。例如,萨顶顶在演唱《万物生》时,营造立体花朵飘落的艺术情境,演唱者和现场观看者就仿佛是置身花的世界一样,设计者将艺术情境完美结合歌曲的意境,完美演绎了万物生的艺术情境。但是,在演艺活动中全息投影技术只是作为亮点出现在演出的某个环节,并没有被用于制作整场演出的舞美效果,全息投影技术的使用是希望引起观众高潮达到最佳的表演效果。 3 全息投影虚拟互动体验的发展趋势 (1)渲染偶像,美化表演意境。虚拟体验从纯粹的感官体验到交互体验再延伸到情感体验,逐渐呈现出体验融合的趋势,虚拟艺术体验的逼真度和沉浸感也进一步提高和加强。艺术工作者可以在演唱会场景设计上营造多个偶像同时演绎的各种酷炫效果,对观看者的视觉、听觉造成震撼冲击,同时也满足观看者对自己偶像的崇拜心理。 (2)重塑经典,赋予艺术强大生命力。虚拟技术为艺术体验提供了新的机遇。在当下强大的科技条件支持下,可以为观众再现那些怀念的经典,虚拟世界的感官真实性,互动性,情感化,特性的逐渐体现。例如,“复活”历史上的巨星,令其完成与当代明星同台对唱等的现场表演,或是弥补某位不能到场的巨星给观众造成的遗憾,还可以把某个不可能再现的经典为观众重现,对其造成极大的视觉与心理震撼。 (3)打造虚拟偶像,衍生虚拟情感。虚拟艺术体验是调动了视觉、听觉、触觉、嗅觉及肢体行为互动等多种感知体验,也可以是意识心理的思维沉浸,意识和思维沉浸在虚拟世界之中,身体却处于现实之中,身体被虚拟世界中的意识驱动,虚拟和现实之间的界限模糊化,全身心投入到虚拟世界中并享受心醉神迷的沉浸体验,这便是虚拟偶像。越来越多的虚拟偶像会随着人们的不同需求而产生,并且延伸到情感体验的高度。 从感官虚拟体验、互动虚拟体验到情感虚拟体验,这些艺术体验和互动都是基于人们对虚拟世界的幻想和憧憬,引发人们感官和情感的存在感和代入感。从唯物的角度来说,虚拟体验和虚拟互动都是基于人们对真实世界中各种客观事物的反映,并且在人们丰富的想象中得到进一步的艺术升华,在演艺活动或者新媒体艺术中完美地展现出来,迸发出无比绚烂的艺术火花,给观看者带来前所未有的美妙体验和感官享受。因此,虚拟艺术体验是一种很好地表达艺术情感的手段。 参考文献: [1] 王燕鸣.论新媒体艺术在虚拟世界中的互动体验[J].大众文艺,2010(2). [2] 肖永生,赵明镜.飞行模拟器视景显示系统的研究与设计[J].科技广场,2009. 全息投影技术论文篇三:《全息投影的简易制作及探究》 摘 要 全息投影是近年来流行的高新技术,能够展示神奇的立体全息影像,给参观者全新的互动感受。全息投影设备价格较高,应用生活中常见的器材,制作一款具有全息效果的实验演示装备,揭示其中的科学原理。 关键词 全息投影;实验器材;虚拟成像 1 前言 2013年9月13日,去世18年的歌手邓丽君“穿越时空210秒”,与男歌手周杰伦同台对唱,别具一格的全息投影技术很快成为新闻媒体报道的 热点 ,引起人们极大的兴趣和关注。全息投影设备价格较高,一般应用于商业展览或影视特效中。对于广大中小学科学教师来说,只要应用生活中常见的实验器材,花费很低的经济成本,同样可以制作简易的全息投影演示实验,带给学生新奇的科学体验与乐趣。 2 全息投影原理 全息投影技术也称虚拟成像技术,利用光的干涉和衍射原理,记录并再现物体真实的三维图像。 第一步是利用干涉原理记录物体光波信息,被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,利用干涉条纹间的反差和间隔,将物体光波的全部信息记录下来。记录干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片。 第二步是利用衍射原理再现物体光波信息,这是成像过程。全息图的每一部分都记录物体各点的光信息,能够再现原物的整个图像,通过多次曝光可以在同一张底片上记录多个不同的图像,互不干扰地分别显示出来。 全息投影系统将三维立体画面悬浮在实景半空中,画面的对比度和清晰度高,有空间感和透视感,营造了亦幻亦真的神奇氛围。 依据实现技术手段与途径的不同,全息投影分为两类。 1)透射全息投影:通过向全息投影胶片照射激光,从另一个方向来观察重建的图像。透射全息投影可以使用白色光来照明,广泛应用于信用卡防伪和产品包装等领域,通常在一个塑料胶片形成表面 浮雕 图案,通过背面镀上铝膜,光线透过胶片得以重建图像。 2)反射全息投影。使用白色光源,从和观察者相同的方向照射胶片,通过反射重建彩色图像。镜面全息投影利用控制镜面在二维表面上的运动,制造三维图像。 3 简易全息投影设备制作 应用于商业展览或影视特技的全息投影需要复杂的制作技术与专业设备[1]。为了向青少年普及科学知识,介绍前沿科技新成就,教师利用身边的简易器材,同样可以制作出具有立体效果的全息图像。 实验原理 利用4个半透面对光线的折射和全反射,把屏幕上的视频源文件反射。由于视频源文件同时有图像的前、后、左、右4个面,4个面同时投影形成全息效果。原理图如图1所示。 制作材料与过程 能够形成单屏投影的设备(包括手机、平板电脑)、各种透明薄板(如亚克力板、塑料板、PVC板、手机贴膜等)。由于四棱椎体是最简单的制作,以下详细介绍全息投影制作过程以及注意事项。 1)确定四棱椎体的几何形状与大小。本实验制作的投影设备由透明塑料等材质构成棱锥、覆盖在上方的单屏投影源构成(图2)。光线由投影源发出,在棱锥侧面产生全反射,进入观察者眼睛。如果能够使每个侧面反射的光线恰好构成三维物体的不同侧面,观察者从不同方向观看,就可以看到三维物体的不同侧面[2]。为了保证反射光水平射入眼睛,需要使棱锥的侧面和底面所成的二面角为45°。 由于大家使用的各种手机或平板电脑的尺寸差异较大,给出的参考建议是:构成四棱椎体的等腰三角形底边约等于屏幕的宽度。如测量所用的iPad屏幕宽度为12 cm,则等腰三角形的底边就是12 cm,顶角固定为°,腰长为 cm,腰长=底边×。如果要制作六棱锥投影,则等腰三角形各边的几何关系为腰长=底边×。六棱锥的播放效果更佳,环六棱锥360°无死角观察到清晰逼真的投影图像;四棱锥在投影面交接角度处观察到轻微变形。 2)剪裁和粘贴投影用金字塔。把透明薄板依据上面的规格裁剪出4个等腰三角形,用透明胶条或不干胶依次粘好各三角形的边,做成一个投影金字塔。因为平板电脑的屏幕要放到金字塔的顶尖,设计一个支架把平板电脑架起来,不能挡住金字塔的四面。也可以用黑色纸盒做成暗箱型的支架,周围背景越黑,立体投影的显示效果越好。将平板电脑或手机屏幕朝下,倒扣在金字塔的塔尖上,确保金字塔尖正对视频4个切分画面的中心。 3)播放全息投影视频。利用MikuMikuDance(简称MMD)、会声会影X5与格式转换软件,先用MMD制作出所需图像的正面、背面、左右侧面,再将格式转换成为会声会影视频,便可做出全息视频源。专业高手也可以利用动画制作软件MAYA,设计出人物模型、动作,分出前、后、左、右4个视图,导出播放视频即可。现在网络上有不少3D全息影像素材,使用者可以根据需要下载和播放。 4 结语 由于器材简陋,该实验显示的并不是真正意义上的全息图像,可以看作“伪全息”,虽然视觉上看起来有全息的效果,但其本质还是2D成像。以图3所示美少女为例,视频中的四分屏分别是少女的正面、背面以及左右侧面,这四面分别对应金字塔形投影仪四面的塑料片。四个画面分别映射在4个塑料片上,从塑料片的4个角度来看,会产生“图像就在投影仪中央,能够360°无死角观看”的错觉。因此,制作全息投影时必须选择表面光滑、没有太多划痕的透明薄片,才能有更好一些的视觉效果。播放视频的清晰度也很重要,最好采用清晰度为720P及以上的视频图像。 参考文献 [1]于丽,杨宇.一种三维全息投影屏的制作方法[J].激光与光电子学进展,2013(2):115-118. [2]房若宇.多棱锥三维立体投影装置的制作[J].物理实验,2015(6):23-25. [3]杨毅.论全息投影技术中虚拟角色制作设计[J].科教文汇,2013(10):94. 猜你喜欢: 1. 计算机图像处理在全息学中的应用论文 2. vr技术论文2000字 3. 人工智能综述论文 4. 关于计算机多媒体技术研究专业毕业论文 5. 全息投影技术论文 6. vi设计毕业论文范文 7. texlive如何写论文

