首页 > 学术期刊知识库 > pcr核酸检测原理论文

pcr核酸检测原理论文

发布时间:

pcr核酸检测原理论文

PCR全称多聚酶链式反应,原理是DNA的体外扩增。具体来说:在EP管里加入DNA、合成原料(dNTP、引物)、耐热的DNA聚合酶(taq)后,放入PCR仪,PCR仪会利用升温使DNA变性,在聚合酶的作用下使单链复制成双链,进而达到基因复制的目的。用途:1、核酸的基础研究:基因组克隆2、不对称PCR制备单链DNA用于DNA测序3、反向PCR测定未知DNA区域4、反转录PCR(RT-PCR)用于检测细胞中基因表达水平、RNA病毒量以及直接克隆特定基因的cDNA5、荧光定量PCR用于对PCR产物实时监控6、cDNA末端快速扩增技术7、检测基因的表达8、医学应用:检测细菌、病毒类疾病;诊断遗传疾病;诊断肿瘤;应用于法医物证学

PCR技术是一种体外酶促合成、扩增特定DNA片段的方法。下面是我整理的关于pcr技术论文,希望你能从中得到感悟!

技术的研究进展

摘要 PCR技术是一种体外酶促合成、扩增特定DNA片段的方法。因其高强的特异性和灵敏度以及检测速度快、准确性好等优点,已被广泛地应用于水产、微生物检测等许多领域。该文从PCR技术的原理及应用方面进行了综述,并对其发展做出了展望。

关键词 PCR技术;研究进展;应用

中图分类号 Q819 文献标识码 A 文章编号 1007-5739(2012)10-0047-02

PCR(polymerase chain reaction,PCR)即聚合酶链式反应,它是一种体外酶促合成,扩增特定DNA片段的方法。1985年,美国Karray等学者首创了PCR技术,并由美国Cetus公司开发研制[1]。随着科学技术的发展和突破,PCR技术已在多个领域得到广泛地应用,如微生物检测、兽医学、水产养殖等方面。由于该技术具有较强的灵敏度、准确度和特异性,又能快速进行检测,因而其应用领域也在不断延伸[2-3]。随着PCR技术的不断发展,在常规PCR技术的基础上又衍生出了许多技术,如多重PCR(mutiplex PCR)技术[4]、实时荧光定量PCR(real-time fluorescent quantitative PCR,FQ-PCR)技术[5]、单分子PCR技术[6]。

1 PCR技术原理

PCR技术是根据待扩增的已知DNA片段序列、人工合成与该DNA 2条链末端互补的2段寡核苷酸引物,在体外将待检DNA序列(模板)在酶促作用下进行扩增。PCR的整个技术过程经若干个循环组成,一个循环包括连续的3个步骤:第1步是高温条件下的DNA模板变性,即模板DNA在93~94 ℃的条件下变性解链;第2步是退火,即人工合成的2个寡核苷酸引物与模板DNA链3’端经降温至55 ℃退火;第3步是延伸,即在4种dNTP底物同时存在的情况下,借助TaqDNA聚合酶的作用,引物链将沿着5’-3’方向延伸与模板互补的新链[7]。经过这个循环后,合成了新链,可将其作为DNA模板继续反应,由此循环进行。循环进程中,扩增产物的量以指数级方式增加,一般单一拷贝的基因循环25~30次,DNA可扩增l00万~200万倍[1]。PCR反应的步骤很简单,但是具体的操作是复杂的,如退火温度的确定、延伸时间的长短以及循环数等。因此,不同的反应体系应该确定适当的反应条件,以避免假阴性或假阳性等情况的产生。

2 PCR技术的分类

在传统PCR技术的基础上,根据人们的需要以及各个领域的应用要求,又衍生出很多种类的PCR技术。新技术在各领域广泛应用并逐渐改进,为进一步的研究提供了基础。

实时荧光定量PCR技术

1996年,学者经过研究,在传统PCR技术的基础上,首创了实时荧光定量PCR技术,新技术已经应用至医学领域、分子生物学和其他基础研究领域。实时荧光定量PCR技术基于传统技术的优势,还具有实时性、准确性、无污染,实现了自动化操作和多重反应,是PCR技术研究史上从定性到定量的飞跃[8]。

荧光定量PCR技术最大的特点是能将荧光基团加入到PCR反应体系中,借助于荧光信号,累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析[9]。实时监测这一特点是常规PCR技术所不具有的,因为其对扩增反应不能进行随时的检测。常规PCR技术的扩增终产物需要在凝胶电泳等条件下才能进行,无法对起始模板进行准确的定量,而荧光定量PCR技术的反应进程可以根据荧光信号的变化做出准确的判断[10-11]。一个PCR循环反应结束之后,定量PCR仪可以收集1个荧光强度信号,荧光信号强度的变化可以反映产物量的变化情况,这样就可以得到1条荧光扩增曲线[12]。荧光信号在指数扩增阶段,PCR产物荧光信号的对数值与起始模板量之间存在线性对应关系,然后进行定量分析[13]。

多重PCR技术

多重PCR(mutiplex PCR)技术是PCR技术的一种,为同一管中加入多对特异性引物,与PCR管内的多个模板反应,在一个PCR管中同时检测多个目标DNA分子。多重PCR技术可以扩增一个物种的一个片段,也可以同时扩增多个物种的不同片段[14]。

在同一反应体系中,多重PCR技术进行多个位点的特异性扩增时,引物间的配对、引物间的竞争性扩增等会对扩增效果产生重要影响。一方面,如果能选择适宜的反应体系和反应条件,可极大地提高多重PCR的扩增效果[15]。主要包括退火温度、退火及延伸时间、PCR缓冲液成分、dNTP的用量、引物及模板的量等。另一方面,DNA的抽提质量也影响多重PCR扩增效率,如DNA抽提不干净或降解都将影响PCR扩增效果[16]。

单分子PCR技术(SM-PCR)

单分子PCR技术是在传统PCR技术的基础上发展的,基本循环过程相同,但在反应条件、模板数量、DNA 聚合酶选择、引物设计方面具有不同点。该技术是以少量或单个DNA分子为模板进行的PCR[17]。

单分子PCR技术反应中,DNA 模板浓度极低,这就要求模板有较高的质量。因为这是试验成败的决定性因素。在设计引物时,应该严格控制GC的含量和Tm值,同时尽量避免引物间存在可配对序列。在反应混合物模板数极低的情况下,若引物之间存在少量配对序列,扩增时极易形成二聚体,使反应无法进行,得不到所需要的产物[18]。由于单分子PCR技术反应的变性温度(96~98 ℃)大多比常规PCR技术(94 ℃)略高,因而对DNA 聚合酶热稳定性的要求也更加严格,需要有较好的热稳定性,以防止温度过高而使其失活。其变性时间(5~15 s)、退火时间及延伸时间也短于常规PCR技术[17]。

3 PCR技术的应用

PCR技术在水产上的应用

基因表达是检测某个基因在不同发育期或不同组织中的表达量变化,或受到某种试验处理过程中的影响而出现表达量变化的情况。有学者应用real-time PCR技术研究碳水化合物含量对翘嘴红鲴糖代谢酶G6Pase、GK以及PEPCK表达量的影响[19-21],研究结果可为翘嘴红鲴饲料配方中的最合适糖含量提供理论依据。孙淑娜等[22]研究叶酸拮抗剂对斑马鱼心脏发育相关基因BMP2b及HAS2表达的影响,表明叶酸拮抗剂对早期胚胎的心脏发育影响较大,可导致斑马鱼心脏发育延迟及心脏形态异常,并下调斑马鱼心脏发育相关基因BMP2b及HAS2的表达,这可能是叶酸生物学活性受抑后导致心脏发育异常的机制之一。Sawyer et al[23]以斑马鱼的未受精卵、胚胎、仔鱼和成鱼为研究材料,采用实时荧光定量PCR技术,检测了P450aromA和P450aromB在不同组织的表达量,表明在各组织中均有2种基因的表达,但表达量显著不同,呈现组织特异性。

PCR技术在微生物检测上的应用

1990年,Bej et al[24]在利用多重PCR的方法检测了Leg-ionella类菌种和大肠类细菌,其结果是通过点对点方法固定的多聚dT尾捕捉探针和生物素标记的扩增DNA进行杂交来检测的。张志东等检测口蹄疫病毒(FMDV)持续性感染的带毒动物,表明实时荧光定量PCR技术具有快速检测、准确、客观等优势,较优于传统的检测方法[25-26]。Metzger-Boddien et al[27]对PCR-ELISA的方法进行了评价,结果显示,样品中沙门氏菌的检出率可以达到98%。

4 展望

传统PCR技术以及衍生出来的新型PCR技术自面世以来,已被广泛应用到生命科学的各个领域。随着技术方法的不断改进与完善,荧光定量PCR技术将会逐渐完善并广泛应用。多重PCR技术在食品病原微生物、非致病微生物及环境微生物检测中具有重要作用;未来的研究主要集中在去除食品抑制因子干扰、改进样品前处理技术等方面,其次是整合应用多重PCR与其他技术,必将在未来食品微生物检测中有非常好的应用前景。

5 参考文献

[1] 常世敏.PCR在食品微生物检测中的应用[J].邯郸农业高等专科学校学报,2004,21(4):23-25.

[2] 唐永凯,俞菊华,徐跑,等.实时荧光定量PCR技术及其在水产上的应用[J].中国农学通报,2010(21):422-426.

[3] 吴学贵.LPS刺激点带石斑鱼免疫相关基因的克隆与组织表达差异性分析[D].海口:海南大学,2011.

[4] 侯立华,黄新,朱水芳,等.双色荧光多重PCR技术及在禽流感病毒检测中的应用[J].生物技术通报,2010(1):168-172.

[5] 查锡良.生物化学[M].7版.北京:人民卫生出版社,2009:483-485.

[6] 张杰道.生物化学实验技术PCR技术及应用[M].北京:科学出版社,2005:12-18.

[7] 谢海燕.黑线仓鼠LHR部分序列克隆及组织器官的表达差异[D].曲阜:曲阜师范大学,2011.

[8] KUBISTA M,ANDRADE J M,BENGTSSON M,et real-time pol-ymerase chain reaction[J].MoLecular Aspects of Medicine,2006,27(2-3):95-125.

[9] AGINDOTAN B O,SHIEL P J,BERGER P detection of potato viruses,PLRV,PVA,PVX and PVY from dormant potato tubers by TaqMan real-timeRT-PCR[J].J Virol Methods,2007,142(1-2):l-9.

[10] 李丽平.小麦慢锈品种叶片受条锈菌侵入后的木质素合成及调控研究[D].雅安:四川农业大学,2009.

[11] 薛霜,独军政,高闪电,等.实时荧光定量PCR技术研究进展及其在兽医学中的应用[J].中国农学通报,2010(7):11-15.

[12] SCHUBERT J,FOMITCHEVA V,SZTANGRET-WISNIEWSKA J. Dif-ferentiation of Potato virus Y strains using improvedsets of diagnostic-PCR-primers [J].J Virol Methods,2007,140(1-2):66-74.

[13] 袁继红.实时荧光定量PCR技术的实验研究[J].现代农业科技,2010(13):20-22.

[14] 朱善元.生物检测技术PCR及其在兽医微生物检测中的应用[J].黑龙江畜牧兽医,1999(11):21-22.

[15] 黄银花,胡晓湘,李宁,等.影响多重PCR扩增效果的因素[J].遗传,2003,25(1):65-68.

[16] 陈诺,唐善虎,岑璐伽,等.多重PCR技术在食品微生物检测中的应用进展[J].生物技术,2010,37(10):72-75.

[17] 刘连生.常规PCR技术与单分子PCR技术[J].医学信息,2010,23(11):4379-4380.