传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。这是我为大家整理的传感器技术论文 范文 ,仅供参考!传感器技术论文范文篇一 传感器及其概述 摘 要 传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。 【关键词】传感器 种类 新型 1 前言 传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。 2 传感器的分类 按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。 3 常见传感器介绍 电阻应变式传感器 电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为左右的金属丝或金属箔制成。敏感元件也叫敏感栅。其具有体积小、动态响应快、测量精度高、使用简单等优点。在航空、机械、建筑等各行业获得了广泛应用。电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。其可以分为:金属电阻应变片和半导体应变片式两类。金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。它们的主要区别在于:金属电阻应变片式是利用导体形变引起电阻变化,而半导体应变片式则是利用电阻率变化引起电阻的变化。 电容式传感器 电容式传感器是将被测物理量转换成电容量变化的装置,它实质是一个具有可变参数的电容器。由于电容与极距成反比,与正对面积和介质成正比,因此其可以分为极距变化型、面积变化型和介质变化型三类。极距变化型电容传感器的优点是可进行动态非接触式测量,对被测系统的影响小,灵敏度高,适用于较小位移的测量,但这种传感器有非线性特性,因此使用范围受到一定限制。面积变化型传感器的优点是输出与输入成线性关系,但与极距型传感器相比,灵敏度较低,适用于较大的直线或角位移的测量。介质变化型则多用于测量液体的高度等场合。 电感式传感器 电感式传感器是将被测物理量,如力、位移等,转换为电感量变换的一种装置,其变换是基于电磁感应原理。电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 电感式传感器具有以下特点:结构简单,传感器无活动电触点,因此工作可靠寿命长。灵敏度和分辨力高,能测出微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达~。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 磁电式传感器 磁电式传感器是把被测物理量转换为感应电动势的一种传感器,又称电磁感应式或电动力式传感器。其工作原理是一个匝数为N的线圈,当穿过它的磁通量变化时,线圈产生了感应电动势。磁通量的变化可通过多种方式来实现,如磁铁与线圈做切割磁力线运动、磁路的磁阻变化、恒定磁场中线圈面积的变化,因此可制造出不同类型的传感器用于测量速度、扭矩等。 压电式传感器 压电式传感器是一种可逆传感器,是利用某些物质的压电效应进行工作的器件。最简单的压电式传感器是在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极。当晶片受压力时,两个极板上聚集数量相等而极性相反的电荷,形成电场。因此压电传感器可以看成是电荷发生器,又可以看作电容器。 4 新型传感器 生物传感器 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测 方法 与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器的原理:待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。 激光传感器 激光传感器:利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器原理:激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。 5 结束语 随着科技的飞速发展,人们不断提高着自身认知世界的能力。传感器在获取自然和生产领域中发挥着巨大上的作用。目前,传感器技术在发展经济、推动社会进步方面起到重要的推动作用。相信未来,传感器技术将会出现一个飞跃。 作者简介 杨天娟(1991-),女,河北省邯郸市人。现为郑州大学本科生,主要研究方向为机械工程及自动化。 作者单位 郑州大学机械工程学院 河南省郑州市 450001 传感器技术论文范文篇二 温度传感器 摘 要:温度传感器是最早开发、也是应用最广泛的一种传感器。据调查,早在1990年,温度传感器的市场份额就大大超出了 其它 传感器。从17世纪初,伽利略发明温度计开始,人们便开始了温度测量。而真正把温度转换成电信号的传感器,是1821年德国物理学家赛贝发明的,也就是我们现在使用的热电偶传感器。随后,铂电阻温度传感器、半导体热电偶温度传感器、PN结温度传感器、集成温度传感器相继而生。也使得温度传感器更加广泛的应用到我们的生产和生活中。