[18] 顾超颖.汗孔角化病的临床分析,SSH1、ARPC3基因突变检测和表达谱分析[D].上海:复旦大学,2008.

[19] 唐永凯,俞菊华,刘波,等.翘嘴红鲌肝脏G6Pase催化亚基的克隆以及摄食和饲料中碳水化合物对其表达的影响[J].水产学报,2007,31(1):45-53.

[20] 刘波,谢骏,苏永腾,等.高碳水化合物日粮对翘嘴红鲌生长、GK及GK mRNA表达的影响[J].水生生物学报,2008,32(1):47-53.

[21] 俞菊华,戈贤平,唐永凯,等.碳水化合物、脂肪对翘嘴红鲌PEPCK基因表达的影响[J].水产学报,2007,31(3):369-373.

[22] 孙淑娜,桂永浩,宋后燕,等.叶酸拮抗剂甲氨喋呤导致斑马鱼心脏发育异常及BMP2bHAS2表达下调[J].中国当代儿科杂志,2007,9(2):159-163.

[23] SAWYER S J,GERSTNER K A,CALLARD PCR analysis of cytochrome P450 aromatase expression in zebrafish:gene specific tissue disyribution,sex differences,developmental programming,and estrogen regulation[J].General and comparative endocrinology,2006,147(2):108-117.

[24] BEJ A K,MAHBUBANI M H,MILLER R,et PCR amplif-ication and immobilized capture probes for detection of bacterial patho-gens and indicators in water[J].Mol Cell Probes,1990,4(5):353-365.

[25] ZHANG Z D,ALEXANDERSEN of carrier cattle and sheep persistently infected with foot-and-mouth disease virus by a rapid real-time RT-PCR assay[J].Journal of Virological Methods,2003,111(2):95-100.

[26] ZHANG Z D,BASHIRUDDIN J analysis of foot-and-mouth disease virus RNA duration in tissues of experimentally infected pigs[J].TheVeterinary Journal,2009,180(1):130-132.

[27] METZGER-BODDIEN C,BOSTEL A,KEHLE for analysis of food samples[J].J Food Prot,2004,67(8):1585-1590.

点击下页还有更多>>>关于pcr技术论文

除病毒之外的所有生物均由细胞所组成,病毒的生命活动也必须在细胞中才能体现,细胞是生物体基本的结构和功能单位。细胞主要由细胞核和细胞质构成,表面有细胞膜包裹,高等植物细胞膜外还有细胞壁保护。

核酸是在细胞核里面的一类生物聚合物,是所有已知生命均有的生物化学成份,参与遗传物质保存、繁殖等生化合成和细胞代谢,决定着细胞或机体的性状表现。病毒作为最简单的一种生物,是由核酸和蛋白质构成。

核酸由核苷酸组成,而核苷酸单体由5-碳糖、磷酸基和含氮碱基组成。如果聚合物中核苷酸的5-碳糖是核糖,则形成的聚合物是核糖核酸(简称RNA);如果5-碳糖是脱氧核糖,则形成的聚合物是核糖核酸(简称DNA)。

每一个生物的核酸是不一样的,通过核酸检测就是要确定人身上是否带有病毒,也就是为了检出病毒的携带者。病毒携带者如果有症状的话就是病人,如果没有症状就是无症状感染者。

扩展资料

核酸检测需要经过取样、留样、保存、核酸提取、上机检测五个步骤。其中,需要采集人体的分泌物,用鼻拭子或咽拭子擦拭鼻腔或咽后壁及双侧咽扁桃体处;需要医务人员进行留样,将拭子头浸入细胞保存液中,折断尾部后立即旋紧管盖。

将样本管放入密封袋中保存好并及时送检;接下来便将需样本送进实验室进行核酸提取,最后一步便进行荧光PCR核酸检测,将提取物进行荧光PCR扩增反应。

参考资料来源:人民网-核酸检测究竟是怎么回事

四、影响PCR特异性的因素通过上述内容。可以看出有许多因素可以影响PCR的特异性,在此我们作一归纳,供大家参考:①退火步骤的严格性:提高退火温度可以减少不匹配的杂交,从而提高特异性。②减短退火时间及延伸时间可以减少错误引发及错误延伸。③引物二聚体是最常见的副产品,降低引物及酶的浓度也可以减少错误引发,尤其是引物的二聚化。④改变MgCl2(有时KCl)浓度可以改进特异性,这可能是提高反应严格性或者对Taq酶的直接作用。⑤模板中如果存在次级结构,例如待扩增的片段易自行形成发夹结构时,可在PCR混合物中的4×dNTPs中加入7-脱氮-2’-脱氧鸟苷-5’-三磷酸(7-deaza-2’-deoxyguanosine-5’-trihosphate)(de7GTP)。用de7GTP与dGTP比例为3:1的混合物(150μmol/l de7GTP +50μmol/L dGTP)代替200μmol/l dGTP,则可阻非特异性产物的生成。五、扩增平坡扩增反应并不是可以无穷地进行下去的,经过一定的循环周期后需扩增的片段不再按指数增多而逐渐进入平坡;进入平坡的循环次数,取决于起始时存在的模板拷贝数以及合成的DNA总量。所谓平坡就是批PCR循环的后期,合成产物达~1pmol时,由于产物的堆积,使原来以指数增加的速率变成平坦的曲线。造成PCR进入平坡的原因有:引物和dNTP等消耗完毕、Taq酶失活,这几中因素在标准反应中均不会出现。此外,还有几种可能:1.底物过剩因DNA合成量多于反应液中存在的Taq酶,在100μl反应液中含酶而DNA合成量达1μg(3nmol脱氧核苷酸)时,开始变为底物过剩。延长延伸时间或添加Taq酶,可以克服之。但不实用,因每进行下一循环就要延长延伸时间一倍及多加一倍Taq酶,才能继续保持指数增长。2.非特异性扩增产物的竞争与上述情况密切相关,此时不需要的DNA片段与需要的片段同时竞争聚合酶,要克服这一情况是要提高反应特异性,使不需要片段不能大量积聚。3.退火时产物的单链自己缔合两条单链的DNA片段在退火时除了与引物缔合外,也可以自行缔合,这也会阻止产品增多。当产物浓度到达10pmol/100μl时即可发生此现象,除稀释外无法克服。4.变性在高浓度产物条件下,产物解链不完全,以及最终产物的阻化作用(焦磷酸化,双链DNA)。总而言之,PCR的条件是随系统的而异的,并无统一的最佳条件,先选用通用的条件扩增,然后稍稍改变各参数,可以达到优化,以取得优良的特异性和产率。

核酸检测论文

在平时的学习、工作或生活中,大家都接触过作文吧,作文根据体裁的不同可以分为记叙文、说明文、应用文、议论文。还是对作文一筹莫展吗?下面是我帮大家整理的做核酸检测作文,供大家参考借鉴,希望可以帮助到有需要的朋友。

妈妈带着我和妹妹来到体育中心做核酸检测。

虽然现在已经是秋天了,但天气还是跟三伏天似的。大中午的太阳像一个超级大的火球一样,炙烤着大地,阳光是那么强烈,整个世界都笼罩在一片耀眼的光芒之中。

到了体育中心,只见做核酸检测的队伍像一条条长龙,一眼望不到边,每人间隔一米,大家井然有序地排着队,等待做核酸检测。

左等右等,终于轮到我了。我手拿身份证给工作人员登录信息。登记完之后,我就往前走,由另一位医人护人员给我做核酸检测。我打量着眼前这位医护人员,她顶着炎炎烈日,身上穿着密不透风的防护服,只见她拿出一支棉签让我张开嘴巴。这时,我很紧张。医护人员看我很紧张,便安慰我:“检查真不可怕,只是有点痒。”然后,我照着她说的做了。这时,我仔细观察这位医护人员,她被防护服包得很紧,紧得和一个在蒸笼里的一个包子一模一样,她的汗水像豆子般滴下。哦,在这样闷热的如包包子似的医务人员,对待我们却还却还是那样有耐心。她们真了不起。

在这里,我想说:“医护人员们,你们辛苦了!谢谢你们顶着炎炎烈日给我们做核酸检测。谢谢你们!”

一阵阵秋风吹落了金黄的树叶,带来了丝丝寒意,同时也没收了我的健康。看到体温表上37。3度的数字,我的心怦怦直跳,心想:“按照学校的要求,我必须做核酸检测。”

于是,我被衣服包成了一个大圆球和妈妈飞快的来到人民医院发烧门诊。下了楼远远望去在干净明亮的大厅我们看见有三四名小朋友在等待。我走到那个可怕的地方,一看见白大褂就想起了姐姐说的话太吓人了!正好,我透过窗户看见美丽的喷泉,心想:“这应该能让我变得不害怕吧。”但是我刚看了一会儿,就想,“我是小孩儿,应该不会从鼻子里吧。”我自言自语的说。但是,该干啥还得干啥,我只能面对现实。

只见那位医生拿出一个大概有1分米长的棉签,直向我嘴巴冲去,“哦,兴好,兴好,不是从鼻子眼儿里捅到嗓子眼儿里,如果是的话我就该跑了。”我正想着,一边张大嘴巴,当那根又细又长的棉签,捅到我嗓子眼儿那一刻,我都快吐了,那个味儿是真的难受,现在回想起那个味儿还想吐呢,等他把那根又细又长又难闻的棉签拿出来时,我的心情由阴变成了晴,心从紧张到放松,我心想,啊,终于结束“战斗”了,终于不用在难受了。但是啊,我觉得核酸检测并不疼,就是恶心,其他也到没有我想的那么怕。

这件事让我知道了在生活上其实有些事并不像想象的那样可怕,一定要面对现实。

突然爆发的疫情打破了往日的宁静,为防控疫情,烟台市全体市民要做核酸检测。8月4日,妈妈接到了村里的通知,说是明天早上在村广场做核酸检测。听到这个消息,我又惊又喜,心想:做核酸会不会很痛呢?

8月4日傍晚,跟着妈妈到广场排队拿号。我看到敬爱的医护人员,穿着防护服,戴着护目镜和口罩,早就做好了准备。不一会下起了大雨,我们赶紧找地方躲避。一会儿,雨停了,我们回到广场等候。激动的心,颤抖的手,我的心像打鼓一样砰砰直跳。“我的妈呀,做核酸检测疼不疼呀!”我非常忐忑,心里直犯嘀咕。我的腿就像灌了铅一样,一步都不想往前迈,可是医生的检测真是神速,不一会儿就轮到我了。

首先要登记,负责登记的志愿者对我说:“贺玉利,你害不害怕啊?”正在我疑惑之际,我发现原来是我们学校老师在跟我说话,看着穿防护服的老师,顿时我觉得不那么害怕了。登记之后,医生让我坐下,和蔼地对我说:“小朋友,把口罩摘下来吧。”哎呀!把我吓得都忘了摘口罩了,我飞快地摘下口罩。医生又说:“把嘴巴张开,啊——”我照着做了,医生拿出棉棒,向我口中伸去,直达咽部,在喉咙里转了一圈儿,我的喉咙里痒了一下,很快就好了。“小朋友,你可以走啦。”抬起头,看到医护人员浸湿防护服,看到志愿者老师忙碌的身影,我不由得一阵心酸,情不自禁的打了一个庄严的队礼。他们真不容易,我真盼望疫情早点儿结束!

今天是8月19日,妈妈接到了通知,说是明天早上7:45准时到达学校做核酸检测。妈妈告诉了我,我又惊又喜,心想:做核酸会不会很痛呢?但是能和好朋友一起学习,玩耍,能和老师相遇,再痛我也不怕!