本文主要介绍了温度传感器的分类、工作原理及应用。 关键词:温度传感器;温度;摄氏度 中图分类号:TP212 文献标识码:A 文章 编号:1674-7712 (2014) 02-0000-01 温度传感器(temperature transducer),利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 一、温度的相关知识 温度是用来表征物体冷热程度的物理量。温度的高低要用数字来量化,温标就是温度的数值表示方法。常用温标有摄氏温标和热力学温标。 摄氏温标是把标准大气压下,沸水的温度定为100摄氏度,冰水混合物的温度定为0摄氏度,在100摄氏度和0摄氏度之间进行100等份,每一等份为1摄氏度。热力学温标是威廉汤姆提出的,以热力学第二定律为基础,建立温度仅与热量有关而与物质无关的热力学温标。由于是开尔文 总结 出来的,所以又称为开尔文温标。 二、温度传感器的分类 根据测量方式不同,温度传感器分为接触式和非接触式两大类。接触式温度传感器是指传感器直接与被测物体接触,从而进行温度测量。这也是温度测量的基本形式。其中接触式温度传感器又分为热电偶温度传感器、热电阻温度传感器、半导体热敏电阻温度传感器等。 非接触式温度传感器是测量物体热辐射发出的红外线,从而测量物体的温度,可以进行遥测。 三、温度传感器的工作原理 (一)热电偶温度传感器。热电偶温度传感器结构简单,仅由两根不同材料的导体或半导体焊接而成,是应用最广泛的温度传感器。 热电偶温度传感器是根据热电效应原理制成的:把两种不同的金属A、B组成闭合回路,两接点温度分别为t1和t2,则在回路中产生一个电动势。 热电偶也是由两种不同材料的导体或半导体A、B焊接而成,焊接的一端称为工作端或热端。与导线连接的一端称为自由端或冷端,导体A、B称为热电极,总称热电偶。测量时,工作端与被测物相接触,测量仪表为电位差计,用来测出热电偶的热电动势,连接导线为补偿导线及铜导线。 从测量仪表上,我们观测到的便是热电动势,而要想知道物体的温度,还需要查看热电偶的分度表。 为了保证温度测量结果足够精确,在热电极材料的选择方面也有严格的要求:物理、化学稳定性要高;电阻温度系数小;导电率高;热电动势要大;热电动势与温度要有线性或简单的函数关系;复现性好;便于加工等。根据我们常用的热电极材料,热电偶温度传感器可分为标准化热电偶和非标准化热电偶。铂铑-铂热电偶是常用的标准化热电偶,熔点高,可用于测量高温,误差小,但价格昂贵,一般适用于较为精密的温度测量。铁-康铜为常用的非标准化热电偶,测温上限为600摄氏度,易生锈,但温度与热电动势线性关系好,灵敏度高。 (二)电阻式温度传感器。热电偶温度传感器虽然结构简单,测量准确,但仅适用于测量500摄氏度以上的高温。而要测量-200摄氏度到500摄氏度的中低温物体,就要用到电阻式温度传感器。 电阻式温度传感器是利用导体或者半导体的电阻值随温度变化而变化的特性来测量温度的。大多数金属在温度升高1摄氏度时,电阻值要增加到。电阻式温度传感器就是要将温度的变化转化为电阻值的变化,再通过测量电桥转换成电压信号送至显示仪表。 (三)半导体热敏电阻。半导体热敏电阻的特点是灵敏度高,体积小,反应快,它是利用半导体的电阻值随温度显著变化的特性制成的。可分为三种类型:(1)NTC热敏电阻,主要是Mn,Co,Ni,Fe等金属的氧化物烧结而成,具有负温度系数。(2)CTR热敏电阻,用V,Ge,W,P等元素的氧化物在弱还原气氛中形成烧结体,它也是具有负温度系数的。(3)PTC热敏电阻,以钛酸钡掺和稀土元素烧结而成的半导体陶瓷元件,具有正温度系数。也正是因为PTC热敏电阻具有正温度系数,也制作成温度控制开关。 (四)非接触式温度传感器。非接触式温度传感器的测温元件与被测物体互不接触。目前最常用的是辐射热交换原理。这种测温方法的主要特点是:可测量运动状态的小目标及热容量小或变化迅速的对象,也可用来测量温度场的温度分布,但受环境温度影响比较大。 四、温度传感器的应用举例 (一)温度传感器在汽车上的应用。温度传感器的作用是测量发动机的进气,冷却水,燃油等的温度,并把测量结果转换为电信号输送给ECU.对于所有的汽油机电控系统,进气温度和冷却水温度是ECU进行控制所必须的两个温度参数,而其他的温度参数则随电控系统的类型及控制需要而不尽相同。进气温度传感器通常安装在空气流量计或从空气滤清器到节气门体之间的进气道或空气流量计中,水温传感器则布置在发动机冷却水路,汽缸盖或机体上上的适当位置.可以用来测量温度的传感器有绕线电阻式,扩散电阻式,半导体晶体管式,金属芯式,热电偶式和半导体热敏电阻式等多种类型,目前用在进气温度和冷却水温度测量中应用最广泛的是热敏电阻式温度传感器。 (二)利用温度传感器调节卫生间的温度。温度传感器还能调节卫生间内的温度,尤其是在洗澡的时候,能自动调节卫生间内的温度是很有必要的。通过温湿度传感器和气体传感器就能很好的控制卫生间内的环境从而使我们能够拥有一个舒适的生活。现在大部分旅馆和一些公共场所都实现了自动调节,而普通家庭的卫生间都还是人工操作,尚未实现自动调节这主要是一般客户不知道能够利用传感器实现自动化,随着未来人们的进一步了解,普通家庭的卫生间也能实现自动调节。 参考文献: [1]周琦.集成温度传感器的设计[D].西安电子科技大学,2007.