一大早我就起来了,听见外面正在下着倾盆大雨,即使再大的雨也阻挡不了我的脚步。我和爷爷打着伞往学校走去。到了学校,我看到了一个小篮球厂,大树的叶子非常茂盛,到了教室,老师说了几句话,就去楼道找家长排队,我站在第十三个,过了一会儿,终于走到了做核酸的地?方了,我往前面看到了医护人员在准备,我快坚持不住了,心里还是特别的紧张,老师告诉我不要害怕,一点儿都不痛,只是拿着棉签往嘴里搅一圈,就好了。轮到我了,医护人员首先拿出一根棉签伸到我的嘴里。搅一圈,然后又拿出来把它放到小瓶子里,最后把它弄断。我感到很恶心,想吐,爷爷说我很坚强!

其实一点儿都不可怕,我希望结果早点儿出来,这样我就能和好朋友一起学习、玩耍,还能跟老师相遇,还能学习更多的知识!

“啊……”你问我为什么要“啊”,接着往下看,你就明白了。

今天一大早,我就被妈妈叫醒了。唉,我的梦还没做完呢!我还想再睡一会儿,但是今天得做第二次全民核酸检测(放假前做了第一次核酸检测),所以我只好慢悠悠地起床。起床后,我想吃完饭再去,妈妈说:“做完核酸检测,再吃饭吧!”于是,我就和妈妈戴上口罩出发了。

来到学校门口,这里已经有许多人在排队了。忽然,一位老奶奶说:“啊,身份证忘拿了!”她这么一说,妈妈才想起来我们也没带证件。“苍天啊,为什么你也忘带了?!”我感叹了一声,赶紧和妈妈回家去拿。

等我们再次来到学校时,人已经所剩无几,我们连忙跑过去,正好十个人。走进校门,只见许多阿姨坐在椅子上,她们是给我们统计信息的。轮到我做核酸检测了。我先张开嘴巴,“啊……”了几声,医生用棉签在我的喉咙里转了几圈,就放进了一个管子里,我有点想吐的感觉。听妈妈说,这些管子都要统一送到城里去做检测,一天以后才能出结果。

但愿这是我们定州最后一次做全民核酸检测,希望病毒早日被消灭,人们重新过上安居乐业的生活。

前段时间郑刚刚经历了一小场千年不遇的暴雨,汛情还未结束,疫情又来势汹汹,让我们的城市雪上加霜,为了能够尽快控制疫情,郑州市全员进行核酸检测。

今天下午,我们一家人也来到了小区的检测点。离检测点还有很远我就看见了一条“长龙”,爸爸妈妈带着我连忙加入了检测大军。我抬头一看,根本就看不到队首,心想:这要等多长时间才能轮到我呀!

10分钟过去了,30分钟过,一个小过去了还没有轮到我,我等得不耐烦了,于是就问爸爸:“什么时候到我们呀?我都快热死了,站了这久我又累又热,难受死了,我不想检测了,咱们回家吧。”爸爸看了我一眼说:“不行疫情当前,我们要严格遵守国家规定,这也是为抗疫做出自己的贡献。”我点了点头,又继续等待。

又过了半个小时,终于轮到了我。我坐在座位上,看到了身穿防护服的白衣天使,突然想起了我刚才的抱怨,羞愧万分。炎炎烈日这些白衣天使牺牲了自己的休息时间,穿着密不透风的防护服为我们检测,她们不累吗?她们不热吗?我有什么理由抱怨呢?她们才是最辛苦的。做完检测我站了起来向她们深深地鞠了一躬说道:“您们辛苦了,谢谢!”

回到家,爸爸表扬我,说我长大了,懂得感恩了。疫情当前,人人有责!作为小学生应该积极响应国家号召,遵守国家规定,就是为抗疫做出贡献。

今天早上,妈妈说要带我去做核酸检测,我有点紧张,因为我听说核酸检测要戳到我的喉咙。

我们来到检测点,人非常非常多。妈妈说,核酸检测其实就是用一根棉签往嘴里一搅就好了,很简单的。我一听,原来就是在喉咙里捣鼓几下嘛,有什么好怕的,心里顿时安定了许多。

马上要轮到我了。我看到前面一个人正在做核酸检测。医生刚把棉签伸进她的嘴巴,她就往后一缩。医生又把棉签伸进去,她还是一缩,也不知道最终医生到底有没有采到样。我想,我要做得更好一点,做一个大人都佩服的榜样。于是,我就大踏步走向前,很快就轮到我了。

可是想起来容易做起来难,我还是紧张起来了。医护人员拿出一根棉签,要往我嘴里塞。我感觉这根棉签像一条毒蛇要钻进我的嘴里。“别怕!”我一边默默给自己打气,一边张开了嘴巴。一开始,棉签在我的舌头根部搅和着。我平时有个小癖好,喜欢用舌头在自己的嘴巴里卷来卷去,医生搅和的这个地方我平时好像都卷过,我感觉不怎么难受,稍微有点梗,就像感冒时鼻腔堵塞的那种感觉。接下来,就来点猛料了。棉签突然往我喉咙里一戳,我感觉我的后脑勺好像被戳出了一个洞。正当我快承受不住的时候,医生把棉签拿了出来。呀,终于好了,我松了口气。我看到医生在棉签上涂了点红药水,放进了一个试管里,大概是要拿到医院里去做检查吧。

唉,虽然核酸检测没有我想象中那么恐怖,但是也有点儿难受的。真希望疫情赶快过去,让我们能开开心心地过一个暑假。

5月17日,早上八点,外婆带着我去做核酸检测,地点在金水农场幼儿园。

我们来到幼儿园,就发现一条长龙似的的队伍,从幼儿园的办公室门口一直延伸到幼儿园的大铁门,我们跟着队伍排在后面。每个人都要站在同一条黄线上,并且要保持一米的距离。

大约站了二十分钟的时候,一位穿着防护服的医务人员来到我的身旁,核对我的身份信息,给我一张写着我名字的小纸条。另一位医务人员用消毒液在我身上喷了一下。

又过了五分钟的时刻,终于轮到我做检测了。只见一位穿着防护服的医务人员让我把身份证给她看,她核实信息之后,就把身份证还给了我。还递给我一个小药瓶和一根棉签。

接着,一位医生叫我坐在椅子上,仰起头,张开嘴,她用那根棉签在我口腔里刮了几下,核酸检测就做完了。

一开始,我很害怕,做完之后,才发现并没有我想象中的那么可怕。

在回家的路上,我想:这么热的夏天,我就只穿着一件单衣服,都感到很热,那些穿着像大熊猫的医生们,一定会很难受的。长大以后,我也要当一位医生,治好病人,保护大家!

第一次做核酸检测,真兴奋!

妈妈一大清早就去当志愿者了,我起床后只喝了一杯牛奶,吃了几片面包,然后跟随爸爸去他们学校做核酸检测。由于学校在村里,自然少不了走山路。

公路像一条带子,沿着山坡,或者就搭在坡上,车子一会儿左拐弯,一会儿右拐弯,一会儿上坡,一会儿下坡,很颠簸。车子前行,只见一座一座山躲到了我的后面,一、二、三,我默默地数着山,不一会儿就睡着了……

车停了,我被惯性震了一下,顿时清醒起来。我打开车门,深吸了一空气,农村的气息好清爽!周围都是矮矮的居民房,一个院子一户人家,像极了老家村里的样子,太亲切了。我不觉兴奋起来,可我要保持冷静,因为爸爸顺便稍上了同事家的老奶奶和一个小女孩,要注意形象。我双手插兜,挺胸抬头,佯装自若,尽量把自很己装得很帅很酷。

今天村里要检测的.人不多,我们很快排上了队。排在前面的人也就有五六个。医护人员的操作真熟练,从录入信息到咽拭子检测不到三分钟,挺快的。可是不知为什么检测突然中止了,我向前瞄去,只见几个医护阿姨正拿着手机点着一个系统,可半天也没动静。于是,爸爸上前去帮助,掏出手机登录那个系统,可还是不行,听说是登录用户太多,系统正在抢修升级。此刻,我仿佛看到了很多网络工程师忙碌的身影。

我前面只剩一个人了,虽然近在咫尺,可又仿佛遥隔千里!没办法,等,再等,还是没办法。很快到午饭时间了,大家只好作罢,各自离去。

爸爸带我到了学校食堂,狼吞虎咽地吃了满满一大碗面条。吃完了,我就去找那个女孩儿玩,不一会儿,我们熟悉了,我们玩捉迷藏,跳方格,玩健身器材,玩得很开心。

下午时间到了,医护阿姨又来了,系统也修好了,不一会儿就到轮我了,我坐在椅子上,仰头张嘴,喉咙里发出“啊……”阿姨拿着一根像棉棒的细长木棍,在我的嗓子眼里桶了几下,顿时感觉嗓子里翻江倒海,恶心想吐!眼泪也瞬间涌出了眼眶,不疼,有点难受而已。“好了”,只见医护阿姨把细棍子折断,有棉的一截给放进了玻璃管里。

啊!终于完了,再回头看看医护阿姨,她们依旧在忙碌,医护阿姨可真伟大!

疫情期间“核酸检测”是我们经常听到的一个词,那你们知道做核酸检测时,是会感到舒服,还是会感到疼痛呢?是用什么工具进行检测呢?会不会打麻药呢?今天,就让这个刚刚做完检测的我,给大家提个醒吧!

最近鼻子总是一到晚上睡觉就容易堵塞,呼吸不畅,妈妈今天决定带我去医院做个检查。因为需要做鼻腔镜检查,必须先做核酸检测,没有问题才能去做进一步检查,我怀着一颗既忐忑又期待的心跟着妈妈去缴费。不一会就来到专门做核酸检测的小帐篷前排队。

“韩欣格来了吗?”随着工作人员的叫喊声,我也被妈妈“推”到了医生面前,其实我一开始也跟别人一样满怀期待地在小帐篷前排队等候。但当我看到前面检测的人满脸恶心地从帐篷里出来时,我那期待的眼神在下一秒就凝固了。“到你啦!快过去啊!”妈妈把我往前推了推,“这个……我……”我开始犹豫了,可妈妈的力气就像大力水手,一下子就把我送到医生面前,我知道,这场灾难甩不掉了。

只见一位医生冲我微微一笑,但在我心里,这个微笑让我浑身一颤。随后她拿出一根长长的棉签,对我保证地说:“一定不会痛的,我会很轻哟!”可在我心里,长长的棉签仿佛一根长针,迎接我的必定是强烈的疼痛感,我身体紧绷的站着。一切准备就绪后,那位医生拿起“针”慢悠悠地伸进我的喉咙,不停地搅动,搞得我满脸通红,十二分的难受,恶心的感觉慢慢向我袭来。可那医生完全没有停下来的意思,哎,算了,忍不住了“呕!呕!不行了——”看着我那狼狈的样子,妈妈也是哭笑不得。

这就是我惊心动魄的全部检查过程,现在,你们还对核酸检测感兴趣吗?

莆田,敲响了抗疫的警钟,还启动全市核酸的方案。这个方案一确定下来,我家楼下和小区里的人,不管是老幼妇孺都从四面八方涌向马路。那空荡荡的马路一眨眼的工夫就排起了一条长龙。于是我们决定明天再去做核酸检测。

可到了晚上凌晨一点左右,正在睡梦中的我被一个电话吵醒了,是姑姑打来的电话。她说:“赶紧起床下来做核酸,这个时候人不会多。"于是我揉了揉眼睛爬下了床,很不情愿地下楼来到了马路上。一看,虽然人没有白天那么多,但还是排着一条“龙”。刚排没一会儿,我和妹妹就开始有些不耐烦了,妹妹一直吵着要睡觉,这时妈妈把手机给了她,并让我边排队边照看妹妹,妈妈就飞奔到楼上搬了把椅子下来,让我和妹妹坐在旁边等待。

不知过了多久,队伍慢慢地移动到了学校门口,工作人员要求十人一组出示健康码才可以入校。进入校内,我们来到第一个帐蓬前,工作人员要求将身份证放在胸前拍照登记,随后我们便来到护士面前,我有些紧张地四处张望,有正在排队的,有在维持程序的,还有一些不肯配合哭闹的幼小儿童……终于到我了,只见穿着密不透风的防护服的护士将一根一次性的棉签伸入我的嘴里不停搅动后,拿出来放入装着药水的瓶子里折断,我和妈妈、妹妹做完核酸检测便火速离开了现场。

回家路上,我边走边想,这些护士太伟大了!她们冒着危险、不眠不休、加班加点地给我们做核酸检测,我才是半夜排了一会儿队都不耐烦,可她们还要从早忙到黑地为我们做核酸检测啊!我真想对她们说:“谢谢您们!您们辛苦了!”

当你第一次做一件事之前,可能会觉得很难,但在你真正去做的时候,可能会发现并没有想象中的那么难。

记得上学的一天,全体学生要核酸检测。我是第一次做核酸检测,所以并不知道核酸检测是怎样的。我便提心吊胆,想着核酸检测是什么样?:打针?吃药?量体温?……这些我并不害怕,但是打针和吃药让我有一点点紧张,想着想着,我变得又害怕,又紧张!

排队的时候,我紧张地在原地踱步,突然看见一间教室里有几名“白衣战士”不知道,在给学生干什么?有几个学生从后门走出去,边走边擦眼泪。啊!他们一定非常痛苦吧?他们到底遭受了怎样的痛苦呢?走进教室,我的心“怦怦,怦怦”的打起鼓来,脚步也变得沉重了,不敢再往前移,真想打退堂鼓。

这时,一名“白衣战士”对我说:“小朋友,过来。”他那没有学生了,我坐在椅子上,张大嘴巴,只感觉喉咙痒痒的。不一会儿,“白衣战士”就说好了,耶,终于好了!我高兴地回到了教室,原来核酸检测就一下子,几秒钟而已,把嘴巴张大,说个“啊”字就结束了,而且一点也不疼!

我明白了一个道理:一些事情看起来很难,但只要勇敢去面对,就会发现这并没有自己想象中的那样可怕。

从十五号起,小区的广场上就总有一长条队伍,也不知到是干什么的。后来我才知道楼下在做核酸检测。

今天是周末,所以我还在床上睡懒觉。睡到了十点多才起来。我赶紧洗漱了一下就来吃早餐了。刚吃完早餐,我们就接到了爸爸的电话。“吴佳璇,赶紧叫妈妈他们准备准备,马上就要去做核酸检测了,快点换好衣服下楼吧!”我跟妈妈报告:“妈,爸爸叫我们下楼做核酸检测。”“那你先叫弟弟去换衣服,我马上好。”

我们做好了准备,拿上身份证就下楼了。在去核酸检测的路上,我问妈妈:

“妈,啥是核酸检测啊?”

“就是拿一根很长的棉签在你喉咙里转来转去。”

“那会不会把我弄吐吧!”

“有可能。”

听到这里,我有点害怕了,因为我以前一吐就要把胆汁也吐出来,嘴里还非常苦,所以我非常怕我吐。

我们来到“长龙”的“尾巴”那里,排了进去,后面还有人不断的排过来。队伍中的人们看上去很轻松的样子。我却表现得很沉重,因为我从来没有做过核酸检测。眼看我马上就要成为“龙头”了,因此,我非常紧张。我只好找吴佳烨(我的弟弟)玩“石头剪刀布”来缓解。我俩玩的很开心,一下就把紧张抛到了九霄云外。排着排着,我们来到了一个棚子底下妈妈在帮我们登记。我又开始紧张了:完了完了,马上要做核酸检测了我肯定要吐了,到时候可不要丢人啊!妈妈带着我们来到检测处,我拿着一个小瓶子,想着:它是干嘛的?难道是放样品的?还是抽血的?我来到了另一个棚子下,棚子下有一个医护人员,旁边有一个牌子,上面写着“二号检测处”。由于我害怕,就让弟弟先去检测。弟弟出于好奇,就真的走过去检查,没有犹豫一下。只见医务人员拿出了一根比普通棉签长两倍的棉签伸到弟弟嘴里搅,然后又拿出来,把它放在小瓶子里,然后把它弄断。我看弟弟一下就做完了,我也去做。也就是把棉签伸到喉咙里转。然后就是喉咙有点干。

其实核酸检测也不是很恐怖,只不过是我的心理作用而已……

论点是中国制度的优势,论据是中国在这次疫情中的表现和取得的成果。围绕相关制度,给出对应在疫情中采取的措施取得的成果来证明这个制度的优势。

议论文写作要体现出论点、论据和论证,而且论点要鲜明、准确,论点最好放在文章的开头,用一句话,而且是判断句式,把中心论点都摆出来,同时文章内容结构要严谨,逻辑性也要强,议论文的语言必须是准确、生动、符合逻辑。

下面是一则范例:

在这次抗疫斗争中,我们党所具有的无比坚强的领导力,是风雨来袭时中国人民最可靠的主心骨。我国社会主义制度具有的非凡组织动员能力、统筹协调能力、贯彻执行能力,有力彰显了我国国家制度和国家治理体系的优越性。只要我们坚持和完善中国特色社会主义制度、推进国家治理体系和治理能力现代化,善于运用制度力量应对风险挑战冲击,就一定能够经受住各种风险考验,不断创造新的历史伟业。

新冠肺炎疫情是百年来全球发生的最严重的传染病大流行,给世界各国经济社会发展造成严重冲击,也考验着各国的国家治理。面对突如其来的严重疫情,我们党团结带领全国各族人民,在过去8个多月时间里,进行了一场惊心动魄的抗疫大战,经受了一场艰苦卓绝的历史大考,付出巨大努力,取得抗击新冠肺炎疫情斗争重大战略成果,创造了人类同疾病斗争史上又一个英勇壮举。

一、抗疫斗争充分展现我们党无比坚强的领导力

中国共产党领导是中国特色社会主义制度的最大优势,中国共产党的领导力集中体现中国特色社会主义制度的优越性。在长期的革命、建设、改革中,我们党正是依靠人民形成无比坚强的领导力。历史和现实反复证明,我们党所具有的无比坚强的领导力,是风雨来袭时中国人民最可靠的主心骨。这次抗疫斗争,再一次充分展现了我们党无比坚强的领导力。

我们党无比坚强的领导力,体现为党中央统揽全局、果断决策,以非常之举应对非常之事。新冠肺炎病毒是一种新病毒,抗击新冠肺炎疫情是一场前所未有的大考,没有现成答案可以参考。面对突如其来的严重疫情,以习近平同志为核心的党中央统揽全局、果断决策。

我们党坚持把人民生命安全和身体健康放在第一位,实施集中统一领导,中央政治局常委会、中央政治局召开21次会议研究决策,领导组织党政军民学、东西南北中大会战,提出坚定信心、同舟共济、科学防治、精准施策的总要求,明确坚决遏制疫情蔓延势头、坚决打赢疫情防控阻击战的总目标,周密部署武汉保卫战、湖北保卫战,因时因势制定重大战略策略。

我们党成立中央应对疫情工作领导小组,派出中央指导组,建立国务院联防联控机制,并提出早发现、早报告、早隔离、早治疗的防控要求,确定集中患者、集中专家、集中资源、集中救治的救治要求,把提高收治率和治愈率、降低感染率和病亡率作为突出任务来抓。

回望这场惊心动魄的抗疫大战,果断关闭离汉离鄂通道,实施史无前例的严格管控,无疑是危急关头最重要的决策。作出这一决策,需要巨大的政治勇气,需要果敢的历史担当。以习近平同志为核心的党中央果断作出这一决策,以非常之举应对非常之事。正是在党中央的坚强领导下,全国迅速形成统一指挥、全面部署、立体防控的战略布局,有效遏制了疫情大面积蔓延,有力改变了病毒传播的危险进程,最大限度保护了人民生命安全和身体健康。

一个政党面对重大风险挑战时的表现,最能检验其领导力。我们党在抗疫大战中所发挥的坚强领导核心作用,充分展现了党无比坚强的领导力,充分发挥了中国特色社会主义制度的最大优势。只要毫不动摇坚持和加强党的全面领导,不断增强党的政治领导力、思想引领力、群众组织力、社会号召力,永远保持党同人民群众的血肉联系,我们就一定能够形成强大合力,从容应对各种复杂局面和风险挑战。

二、抗疫斗争充分展现中国制度的优越性

中国特色社会主义制度充分体现了以人民为中心的发展思想,能够有效体现人民意志、保障人民权益、激发人民创造力,凝聚起同心同德、奋勇前行的磅礴力量。在这次抗疫斗争中,中国特色社会主义制度展现出非凡的组织动员能力、统筹协调能力、贯彻执行能力,发挥出集中力量办大事、办难事、办急事的独特优势,有力彰显了我国国家制度和国家治理体系的优越性。

非凡的组织动员能力。抗击新冠肺炎疫情是一场艰苦卓绝的历史大考,要经受住这场历史大考,必须广泛动员各方面力量。在党中央的坚强领导下,我们充分发挥制度优势,迅速组织动员起各方面的力量。各行各业都自觉扛起责任,国有企业、公立医院勇挑重担,460多万个基层党组织冲锋陷阵,400多万名社区工作者在全国65万个城乡社区日夜值守,各类民营企业、民办医院、慈善机构、养老院、福利院等积极出力,广大党员、干部带头拼搏,数百万快递员冒疫奔忙,180万名环卫工人起早贪黑,千千万万志愿者和普通人默默奉献。依靠非凡的组织动员能力,我们在很短的时间内把数量庞大、构成多元的社会群体团结凝聚起来,使全国人民心往一处想、劲往一处使,形成万众一心、同甘共苦的团结伟力。

非凡的统筹协调能力。中国是有着14亿人口的大国,有效防控新冠肺炎疫情这一百年来全球发生的最严重的传染病大流行,是一项非常艰巨复杂的任务,各项工作千头万绪、各方面关系都要协调。在党中央的坚强领导下,19个省区市对口帮扶除武汉以外的16个市州,最优秀的人员、最急需的资源、最先进的设备千里驰援,在最短时间内实现了医疗资源和物资供应从紧缺向动态平衡的跨越式提升。在抗疫形势最严峻的时候,经济社会发展不少方面一度按下“暂停键”,但群众生活没有受到太大影响,社会秩序总体正常。我们党准确把握疫情形势变化,立足全局、着眼大局,及时作出统筹疫情防控和经济社会发展的重大决策,坚持依法防控、科学防控,推动落实分区分级精准复工复产,最大限度保障人民生产生活。各项工作有条不紊全面展开,展现了我国社会主义制度非凡的统筹协调能力。

三、非凡的贯彻执行能力

在这次抗疫斗争中,我们不仅采取了正确的防控措施,更展现了我国社会主义制度非凡的贯彻执行能力。各级党组织和广大党员、干部坚决贯彻以习近平同志为核心的党中央的决策部署,牢记人民利益高于一切,全面落实“坚定信心、同舟共济、科学防治、精准施策”总要求,在大战中践行初心使命,在大考中交出合格答卷。

54万名湖北省和武汉市医务人员同病毒短兵相接,率先打响了疫情防控遭遇战。346支国家医疗队、4万多名医务人员毅然奔赴前线,很多人在万家团圆的除夕之夜踏上征程。人民军队医务人员牢记我军宗旨,视疫情为命令,召之即来,来之能战,战之能胜。我们用10多天时间先后建成火神山医院和雷神山医院,大规模改建16座方舱医院,迅速开辟600多个集中隔离点。

我们注重科研攻关和临床救治、防控实践相协同,第一时间研发出核酸检测试剂盒,加快有效药物筛选和疫苗研发,充分发挥科技对疫情防控的支撑作用。各地区各部门认真贯彻执行党中央统筹推进疫情防控和经济社会发展的工作部署,各级党委和政府积极作为、主动担责。依靠非凡的贯彻执行能力,我们不仅最大限度保护了人民生命安全和身体健康,我国也成为疫情发生以来第一个恢复增长的主要经济体。

四、不断发挥中国制度的显著优势

抗击新冠肺炎疫情这场严峻的斗争深刻启示我们,发展环境越是严峻复杂,越要坚定不移深化改革,健全各方面制度,推进国家治理体系和治理能力现代化,不断把我国制度优势转化为治理效能。针对这次疫情暴露出来的短板和不足,我们坚持推动中国特色社会主义制度自我完善和发展,做到该坚持的坚持、该完善的完善、该建立的建立、该落实的落实,努力提高面向未来的“答卷能力”。

习近平总书记指出:“抗疫斗争伟大实践再次证明,中国特色社会主义制度所具有的显著优势,是抵御风险挑战、提高国家治理效能的根本保证。”只要我们坚持和完善中国特色社会主义制度,推进国家治理体系和治理能力现代化,善于运用制度力量应对风险挑战冲击,我们就一定能够经受住一次次考验,不断化危为机,实现决胜全面建成小康社会、决战脱贫攻坚目标任务,在全面建设社会主义现代化国家的新征程上创造新的历史伟业。

医学研究广博深繁,医学论文自然也就深奥广达。所以,拟定医学论文题目要精心琢磨,表意精确。下面我给大家带来2021本科生医学 毕业 论文题目有哪些,希望能帮助到大家!