激光论文

激光发展史激光以全新的姿态问世已二十余年。然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。自然,激光器的发明也不例外。 说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯()领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛()与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。这又将激光研究推上了一个新阶段。现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。因此,我开始探索、寻找固体激光器的材料…...”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。可喜的是,科学家迈曼()巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年.肖洛和.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。 激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。 激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。 按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。 按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。 按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。 按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(~25微米)的激光器件,代表者为CO分子气体激光器(微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(~微米)的激光器件,代表者为掺钕固体激光器(微米)、CaAs半导体二极管激光器(约 微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或~微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段[编辑本段]激光器的发明 激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。 激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。 此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。 如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。 然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。 但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。 汤斯等人研制的微波激射器只产生了厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。 此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。 1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。 “梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。 尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。 1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。 今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。

激光——人类创造的神奇之光激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。意思是“受激辐射的光放大”。激光的英文全名已完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。它的原理早在 1916 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。激光是在有理论准备和生产实践 迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。激光的产生原理:受激辐射基于伟大的科学家爱因斯坦在1916年提出的一套全新的理论。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”, 一段激活物质就是一个激光放大器。激光的特点:(一)定向发光普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。(二)亮度极高在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。大量光子集中在一个极小的空间范围内射出,能量密度自然极高。(三)颜色极纯光的颜色由光的波长(或频率)决定。一定的波长对应一定的颜色。太阳光的波长分布范围约在微米至微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。单色光源的光波波长虽然单一,但仍有一定的分布范围。如氪灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有纳米,因此氪灯发出的红光,若仔细辨认仍包含有几十种红色。由此可见,光辐射的波长分布区间越窄,单色性越好。激光器输出的光,波长分布范围非常窄,因此颜色极纯。以输出红光的氦氖激光器为例,其光的波长分布范围可以窄到2×10-9纳米,是氪灯发射的红光波长分布范围的万分之二。由此可见,激光器的单色性远远超过任何一种单色光源。(四)能量密度极大光子的能量是用E=hγ来计算的,其中h为普朗克常量,γ为频率。由此可知,频率越高,能量越高。激光频率范围*10^(14)Hz到*10^(14)Hz.激光能量并不算很大,但是它的能量密度很大(因为它的作用范围很小,一般只有一个点),短时间里聚集起大量的能量,用做武器也就可以理解了。目前激光技术及其应用研究内容包括:⑴超快超强激光:超快超强激光主要以飞秒激光的研究与应用为主,作为一种独特的科学研究的工具和手段,飞秒激光的主要应用可以概括为三个方面,即飞秒激光在超快领域内的应用、在超强领域内的应用和在超微细加工中的应用。其中飞秒激光超微细加工是当今世界激光、光电子行业中的一个极为引人注目的前沿研究方向。⑵新型激光器研究:激光测距仪是激光在军事上应用的起点,将其应用到火炮系统,大大提高了火炮射击精度。激光雷达相比于无线电雷达,由于激光发散角小,方向性好,因此其测量精度大幅度提高。由于同样的原因,激光雷达不存在"盲区",因此尤其适宜于对导弹初始阶段的跟踪测量。但由于大气的影响,激光雷达并不适宜在大范围内搜索,还只能作为无线电雷达的有力补足。⑶激光医疗:激光在医学上的应用分为两大类:激光诊断与激光治疗,前者是以激光作为信息载体,后者则以激光作为能量载体。多年来,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术。它解决了医学中的许多难题,为医学的发展做出了贡献。现在,在基础研究、新技术开发以及新设备研制和生产等诸多方面都保持持续的、强劲的发展势头。⑷激光化学:激光化学的应用非常广泛。制药工业是第一个得益的领域。应用激光化学技术,不仅能加速药物的合成,而又可把不需要的副产品剔在一旁,使得某些药物变得更安全可靠,价格也可降低一些。又如,利用激光控制半导体,就可改进新的光学开关,从而改进电脑和通信系统。激光化学虽然尚处于起步阶段,但其前景十分光明。目前全球业界公认的发展最快的、应用日趋广泛的最重要的高新技术就是光电技术。而在光电技术中,其基础技术之一就是激光技术。21世纪的激光技术与产业的发展将支撑并推进高速、宽带、海量的光通信以及网络通信,并将引发一场照明技术革命,小巧、可靠、寿命长、节能半导体(LED)将主导市场。光电技术将继微电子技术之后再次推动人类科学技术的革命和进步,激光产品已成为现代武器的"眼睛"和"神经"。激光的研究必将对相关领域进步起到巨大推动作用。