本科生医学论文题目

1、临床医学本科生综合素质评价指标体系的初步研究

2、以基层就业为导向的医学本科生就业能力提升对策的研究

3、青年教师在医学院校本科生导师制中的作用

4、医学本科生对《医学科研设计》课程的认识及需求分析

5、军校医学本科生自我导向学习倾向及其影响因素分析

6、本科生《医学免疫学》课堂教学与课外活动结合的初步探讨

7、医学本科生在学期间发表科研论文的调查分析

8、江苏省医学本科生面向基层就业意愿研究

9、云南医学本科生生活质量及影响因素调查分析

10、医学本科生对临床专业课双语教学的理解和要求

11、医学本科生与专科生心理健康状况的比较

12、医学院校实行本科生导师制的思考

13、普通高等医学院校本科生导师制初探

14、医学专业本科生就业 市场调查 与分析——以广东省为例

15、科研实验室开放对培养医学本科生创新与科研能力的作用初探

16、四川大学医学本科生择业意向的调查分析

17、浅谈中医类本科生医学统计学教学体会

18、PBL教学法在医学本科生医学统计学实验教学中的应用

19、医学本科生积极心理资本与主观幸福感的相关性研究

20、少数民族医学本科生学习适应性现状及其影响因素研究

医学检验免疫毕业论文题目

1、基于纳米颗粒的分子展示应用于超灵敏检测

2、SLE患者中几种新型自身抗体的检测及其临床诊断价值的探讨

3、多肽酶检测和细胞表面荧光标记的新 方法 研究

4、区域检验服务协同平台的设计与实现

5、胶体金喷膜仪的设计与开发

6、重庆市乡镇卫生院医疗资源的调查研究

7、基于氧化石墨烯和硫化铅纳米颗粒的荧光生物传感器研究

8、产气荚膜梭菌α毒素快速诊断金标试纸条的研制及初步应用

9、纳米粒子免疫层析法在检测异位妊娠和膀胱癌中的应用

10、现代医院检验科模块化设计研究

11、酶免工作站监控系统的设计与实现

12、乙型肝炎表面抗原胶体金免疫层析法血清快速测定的性能评估

13、基于微型压电与光谱生化分析系统的POCT新技术研究

14、长江三角洲地区犬猫皮肤真菌病调查及体外药敏试验

15、我国医学检验本科专业人才培养的问题与对策研究

16、基于电化学分子信标基因传感技术的HIV-1核酸检测新方法研究

17、Free β-hCG和PAPPA光激化学发光免疫分析试剂的研制

18、乙肝快速分析仪的研究与开发

19、阿托伐他汀对动脉粥样硬化患者外周血中PPAR γ的作用研究及相关炎症因子与动脉粥样硬化关系的建模分析

20、综合性医院医学检验资源优化管理研究

21、全自动多功能免疫检验过程关键问题的优化研究

22、HMGB1通过NF-κB激活TGF-β1诱导特发性肺纤维化发病机制的研究

23、若干病毒感染模型的动力学分析

24、现代综合医院检验中心空间设计研究

25、大型公立医院创建医学独立实验室可行性研究

26、高血压病证型与血清褪黑色素水平的相关性研究

27、医用臭氧与α-干扰素对照治疗慢性乙型病毒性肝炎

28、网织血小板在系统性红斑狼疮患者的临床应用

29、G公司第三方独立医学实验室服务营销策略研究

30、临床毛细管电泳的研究

31、基于光电检测与信息处理技术的纳米金免疫层析试条定量测试的研究

32、贫铀长期作用后的吸收分布特点及其主要蓄积器官的损伤效应研究

33、基于磁性微球的PMMA微流控免疫分析芯片系统的研究

34、hr HPV、L1壳蛋白、p16蛋白与宫颈病变的关系及诊断价值研究

35、76例急性白血病的MICM分型及预后

36、国产化学发光法诊断系统检测乙肝表面抗原的评价

37、蛋白A-藻蓝蛋白β亚基双功能蛋白的性质及其在免疫检测中的应用

38、上海市社区卫生服务中心检验开展现状及检验项目合理化设置研究

39、__医学检验集团发展战略研究

口腔医学毕业论文题目

1、伴有或不伴有下颌偏斜的骨性Ⅲ类成人患者颞下颌关节形态和位置的CBCT研究

2、口腔锥形束CT对下颌牙 种植 位点线性测量精度的实验研究

3、牙龈卟啉单胞菌感染牙周膜成纤维细胞的体外实验研究

4、无牙颌种植修复临床回顾性研究及无牙颌种植固定修复咬合初步分析

5、产前暴露于纳米氧化锌对大鼠子代脑发育及成年期行为学特性的影响

6、我国入选PubMed数据库的生物医学期刊文献计量学分析

7、电针治疗对颞下颌关节紊乱综合症大鼠TNF-α、IL-1β影响的研究

8、86例腮腺多形性腺瘤外科治疗的回顾和分析

9、口腔黏膜潜在恶性疾患的临床诊治新观点

10、翼外肌在髁突矢状骨折愈合中对髁突应力分布作用的三维有限元研究

11、T-Scan应用于牙根纵裂患者咬合特征分析的初步研究

12、正畸治疗对不同类型错(牙合)畸形患者口腔健康生活质量的影响

13、成人正颌手术前后的心理特征及满意度的相关性研究

14、不同牙面处理方法对窝沟封闭剂微渗漏的影响

15、自锁托槽矫治器与直丝弓托槽矫治器排齐牙列的对比研究

16、构建3D打印牙齿模型及其形态仿真性研究

17、锥形束CT对下颌乳磨牙牙根及根管形态的研究

18、F大学口腔医学博士学位论文内容和质量研究

19、口腔医学专业人文素质 教育 现状调查及课程教学发展策略

20、口腔医学本科毕业考核中多站式考试的设计及效果评价研究

21、血链球菌细菌素对光滑念珠菌力学性质的影响

22、乳牙根中1/3折保守治疗的应用研究

23、牙髓切断术与牙髓摘除术在深龋露髓乳磨牙临床治疗中的对比研究

24、整合牙颌模型三维重构及其应用研究

25、江西省口腔医疗服务能力调查分析

26、玻璃纤维桩不同粘接方法粘接强度的系统评价和Meta分析

27、牙与固定修复体的动力学研究--振动分析和疲劳测试

28、口腔医学专业人才培养方案及系列课程综合改革研究

29、气电纺蚕丝蛋白纳米纤维的制备与组织工程研究

30、张应力诱导大鼠骨髓间充质干细胞骨向分化的实验研究

31、可摘局部义齿支架计算机辅助设计与制作的初步研究

32、磁性附着体静磁场对人牙龈成纤维细胞和人牙周膜成纤维细胞生物学效应的基础研究

33、等离子浸没注入和多弧离子镀对纯钛及钛合金表面改性的基础研究

34、口腔卫生服务现况评价与口腔卫生人力预测研究

35、自制铸钛包埋材料铸造工艺与铸钛修复体铸造精度的研究

36、口腔修复学教学及临床三维多媒体平台的建立

37、应用激光快速成形技术制作全口义齿钛基托的实验研究

38、纳米羟基磷灰石复合改性材料的制备及其抗龋性能研究

39、髁突在咬合载荷作用下的应力效应

40、磨牙烤瓷熔附金属全冠的有限元分析

2021本科生医学毕业论文题目相关 文章 :

★ 2021医学类论文的题目有哪些

★ 2021医学类论文题目推荐

医学专业论文选题与题目

★ 医学专业的毕业论文题目有哪些

★ 2021教育学专业毕业论文题目

医学专业的论文题目参考

★ 大学生论文题目大全2021

★ 优秀论文题目大全2021

★ 医学专业的论文题目有哪些

★ 2021通信专业毕业生论文题目

pcr扩增检测论文

有啊,我可以联系的!

微生物技术在城市生活垃圾处理中的应用 摘要:本文结合堆肥化、卫生填埋两种现行的城市生活垃圾处理工艺,主要介绍了城市生活垃圾生物处理过程中的微生物种群,以及通过分析开发出的新的微生物技术,指出了应用于城市生活垃圾处理的高效的微生物技术的研究方向。 关键词:城市生活垃圾 微生物 强化微生物处理技术 基因工程 ; 随着城市化进程在全球范围的加速,城市化带来的污染和人类聚居状况恶化等问题,已成为世界各国共同关心的问题。城市生活垃圾(Municipal solid waste, 简称MSW)是在城市日常生活及为城市生活提供服务的活动中产生的固体废弃物,是城市环境的主要污染物之一。目前,城市生活垃圾处理处置的方法主要包括卫生填埋(Sanitary landfill)、堆肥化(Composting)、焚烧(Incineration)三种,其中前两种处理方式均属于生物处理技术。具体来说,MSW生物处理技术就是城市生活垃圾中固有的或外添加的微生物,在一定控制条件下,进行一系列的生物化学反应,使得MSW中的不稳定的有机物代谢后释放能量或转化为新的细胞物质,从而MSW逐步达稳定化的一个生化过程。 1. 城市生活垃圾生物处理中主要的微生物。。。

PCR技术是一种体外酶促合成、扩增特定DNA片段的方法。下面是我整理的关于pcr技术论文,希望你能从中得到感悟!

技术的研究进展

摘要 PCR技术是一种体外酶促合成、扩增特定DNA片段的方法。因其高强的特异性和灵敏度以及检测速度快、准确性好等优点,已被广泛地应用于水产、微生物检测等许多领域。该文从PCR技术的原理及应用方面进行了综述,并对其发展做出了展望。

关键词 PCR技术;研究进展;应用

中图分类号 Q819 文献标识码 A 文章编号 1007-5739(2012)10-0047-02

PCR(polymerase chain reaction,PCR)即聚合酶链式反应,它是一种体外酶促合成,扩增特定DNA片段的方法。1985年,美国Karray等学者首创了PCR技术,并由美国Cetus公司开发研制[1]。随着科学技术的发展和突破,PCR技术已在多个领域得到广泛地应用,如微生物检测、兽医学、水产养殖等方面。由于该技术具有较强的灵敏度、准确度和特异性,又能快速进行检测,因而其应用领域也在不断延伸[2-3]。随着PCR技术的不断发展,在常规PCR技术的基础上又衍生出了许多技术,如多重PCR(mutiplex PCR)技术[4]、实时荧光定量PCR(real-time fluorescent quantitative PCR,FQ-PCR)技术[5]、单分子PCR技术[6]。

1 PCR技术原理

PCR技术是根据待扩增的已知DNA片段序列、人工合成与该DNA 2条链末端互补的2段寡核苷酸引物,在体外将待检DNA序列(模板)在酶促作用下进行扩增。PCR的整个技术过程经若干个循环组成,一个循环包括连续的3个步骤:第1步是高温条件下的DNA模板变性,即模板DNA在93~94 ℃的条件下变性解链;第2步是退火,即人工合成的2个寡核苷酸引物与模板DNA链3’端经降温至55 ℃退火;第3步是延伸,即在4种dNTP底物同时存在的情况下,借助TaqDNA聚合酶的作用,引物链将沿着5’-3’方向延伸与模板互补的新链[7]。经过这个循环后,合成了新链,可将其作为DNA模板继续反应,由此循环进行。循环进程中,扩增产物的量以指数级方式增加,一般单一拷贝的基因循环25~30次,DNA可扩增l00万~200万倍[1]。PCR反应的步骤很简单,但是具体的操作是复杂的,如退火温度的确定、延伸时间的长短以及循环数等。因此,不同的反应体系应该确定适当的反应条件,以避免假阴性或假阳性等情况的产生。

2 PCR技术的分类

在传统PCR技术的基础上,根据人们的需要以及各个领域的应用要求,又衍生出很多种类的PCR技术。新技术在各领域广泛应用并逐渐改进,为进一步的研究提供了基础。

实时荧光定量PCR技术

1996年,学者经过研究,在传统PCR技术的基础上,首创了实时荧光定量PCR技术,新技术已经应用至医学领域、分子生物学和其他基础研究领域。实时荧光定量PCR技术基于传统技术的优势,还具有实时性、准确性、无污染,实现了自动化操作和多重反应,是PCR技术研究史上从定性到定量的飞跃[8]。

荧光定量PCR技术最大的特点是能将荧光基团加入到PCR反应体系中,借助于荧光信号,累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析[9]。实时监测这一特点是常规PCR技术所不具有的,因为其对扩增反应不能进行随时的检测。常规PCR技术的扩增终产物需要在凝胶电泳等条件下才能进行,无法对起始模板进行准确的定量,而荧光定量PCR技术的反应进程可以根据荧光信号的变化做出准确的判断[10-11]。一个PCR循环反应结束之后,定量PCR仪可以收集1个荧光强度信号,荧光信号强度的变化可以反映产物量的变化情况,这样就可以得到1条荧光扩增曲线[12]。荧光信号在指数扩增阶段,PCR产物荧光信号的对数值与起始模板量之间存在线性对应关系,然后进行定量分析[13]。

多重PCR技术

多重PCR(mutiplex PCR)技术是PCR技术的一种,为同一管中加入多对特异性引物,与PCR管内的多个模板反应,在一个PCR管中同时检测多个目标DNA分子。多重PCR技术可以扩增一个物种的一个片段,也可以同时扩增多个物种的不同片段[14]。

在同一反应体系中,多重PCR技术进行多个位点的特异性扩增时,引物间的配对、引物间的竞争性扩增等会对扩增效果产生重要影响。一方面,如果能选择适宜的反应体系和反应条件,可极大地提高多重PCR的扩增效果[15]。主要包括退火温度、退火及延伸时间、PCR缓冲液成分、dNTP的用量、引物及模板的量等。另一方面,DNA的抽提质量也影响多重PCR扩增效率,如DNA抽提不干净或降解都将影响PCR扩增效果[16]。

单分子PCR技术(SM-PCR)

单分子PCR技术是在传统PCR技术的基础上发展的,基本循环过程相同,但在反应条件、模板数量、DNA 聚合酶选择、引物设计方面具有不同点。该技术是以少量或单个DNA分子为模板进行的PCR[17]。

单分子PCR技术反应中,DNA 模板浓度极低,这就要求模板有较高的质量。因为这是试验成败的决定性因素。在设计引物时,应该严格控制GC的含量和Tm值,同时尽量避免引物间存在可配对序列。在反应混合物模板数极低的情况下,若引物之间存在少量配对序列,扩增时极易形成二聚体,使反应无法进行,得不到所需要的产物[18]。由于单分子PCR技术反应的变性温度(96~98 ℃)大多比常规PCR技术(94 ℃)略高,因而对DNA 聚合酶热稳定性的要求也更加严格,需要有较好的热稳定性,以防止温度过高而使其失活。其变性时间(5~15 s)、退火时间及延伸时间也短于常规PCR技术[17]。

3 PCR技术的应用

PCR技术在水产上的应用

基因表达是检测某个基因在不同发育期或不同组织中的表达量变化,或受到某种试验处理过程中的影响而出现表达量变化的情况。有学者应用real-time PCR技术研究碳水化合物含量对翘嘴红鲴糖代谢酶G6Pase、GK以及PEPCK表达量的影响[19-21],研究结果可为翘嘴红鲴饲料配方中的最合适糖含量提供理论依据。孙淑娜等[22]研究叶酸拮抗剂对斑马鱼心脏发育相关基因BMP2b及HAS2表达的影响,表明叶酸拮抗剂对早期胚胎的心脏发育影响较大,可导致斑马鱼心脏发育延迟及心脏形态异常,并下调斑马鱼心脏发育相关基因BMP2b及HAS2的表达,这可能是叶酸生物学活性受抑后导致心脏发育异常的机制之一。Sawyer et al[23]以斑马鱼的未受精卵、胚胎、仔鱼和成鱼为研究材料,采用实时荧光定量PCR技术,检测了P450aromA和P450aromB在不同组织的表达量,表明在各组织中均有2种基因的表达,但表达量显著不同,呈现组织特异性。

PCR技术在微生物检测上的应用

1990年,Bej et al[24]在利用多重PCR的方法检测了Leg-ionella类菌种和大肠类细菌,其结果是通过点对点方法固定的多聚dT尾捕捉探针和生物素标记的扩增DNA进行杂交来检测的。张志东等检测口蹄疫病毒(FMDV)持续性感染的带毒动物,表明实时荧光定量PCR技术具有快速检测、准确、客观等优势,较优于传统的检测方法[25-26]。Metzger-Boddien et al[27]对PCR-ELISA的方法进行了评价,结果显示,样品中沙门氏菌的检出率可以达到98%。

4 展望

传统PCR技术以及衍生出来的新型PCR技术自面世以来,已被广泛应用到生命科学的各个领域。随着技术方法的不断改进与完善,荧光定量PCR技术将会逐渐完善并广泛应用。多重PCR技术在食品病原微生物、非致病微生物及环境微生物检测中具有重要作用;未来的研究主要集中在去除食品抑制因子干扰、改进样品前处理技术等方面,其次是整合应用多重PCR与其他技术,必将在未来食品微生物检测中有非常好的应用前景。

5 参考文献

[1] 常世敏.PCR在食品微生物检测中的应用[J].邯郸农业高等专科学校学报,2004,21(4):23-25.

[2] 唐永凯,俞菊华,徐跑,等.实时荧光定量PCR技术及其在水产上的应用[J].中国农学通报,2010(21):422-426.

[3] 吴学贵.LPS刺激点带石斑鱼免疫相关基因的克隆与组织表达差异性分析[D].海口:海南大学,2011.

[4] 侯立华,黄新,朱水芳,等.双色荧光多重PCR技术及在禽流感病毒检测中的应用[J].生物技术通报,2010(1):168-172.

[5] 查锡良.生物化学[M].7版.北京:人民卫生出版社,2009:483-485.

[6] 张杰道.生物化学实验技术PCR技术及应用[M].北京:科学出版社,2005:12-18.

[7] 谢海燕.黑线仓鼠LHR部分序列克隆及组织器官的表达差异[D].曲阜:曲阜师范大学,2011.

[8] KUBISTA M,ANDRADE J M,BENGTSSON M,et real-time pol-ymerase chain reaction[J].MoLecular Aspects of Medicine,2006,27(2-3):95-125.

[9] AGINDOTAN B O,SHIEL P J,BERGER P detection of potato viruses,PLRV,PVA,PVX and PVY from dormant potato tubers by TaqMan real-timeRT-PCR[J].J Virol Methods,2007,142(1-2):l-9.

[10] 李丽平.小麦慢锈品种叶片受条锈菌侵入后的木质素合成及调控研究[D].雅安:四川农业大学,2009.

[11] 薛霜,独军政,高闪电,等.实时荧光定量PCR技术研究进展及其在兽医学中的应用[J].中国农学通报,2010(7):11-15.

[12] SCHUBERT J,FOMITCHEVA V,SZTANGRET-WISNIEWSKA J. Dif-ferentiation of Potato virus Y strains using improvedsets of diagnostic-PCR-primers [J].J Virol Methods,2007,140(1-2):66-74.

[13] 袁继红.实时荧光定量PCR技术的实验研究[J].现代农业科技,2010(13):20-22.

[14] 朱善元.生物检测技术PCR及其在兽医微生物检测中的应用[J].黑龙江畜牧兽医,1999(11):21-22.

[15] 黄银花,胡晓湘,李宁,等.影响多重PCR扩增效果的因素[J].遗传,2003,25(1):65-68.

[16] 陈诺,唐善虎,岑璐伽,等.多重PCR技术在食品微生物检测中的应用进展[J].生物技术,2010,37(10):72-75.

[17] 刘连生.常规PCR技术与单分子PCR技术[J].医学信息,2010,23(11):4379-4380.

[18] 顾超颖.汗孔角化病的临床分析,SSH1、ARPC3基因突变检测和表达谱分析[D].上海:复旦大学,2008.

[19] 唐永凯,俞菊华,刘波,等.翘嘴红鲌肝脏G6Pase催化亚基的克隆以及摄食和饲料中碳水化合物对其表达的影响[J].水产学报,2007,31(1):45-53.

[20] 刘波,谢骏,苏永腾,等.高碳水化合物日粮对翘嘴红鲌生长、GK及GK mRNA表达的影响[J].水生生物学报,2008,32(1):47-53.

[21] 俞菊华,戈贤平,唐永凯,等.碳水化合物、脂肪对翘嘴红鲌PEPCK基因表达的影响[J].水产学报,2007,31(3):369-373.

[22] 孙淑娜,桂永浩,宋后燕,等.叶酸拮抗剂甲氨喋呤导致斑马鱼心脏发育异常及BMP2bHAS2表达下调[J].中国当代儿科杂志,2007,9(2):159-163.

[23] SAWYER S J,GERSTNER K A,CALLARD PCR analysis of cytochrome P450 aromatase expression in zebrafish:gene specific tissue disyribution,sex differences,developmental programming,and estrogen regulation[J].General and comparative endocrinology,2006,147(2):108-117.

[24] BEJ A K,MAHBUBANI M H,MILLER R,et PCR amplif-ication and immobilized capture probes for detection of bacterial patho-gens and indicators in water[J].Mol Cell Probes,1990,4(5):353-365.

[25] ZHANG Z D,ALEXANDERSEN of carrier cattle and sheep persistently infected with foot-and-mouth disease virus by a rapid real-time RT-PCR assay[J].Journal of Virological Methods,2003,111(2):95-100.

[26] ZHANG Z D,BASHIRUDDIN J analysis of foot-and-mouth disease virus RNA duration in tissues of experimentally infected pigs[J].TheVeterinary Journal,2009,180(1):130-132.

[27] METZGER-BODDIEN C,BOSTEL A,KEHLE for analysis of food samples[J].J Food Prot,2004,67(8):1585-1590.