你好,不好意思,这个我不会哦

绿光激光器论文

绿光亮度高,光束清晰人的视觉神经对绿色是十分敏感的亮度高,质量好东莞市蓝宇激光有限公司十年专业激光应用解决方案制造商

半导体泵浦532nm 绿光激光器由于具有波长短,光子能量高,体积小,效率高,可靠性高,寿命长,在水中传输距离远和对人眼敏感等优点,近几年在光谱技术,激光医学,信息存储,彩色打印,水下通讯等领域展示出极为重要的作用,从而成为各国研究的热点。 半导体泵浦532nm 绿光激光器适用于大学近代物理教学中的非线性光学实验。本实验以808nm 半导体激光泵浦Nd 3+: YVO 4激光器为研究对象,在激光腔内插入倍频晶体KTP ,产生532nm 倍频光,观察倍频现象、测量倍频效率、相位匹配角等基本参数。一、实验目的1、 掌握光路调整基本方法,观察横模,测量输出红外光与泵浦能量的关系,斜效率和阈值;2、 测量半导体激光器注入电流和功率输出的变化关系,了解激光原理及倍频等激光技术。二、实验原理光与物质的相互作用可以归结为光与原子的相互作用。爱因斯坦从辐射与原子的相互作用的量子论观点出发提出:在平衡条件下,这种相互作用过程有三种,也就是受激吸收,受激辐射和自发辐射。假定一个原子,其基态能量为E 1,第一激发态的能量为E 2,如图1所示。如果原子开始处于基态,在没有外界光子入射时,原子的能级状态将保持不变。如果有一个能量为2121hv E E =-的光子入射,则原子就会吸收这个光子而跃迁到第一激发态。原子的跃迁必须符合跃迁选择定则,也就是入射光子的能量21hv 等原子的能级间隔21E E -时才能被吸收(为叙述的简单起见,这里假定自发辐射是单色的)。激发态的寿命很短,在不受外界影响时,它们会自发地返回到基态并发射出光子。自发辐射与外界作用无关,由于原子的辐射都是自发地,独立地进行的,所以不同原子发射的光子的发射方向和初相位都是随机的,各不相同的,如图2所示。如果有一个能量为2121hv E E =-的光子入射,则原子就会在这个光子的激励下产生新的光子,即引起受激辐射,如图3所示,受激辐射发射的光子与外来光子的频率、发射方向、偏振态和初相位完全相同。激光就是受激辐射过程产生的。

同属激光器。红光激光器商用最早,绿光和蓝光商用晚一些。绿光和蓝光用在光盘系统中,因为衍射极限的问题,会比红光分辨率更高,从而在单位面积的上的存储容量更大。

当然不是,颜色都是和发光介质有关的,大功率的一般都是红外线。一般最多的是氦氖激光器,红光, 绿光的是由红光通过KTP晶体等转换过来的,因为绿色好看。这两种功率小,成本低,自然比较常见

激光位移传感毕业论文

激光发展史激光以全新的姿态问世已二十余年。然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。自然,激光器的发明也不例外。 说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯()领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛()与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。这又将激光研究推上了一个新阶段。现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。因此,我开始探索、寻找固体激光器的材料…...”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。可喜的是,科学家迈曼()巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年.肖洛和.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。 激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。 激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。 按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。 按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。 按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。 按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(~25微米)的激光器件,代表者为CO分子气体激光器(微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(~微米)的激光器件,代表者为掺钕固体激光器(微米)、CaAs半导体二极管激光器(约 微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或~微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段[编辑本段]激光器的发明 激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。 激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。 此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。 如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。 然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。 但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。 汤斯等人研制的微波激射器只产生了厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。 此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。 1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。 “梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。 尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。 1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。 今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。