点击下页还有更多>>>关于pcr技术论文

pcr检测国外论文

虽然我不会,,但是我会百度

PCR技术是一种体外酶促合成、扩增特定DNA片段的方法。下面是我整理的关于pcr技术论文,希望你能从中得到感悟!

技术的研究进展

摘要 PCR技术是一种体外酶促合成、扩增特定DNA片段的方法。因其高强的特异性和灵敏度以及检测速度快、准确性好等优点,已被广泛地应用于水产、微生物检测等许多领域。该文从PCR技术的原理及应用方面进行了综述,并对其发展做出了展望。

关键词 PCR技术;研究进展;应用

中图分类号 Q819 文献标识码 A 文章编号 1007-5739(2012)10-0047-02

PCR(polymerase chain reaction,PCR)即聚合酶链式反应,它是一种体外酶促合成,扩增特定DNA片段的方法。1985年,美国Karray等学者首创了PCR技术,并由美国Cetus公司开发研制[1]。随着科学技术的发展和突破,PCR技术已在多个领域得到广泛地应用,如微生物检测、兽医学、水产养殖等方面。由于该技术具有较强的灵敏度、准确度和特异性,又能快速进行检测,因而其应用领域也在不断延伸[2-3]。随着PCR技术的不断发展,在常规PCR技术的基础上又衍生出了许多技术,如多重PCR(mutiplex PCR)技术[4]、实时荧光定量PCR(real-time fluorescent quantitative PCR,FQ-PCR)技术[5]、单分子PCR技术[6]。

1 PCR技术原理

PCR技术是根据待扩增的已知DNA片段序列、人工合成与该DNA 2条链末端互补的2段寡核苷酸引物,在体外将待检DNA序列(模板)在酶促作用下进行扩增。PCR的整个技术过程经若干个循环组成,一个循环包括连续的3个步骤:第1步是高温条件下的DNA模板变性,即模板DNA在93~94 ℃的条件下变性解链;第2步是退火,即人工合成的2个寡核苷酸引物与模板DNA链3’端经降温至55 ℃退火;第3步是延伸,即在4种dNTP底物同时存在的情况下,借助TaqDNA聚合酶的作用,引物链将沿着5’-3’方向延伸与模板互补的新链[7]。经过这个循环后,合成了新链,可将其作为DNA模板继续反应,由此循环进行。循环进程中,扩增产物的量以指数级方式增加,一般单一拷贝的基因循环25~30次,DNA可扩增l00万~200万倍[1]。PCR反应的步骤很简单,但是具体的操作是复杂的,如退火温度的确定、延伸时间的长短以及循环数等。因此,不同的反应体系应该确定适当的反应条件,以避免假阴性或假阳性等情况的产生。

2 PCR技术的分类

在传统PCR技术的基础上,根据人们的需要以及各个领域的应用要求,又衍生出很多种类的PCR技术。新技术在各领域广泛应用并逐渐改进,为进一步的研究提供了基础。

实时荧光定量PCR技术

1996年,学者经过研究,在传统PCR技术的基础上,首创了实时荧光定量PCR技术,新技术已经应用至医学领域、分子生物学和其他基础研究领域。实时荧光定量PCR技术基于传统技术的优势,还具有实时性、准确性、无污染,实现了自动化操作和多重反应,是PCR技术研究史上从定性到定量的飞跃[8]。

荧光定量PCR技术最大的特点是能将荧光基团加入到PCR反应体系中,借助于荧光信号,累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析[9]。实时监测这一特点是常规PCR技术所不具有的,因为其对扩增反应不能进行随时的检测。常规PCR技术的扩增终产物需要在凝胶电泳等条件下才能进行,无法对起始模板进行准确的定量,而荧光定量PCR技术的反应进程可以根据荧光信号的变化做出准确的判断[10-11]。一个PCR循环反应结束之后,定量PCR仪可以收集1个荧光强度信号,荧光信号强度的变化可以反映产物量的变化情况,这样就可以得到1条荧光扩增曲线[12]。荧光信号在指数扩增阶段,PCR产物荧光信号的对数值与起始模板量之间存在线性对应关系,然后进行定量分析[13]。

多重PCR技术

多重PCR(mutiplex PCR)技术是PCR技术的一种,为同一管中加入多对特异性引物,与PCR管内的多个模板反应,在一个PCR管中同时检测多个目标DNA分子。多重PCR技术可以扩增一个物种的一个片段,也可以同时扩增多个物种的不同片段[14]。

在同一反应体系中,多重PCR技术进行多个位点的特异性扩增时,引物间的配对、引物间的竞争性扩增等会对扩增效果产生重要影响。一方面,如果能选择适宜的反应体系和反应条件,可极大地提高多重PCR的扩增效果[15]。主要包括退火温度、退火及延伸时间、PCR缓冲液成分、dNTP的用量、引物及模板的量等。另一方面,DNA的抽提质量也影响多重PCR扩增效率,如DNA抽提不干净或降解都将影响PCR扩增效果[16]。

单分子PCR技术(SM-PCR)

单分子PCR技术是在传统PCR技术的基础上发展的,基本循环过程相同,但在反应条件、模板数量、DNA 聚合酶选择、引物设计方面具有不同点。该技术是以少量或单个DNA分子为模板进行的PCR[17]。

单分子PCR技术反应中,DNA 模板浓度极低,这就要求模板有较高的质量。因为这是试验成败的决定性因素。在设计引物时,应该严格控制GC的含量和Tm值,同时尽量避免引物间存在可配对序列。在反应混合物模板数极低的情况下,若引物之间存在少量配对序列,扩增时极易形成二聚体,使反应无法进行,得不到所需要的产物[18]。由于单分子PCR技术反应的变性温度(96~98 ℃)大多比常规PCR技术(94 ℃)略高,因而对DNA 聚合酶热稳定性的要求也更加严格,需要有较好的热稳定性,以防止温度过高而使其失活。其变性时间(5~15 s)、退火时间及延伸时间也短于常规PCR技术[17]。

3 PCR技术的应用

PCR技术在水产上的应用

基因表达是检测某个基因在不同发育期或不同组织中的表达量变化,或受到某种试验处理过程中的影响而出现表达量变化的情况。有学者应用real-time PCR技术研究碳水化合物含量对翘嘴红鲴糖代谢酶G6Pase、GK以及PEPCK表达量的影响[19-21],研究结果可为翘嘴红鲴饲料配方中的最合适糖含量提供理论依据。孙淑娜等[22]研究叶酸拮抗剂对斑马鱼心脏发育相关基因BMP2b及HAS2表达的影响,表明叶酸拮抗剂对早期胚胎的心脏发育影响较大,可导致斑马鱼心脏发育延迟及心脏形态异常,并下调斑马鱼心脏发育相关基因BMP2b及HAS2的表达,这可能是叶酸生物学活性受抑后导致心脏发育异常的机制之一。Sawyer et al[23]以斑马鱼的未受精卵、胚胎、仔鱼和成鱼为研究材料,采用实时荧光定量PCR技术,检测了P450aromA和P450aromB在不同组织的表达量,表明在各组织中均有2种基因的表达,但表达量显著不同,呈现组织特异性。

PCR技术在微生物检测上的应用

1990年,Bej et al[24]在利用多重PCR的方法检测了Leg-ionella类菌种和大肠类细菌,其结果是通过点对点方法固定的多聚dT尾捕捉探针和生物素标记的扩增DNA进行杂交来检测的。张志东等检测口蹄疫病毒(FMDV)持续性感染的带毒动物,表明实时荧光定量PCR技术具有快速检测、准确、客观等优势,较优于传统的检测方法[25-26]。Metzger-Boddien et al[27]对PCR-ELISA的方法进行了评价,结果显示,样品中沙门氏菌的检出率可以达到98%。

4 展望

传统PCR技术以及衍生出来的新型PCR技术自面世以来,已被广泛应用到生命科学的各个领域。随着技术方法的不断改进与完善,荧光定量PCR技术将会逐渐完善并广泛应用。多重PCR技术在食品病原微生物、非致病微生物及环境微生物检测中具有重要作用;未来的研究主要集中在去除食品抑制因子干扰、改进样品前处理技术等方面,其次是整合应用多重PCR与其他技术,必将在未来食品微生物检测中有非常好的应用前景。

5 参考文献

[1] 常世敏.PCR在食品微生物检测中的应用[J].邯郸农业高等专科学校学报,2004,21(4):23-25.

[2] 唐永凯,俞菊华,徐跑,等.实时荧光定量PCR技术及其在水产上的应用[J].中国农学通报,2010(21):422-426.

[3] 吴学贵.LPS刺激点带石斑鱼免疫相关基因的克隆与组织表达差异性分析[D].海口:海南大学,2011.

[4] 侯立华,黄新,朱水芳,等.双色荧光多重PCR技术及在禽流感病毒检测中的应用[J].生物技术通报,2010(1):168-172.

[5] 查锡良.生物化学[M].7版.北京:人民卫生出版社,2009:483-485.

[6] 张杰道.生物化学实验技术PCR技术及应用[M].北京:科学出版社,2005:12-18.

[7] 谢海燕.黑线仓鼠LHR部分序列克隆及组织器官的表达差异[D].曲阜:曲阜师范大学,2011.

[8] KUBISTA M,ANDRADE J M,BENGTSSON M,et real-time pol-ymerase chain reaction[J].MoLecular Aspects of Medicine,2006,27(2-3):95-125.

[9] AGINDOTAN B O,SHIEL P J,BERGER P detection of potato viruses,PLRV,PVA,PVX and PVY from dormant potato tubers by TaqMan real-timeRT-PCR[J].J Virol Methods,2007,142(1-2):l-9.

[10] 李丽平.小麦慢锈品种叶片受条锈菌侵入后的木质素合成及调控研究[D].雅安:四川农业大学,2009.

[11] 薛霜,独军政,高闪电,等.实时荧光定量PCR技术研究进展及其在兽医学中的应用[J].中国农学通报,2010(7):11-15.

[12] SCHUBERT J,FOMITCHEVA V,SZTANGRET-WISNIEWSKA J. Dif-ferentiation of Potato virus Y strains using improvedsets of diagnostic-PCR-primers [J].J Virol Methods,2007,140(1-2):66-74.

[13] 袁继红.实时荧光定量PCR技术的实验研究[J].现代农业科技,2010(13):20-22.

[14] 朱善元.生物检测技术PCR及其在兽医微生物检测中的应用[J].黑龙江畜牧兽医,1999(11):21-22.

[15] 黄银花,胡晓湘,李宁,等.影响多重PCR扩增效果的因素[J].遗传,2003,25(1):65-68.

[16] 陈诺,唐善虎,岑璐伽,等.多重PCR技术在食品微生物检测中的应用进展[J].生物技术,2010,37(10):72-75.

[17] 刘连生.常规PCR技术与单分子PCR技术[J].医学信息,2010,23(11):4379-4380.

[18] 顾超颖.汗孔角化病的临床分析,SSH1、ARPC3基因突变检测和表达谱分析[D].上海:复旦大学,2008.

[19] 唐永凯,俞菊华,刘波,等.翘嘴红鲌肝脏G6Pase催化亚基的克隆以及摄食和饲料中碳水化合物对其表达的影响[J].水产学报,2007,31(1):45-53.

[20] 刘波,谢骏,苏永腾,等.高碳水化合物日粮对翘嘴红鲌生长、GK及GK mRNA表达的影响[J].水生生物学报,2008,32(1):47-53.

[21] 俞菊华,戈贤平,唐永凯,等.碳水化合物、脂肪对翘嘴红鲌PEPCK基因表达的影响[J].水产学报,2007,31(3):369-373.

[22] 孙淑娜,桂永浩,宋后燕,等.叶酸拮抗剂甲氨喋呤导致斑马鱼心脏发育异常及BMP2bHAS2表达下调[J].中国当代儿科杂志,2007,9(2):159-163.