传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。这是我为大家整理的传感器技术论文 范文 ,仅供参考!传感器技术论文范文篇一 传感器及其概述 摘 要 传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。 【关键词】传感器 种类 新型 1 前言 传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。 2 传感器的分类 按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。 3 常见传感器介绍 电阻应变式传感器 电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为左右的金属丝或金属箔制成。敏感元件也叫敏感栅。其具有体积小、动态响应快、测量精度高、使用简单等优点。在航空、机械、建筑等各行业获得了广泛应用。电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。其可以分为:金属电阻应变片和半导体应变片式两类。金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。它们的主要区别在于:金属电阻应变片式是利用导体形变引起电阻变化,而半导体应变片式则是利用电阻率变化引起电阻的变化。 电容式传感器 电容式传感器是将被测物理量转换成电容量变化的装置,它实质是一个具有可变参数的电容器。由于电容与极距成反比,与正对面积和介质成正比,因此其可以分为极距变化型、面积变化型和介质变化型三类。极距变化型电容传感器的优点是可进行动态非接触式测量,对被测系统的影响小,灵敏度高,适用于较小位移的测量,但这种传感器有非线性特性,因此使用范围受到一定限制。面积变化型传感器的优点是输出与输入成线性关系,但与极距型传感器相比,灵敏度较低,适用于较大的直线或角位移的测量。介质变化型则多用于测量液体的高度等场合。 电感式传感器 电感式传感器是将被测物理量,如力、位移等,转换为电感量变换的一种装置,其变换是基于电磁感应原理。电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 电感式传感器具有以下特点:结构简单,传感器无活动电触点,因此工作可靠寿命长。灵敏度和分辨力高,能测出微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达~。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 磁电式传感器 磁电式传感器是把被测物理量转换为感应电动势的一种传感器,又称电磁感应式或电动力式传感器。其工作原理是一个匝数为N的线圈,当穿过它的磁通量变化时,线圈产生了感应电动势。磁通量的变化可通过多种方式来实现,如磁铁与线圈做切割磁力线运动、磁路的磁阻变化、恒定磁场中线圈面积的变化,因此可制造出不同类型的传感器用于测量速度、扭矩等。 压电式传感器 压电式传感器是一种可逆传感器,是利用某些物质的压电效应进行工作的器件。最简单的压电式传感器是在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极。当晶片受压力时,两个极板上聚集数量相等而极性相反的电荷,形成电场。因此压电传感器可以看成是电荷发生器,又可以看作电容器。 4 新型传感器 生物传感器 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测 方法 与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器的原理:待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。 激光传感器 激光传感器:利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器原理:激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。 5 结束语 随着科技的飞速发展,人们不断提高着自身认知世界的能力。传感器在获取自然和生产领域中发挥着巨大上的作用。目前,传感器技术在发展经济、推动社会进步方面起到重要的推动作用。相信未来,传感器技术将会出现一个飞跃。 作者简介 杨天娟(1991-),女,河北省邯郸市人。现为郑州大学本科生,主要研究方向为机械工程及自动化。 作者单位 郑州大学机械工程学院 河南省郑州市 450001 传感器技术论文范文篇二 温度传感器 摘 要:温度传感器是最早开发、也是应用最广泛的一种传感器。据调查,早在1990年,温度传感器的市场份额就大大超出了 其它 传感器。从17世纪初,伽利略发明温度计开始,人们便开始了温度测量。而真正把温度转换成电信号的传感器,是1821年德国物理学家赛贝发明的,也就是我们现在使用的热电偶传感器。随后,铂电阻温度传感器、半导体热电偶温度传感器、PN结温度传感器、集成温度传感器相继而生。也使得温度传感器更加广泛的应用到我们的生产和生活中。本文主要介绍了温度传感器的分类、工作原理及应用。 关键词:温度传感器;温度;摄氏度 中图分类号:TP212 文献标识码:A 文章 编号:1674-7712 (2014) 02-0000-01 温度传感器(temperature transducer),利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 一、温度的相关知识 温度是用来表征物体冷热程度的物理量。温度的高低要用数字来量化,温标就是温度的数值表示方法。常用温标有摄氏温标和热力学温标。 摄氏温标是把标准大气压下,沸水的温度定为100摄氏度,冰水混合物的温度定为0摄氏度,在100摄氏度和0摄氏度之间进行100等份,每一等份为1摄氏度。热力学温标是威廉汤姆提出的,以热力学第二定律为基础,建立温度仅与热量有关而与物质无关的热力学温标。由于是开尔文 总结 出来的,所以又称为开尔文温标。 二、温度传感器的分类 根据测量方式不同,温度传感器分为接触式和非接触式两大类。接触式温度传感器是指传感器直接与被测物体接触,从而进行温度测量。这也是温度测量的基本形式。其中接触式温度传感器又分为热电偶温度传感器、热电阻温度传感器、半导体热敏电阻温度传感器等。 非接触式温度传感器是测量物体热辐射发出的红外线,从而测量物体的温度,可以进行遥测。 三、温度传感器的工作原理 (一)热电偶温度传感器。热电偶温度传感器结构简单,仅由两根不同材料的导体或半导体焊接而成,是应用最广泛的温度传感器。 热电偶温度传感器是根据热电效应原理制成的:把两种不同的金属A、B组成闭合回路,两接点温度分别为t1和t2,则在回路中产生一个电动势。 热电偶也是由两种不同材料的导体或半导体A、B焊接而成,焊接的一端称为工作端或热端。与导线连接的一端称为自由端或冷端,导体A、B称为热电极,总称热电偶。测量时,工作端与被测物相接触,测量仪表为电位差计,用来测出热电偶的热电动势,连接导线为补偿导线及铜导线。 从测量仪表上,我们观测到的便是热电动势,而要想知道物体的温度,还需要查看热电偶的分度表。 为了保证温度测量结果足够精确,在热电极材料的选择方面也有严格的要求:物理、化学稳定性要高;电阻温度系数小;导电率高;热电动势要大;热电动势与温度要有线性或简单的函数关系;复现性好;便于加工等。根据我们常用的热电极材料,热电偶温度传感器可分为标准化热电偶和非标准化热电偶。铂铑-铂热电偶是常用的标准化热电偶,熔点高,可用于测量高温,误差小,但价格昂贵,一般适用于较为精密的温度测量。铁-康铜为常用的非标准化热电偶,测温上限为600摄氏度,易生锈,但温度与热电动势线性关系好,灵敏度高。 (二)电阻式温度传感器。热电偶温度传感器虽然结构简单,测量准确,但仅适用于测量500摄氏度以上的高温。而要测量-200摄氏度到500摄氏度的中低温物体,就要用到电阻式温度传感器。 电阻式温度传感器是利用导体或者半导体的电阻值随温度变化而变化的特性来测量温度的。大多数金属在温度升高1摄氏度时,电阻值要增加到。电阻式温度传感器就是要将温度的变化转化为电阻值的变化,再通过测量电桥转换成电压信号送至显示仪表。 (三)半导体热敏电阻。半导体热敏电阻的特点是灵敏度高,体积小,反应快,它是利用半导体的电阻值随温度显著变化的特性制成的。可分为三种类型:(1)NTC热敏电阻,主要是Mn,Co,Ni,Fe等金属的氧化物烧结而成,具有负温度系数。(2)CTR热敏电阻,用V,Ge,W,P等元素的氧化物在弱还原气氛中形成烧结体,它也是具有负温度系数的。(3)PTC热敏电阻,以钛酸钡掺和稀土元素烧结而成的半导体陶瓷元件,具有正温度系数。也正是因为PTC热敏电阻具有正温度系数,也制作成温度控制开关。 (四)非接触式温度传感器。非接触式温度传感器的测温元件与被测物体互不接触。目前最常用的是辐射热交换原理。这种测温方法的主要特点是:可测量运动状态的小目标及热容量小或变化迅速的对象,也可用来测量温度场的温度分布,但受环境温度影响比较大。 四、温度传感器的应用举例 (一)温度传感器在汽车上的应用。温度传感器的作用是测量发动机的进气,冷却水,燃油等的温度,并把测量结果转换为电信号输送给ECU.对于所有的汽油机电控系统,进气温度和冷却水温度是ECU进行控制所必须的两个温度参数,而其他的温度参数则随电控系统的类型及控制需要而不尽相同。进气温度传感器通常安装在空气流量计或从空气滤清器到节气门体之间的进气道或空气流量计中,水温传感器则布置在发动机冷却水路,汽缸盖或机体上上的适当位置.可以用来测量温度的传感器有绕线电阻式,扩散电阻式,半导体晶体管式,金属芯式,热电偶式和半导体热敏电阻式等多种类型,目前用在进气温度和冷却水温度测量中应用最广泛的是热敏电阻式温度传感器。 (二)利用温度传感器调节卫生间的温度。温度传感器还能调节卫生间内的温度,尤其是在洗澡的时候,能自动调节卫生间内的温度是很有必要的。通过温湿度传感器和气体传感器就能很好的控制卫生间内的环境从而使我们能够拥有一个舒适的生活。现在大部分旅馆和一些公共场所都实现了自动调节,而普通家庭的卫生间都还是人工操作,尚未实现自动调节这主要是一般客户不知道能够利用传感器实现自动化,随着未来人们的进一步了解,普通家庭的卫生间也能实现自动调节。 参考文献: [1]周琦.集成温度传感器的设计[D].西安电子科技大学,2007.

在信息化社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探测技术的支持。传感器是自动化控制的重要组成部分,正是由于各种传感器在小浪底电厂得到充分的应用,电厂的效率才得到极大的提高。

位移传感器是新技术革命和信息社会的重要技术基础,传感器技术是实现测试与自动控制的重要环节。在测试系统中,传感器被作为仪表定位,直接作用于被测量,作为信息探测、感知和捕获的器件,如果没有传感器对被测的原始信息进行准确可靠的捕获和转换,一切准确的测试与控制都将无法实现,传感器的优劣对测量系统的功能起着决定性的作用。

位移传感器简介

位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等等。 电位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高、抗干扰能力强、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。

传统的线性传感器原理:位移传感器的功能在于把直线机械位移量转换成电信号。为了达到这一效果,通常将可变电阻滑轨定置在电位器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。电位器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将电位器用作分压器可最大限度降低对滑轨总阻值精确性的要求,然而由温度变化引起的阻值变化不会影响到测量结果。

其中位移传感器中的图尔克直线位移传感器具有高精度的特点能提供µm级的精度。它能能够精确检测到液压缸的行程以启动控制阀,达到精确地控制导流叶片的目的。通过控制导流叶片来控制水流平稳地流入水轮机的流量计中。

位移传感器应用

1、 用于金属材质的检测、如:

①、移动、位置、位移、膨胀、尺寸

②、振动、偏移、间隙、谐振

③、轴承振动、润滑间隙、磨损、偏移

④、换向器不圆度、圆度、气隙、分度

2、用于机械转轴的转速测量和监控

在需要建立和维护位置偏置与容差的工程应用中,位移传感器的使用十分广泛。根据要求的不同,测量位移的范围也相差很大,从需要用长波长微波器件测量公里级的位移,到短波长微波器件测量米级的位移,到常用的各种位移传感器测量的毫米级位移,以及用激光干涉法测量微米级位移,直到用x射线衍射(x-ray diffraction,xrd)干涉法测量亚纳米级位移。

在日常生活中经常用到位移微传感器,例如在交通信号灯和机器人上的监测器;精确控制驱动器和驱动系统中用来测量驱动器或驱动杆位置的光学编码器。它们在构建信息化社会中起到了巨大的作用。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【】,就能免费领取哦~

  • 索引序列
  • 激光分离同位素论文范文
  • 激光论文范文论文
  • 激光论文
  • 绿光激光器论文
  • 激光位移传感毕业论文
  • 返回顶部