[23] SAWYER S J,GERSTNER K A,CALLARD PCR analysis of cytochrome P450 aromatase expression in zebrafish:gene specific tissue disyribution,sex differences,developmental programming,and estrogen regulation[J].General and comparative endocrinology,2006,147(2):108-117.

[24] BEJ A K,MAHBUBANI M H,MILLER R,et PCR amplif-ication and immobilized capture probes for detection of bacterial patho-gens and indicators in water[J].Mol Cell Probes,1990,4(5):353-365.

[25] ZHANG Z D,ALEXANDERSEN of carrier cattle and sheep persistently infected with foot-and-mouth disease virus by a rapid real-time RT-PCR assay[J].Journal of Virological Methods,2003,111(2):95-100.

[26] ZHANG Z D,BASHIRUDDIN J analysis of foot-and-mouth disease virus RNA duration in tissues of experimentally infected pigs[J].TheVeterinary Journal,2009,180(1):130-132.

[27] METZGER-BODDIEN C,BOSTEL A,KEHLE for analysis of food samples[J].J Food Prot,2004,67(8):1585-1590.

点击下页还有更多>>>关于pcr技术论文

PCR是分子生物学的关键技术,又是常规技术。它的出现极大地推动了分子生物学的发展,旋即被迅速推广并应用到生命科学的各个领域。 关键词:PCR、发展简史、基本原理、基本操作、主要应用 聚合酶链式反应(polymerase chain reaction , PCR)是体外扩增DNA序列的技术。它与分子克隆和DNA序列分析方法几乎构成了整个分子生物学实验工作的基础。在这三种技术中,PCR方法理论上出现最早,实践中应用也最广泛。PCR技术使对微量的核酸(DNA或RNA)操作变得简单易行,同时还可以使核酸研究脱离活体生物。PCR技术的发明是分子生物学的一项革命,它极大地推动了分子生物学以及生物技术产业的发展。 PCR技术发展简史 人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想。但是,当时的基因序列分析方法尚未成熟,对热具有较强稳定性的DNA聚合酶还未发现,寡核苷酸引物的合成仍处在手工、半自动合成阶段,这种想法似乎没有任何实际意义。 1985年,美国科学家Kary Mullis在高速公路的启发下,经过两年的努力,发明了PCR技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术得到了生命科学界的普遍认同,Kary Mullis也因此而获得1993年的诺贝尔化学奖。 但是,最初的PCR技术相当不成熟,在当时是一种操作复杂、成本高昂、“中看不中用”的实验室技术。1988年初,Keohanog通过对所使用的酶的改进,提高了扩增的真实性。尔后,Saiki等人又从生活在温泉中的水生嗜热杆菌内提取到一种耐热的DNA聚合酶,使得PCR技术的扩增效率大大提高。也正是由于此酶的发现使得PCR技术得到了广泛地应用,使该技术成为遗传与分子生物学 分析的根本性基石。在以后的几十年里,PCR方法被不断改进:它从一种定性的分析方法发展到定量测定;从原先只能扩增几个kb的基因到目前已能扩增长达几十个kb的DNA片段。到目前为止,PCR技术已有十几种之多,例如,将PCR与反转录酶结合,成为反转录PCR,将PCR与抗体等相结合就成为免疫PCR等。 PCR技术的基本原理和操作 1. PCR的基本原理 PCR的基本工作原理就是以拟扩增的DNA分子为模板,以一对分别与模板互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照半保留复制的机理沿着模板链延伸直至完成新的DNA合成。通过不断重复这一过程,可以使目的DNA片段得到扩增。另一方面,新合成的DNA片段也可以作为模板,因而PCR技术可使DNA的合成量呈指数型增长。 2. PCR的基本成分 PCR包括7种基本成分:模板DNA、特异性引物、热稳定DNA聚合酶、脱氧核苷三磷酸(dNTP)、二价阳离子、缓冲液及一价阳离子。 模板DNA:包括基因组DNA、质粒DNA、噬菌体DNA、预先扩增的DNA、cDNA和mRNA分子等几乎所有形式的DNA和RNA都能成为PCR技术反应的模板。除此之外,PCR反应还可以直接以细胞为模板。 特异性引物:是一段与模板DNA链结合的寡核苷酸片段,对于DNA的扩增起到引发的作用。 热稳定DNA聚合酶:这是PCR技术实现自动化的关键。热稳定DNA聚合酶是从两类微生物中分离的:一类是嗜热和高度嗜热的真细菌,另一类是嗜热古细菌。现在又出现了一种兼顾了几种DNA聚合酶特点的混合型酶。 脱氧核苷三磷酸(dNTP):是DNA合成的原料,包括dATP、dGTP、dTTP、dCTP。 二价阳离子:常用到Zn2+和Mg2+,作为构成热稳定性DNA聚合酶的成分之一。 缓冲液:一般使用Tris-Cl缓冲液,标准的为10mmol/L,并将其调节到之间。 一价阳离子:一般使用50mmol/L的KCl溶液,有利于改善扩增的产物质量。 PCR的基本操作 PCR是一种级联反复循环的DNA合成反应过程。PCR技术的基本反应由三个步骤组成: 1. 变性:通过加热使模板DNA完全变性成为单链,同时引物自身和引物之间存在的局部双链也得以消除; 2. 退火:将温度下降至适宜温度,使引物与模板DNA退火结合; 3. 延伸:将温度升高,热稳定DNA聚合酶以dNTP为底物催化合成DNA链延伸。 以上三部为一个循环,新合成的DNA分子又可以作为下一轮合成的模板,经多次循环后即可达到扩增DNA片段的目的。 PCR的主要应用 最初建立PCR是为了扩增已知序列的靶基因。因为在PCR方法问世以前,要获得一个靶基因,必须建立基因文件库,然后从成千上万的菌落中通过Southern blot 杂交筛选含有靶基因的克隆。这样既费时又费钱,特别是在克隆真核生物基因时难度更大。自从建立了PCR方法以后,使克隆已知序列的基因变得非常容易。为了适应分子生物学的快速发展,PCR方法也得到了不断发展,现在PCR已应用到生命科学的各个领域。 1. 基础研究方面的应用 目前从事分子生物学的实验室和研究人员,几乎每天都在使用PCR,可以说几乎没有一个分子生物学家没有使用过PCR。因此,PCR与分子克隆一样是分子生物学实验室的常规方法,可用于达到以下目的: l 扩增目的基因和鉴定重组子; l 克隆基因; l 基因功能和表达调控的研究; l 基因组测序; l 制备单链模板; l 致突变; 2. PCR在临床上的应用 l 在遗传学上的应用:人类的遗传性疾病是因为某一碱基序列发生了突变,使之缺失或形成某一限制性内切酶的识别位点,通过PCR结合限制片段长度多态性分析(PCR-RFLP),就可以从基因的水平对遗传性疾病进行分析。例如,血友病甲是一种常见的遗传性出血性疾病,患者体内缺乏凝血因子FVIII这是由于基因第14个外显子的第336位氨基酸的编码基因发生了突变,产生了一个新的PstI酶切点,因此可以使用PCR-RFLP对血友病进行诊断。PCR还可以用来检测遗传性耳聋和Leber遗传性视神经病。 l 在肿瘤研究中的应用:PCR已日益广泛应用于肿瘤的病因与发病机理研究以及肿瘤诊断与治疗的研究中。例如,差异显示PCR技术能针对不同肿瘤寻找其特异而敏感的标志物,并用于肿瘤早期诊断、判断预后及疗效评估。另一方面,在使用普通放疗、化疗的同时可结合定量PCR技术检测微小残留病灶,以进一步改进治疗方案。此外,由于癌症的发生在一定意义上是单个细胞分子发生变化,因而可以使用单细胞PCR技术对癌症的发病机理进行研究。 l 检测病原体 l 在基因分型中的应用:当进行器官移植时并须先组织配型工作,此时常应用序列特异性寡核苷酸多态性PCR(PCR-sequence specific oilgonucleotide polymorphism,PCR-SSOP)对人类白细胞抗原(human leukocyte antigen,HLA)进行分型,使移植成功率大大提高。此外PCR-限制性片段长度多态性也可以用于对HLA的分型。 3. 在法医学中的应用 例如:最早应用DNA限制性片段长度多态性结合PCR-RFLP来进行法医学个体识别和亲子鉴定。目前发现在真核生物基因组编码和非编码序列中的短串联重复序列的重复次数在个体间存在着差异,因此可以使用短串联重复PCR技术对其进行分析。使用PCR技术进行法医鉴定的优点是样品用量小并且适于对高度降解材料的检测。除刚才提到的之外,可变数目串联重复序列(variable number tandem repeat,VN-TR)PCR也可以用于法医学个体识别和亲子鉴定。 所以,综上所述,PCR的确是一种分子生物学研究的基础技术。在它30多年的发展中衍生出了诸如PCR-RFLP、PCR-SSOP、VN-TR,以及免疫PCR、致突变PCR和定量PCR等十几种不同的技术方法。PCR技术可以为基因工程提供目的基因,并广泛地应用于个体识别、亲子鉴定、免疫配型、疾病诊断等方面。可以说,PCR已经渗透到了生命科学的各个领域。21世纪是生物工程的世纪。我相信,在今后的发展中PCR技术会不断地得到扩充和完善,PCR技术也将发挥着越来越重要的作用。 参考书目:黄留玉,PCR最新技术原理、方法及应用,北京,化学工业出版社,现代生物技术与医药科技出版中心,2005年

生物学划分为两个时代:PCR前时代和PCR后时代,这是《纽约时报》对穆利斯先生发明PCR技术的评价。1983年,Kary B. Mullis提出了PCR技术的构想, 1985年,他们在Science发表了相关的论文。论文由Mullis的同事Randall K. Saiki领衔发表,1988年Saiki等分离纯化了Taq DNA聚合酶,并将其应用于PCR反应,使PCR变得更加简单、易行和稳定,随后PCR技术迎来了蓬勃发展的时期。PCR根据其分析精度,大致经历了以下三个阶段:(I)终点PCR:定性分析(II)定量PCR:相对定量(III)数字PCR:绝对定量

早期PCR主要用于定性分析,根据反应终点产物的有或无检测靶标序列存在与否,这种PCR可以称为终点PCR,在基因鉴定、病原核酸检测等领域具有广泛应用。

1990年,Simmonds等就通过对终点产物的梯度稀释对HCV、HIV等病原体进行了粗略的拷贝数鉴定,这可能是最早的定量PCR研究。不过需要澄清一下,这里所说的定量PCR还不是指荧光定量PCR,那时还没有将荧光物质用于PCR产物的监控。直到1992年,罗氏公司的R Higuchi等在Nature发表论文,介绍了将溴化乙锭(EB)用于PCR产物动态监控的方法,这可能是最早的荧光定量PCR技术了。1996年,ABi公司公布了基于Taqman探针的qPCR技术。1997年,Wittwer等比较了(i)基于双链特异性染料SYBR Green I(ii)基于5’-核酸酶和双标探针(iii)基于Cy5的分子信标的qPCR的特点。这些研究为后来qPCR的广泛应用奠定了基础。

一般,人们习惯把qPCR分为相对定量和绝对定量,不过本质上来说,qPCR只能用于相对定量,绝对定量的实现往往需要借助“外力”。 PCR扩增是一种指数扩增,理想状态下,产物浓度与起始浓度存在如下关系:N T = N 0 ×2 n (N 0 代表起始浓度,N T 代表终点浓度,n代表循环数),对公式两边取以对数可得:log N T = logN 0 + n×log2(log代表以自然常数e为底的对数),如果我们把PCR终点的判断信号固定成一个统一的值(即qPCR中的荧光阈值),那么循环数与起始浓度的对数就成了线性关系,这就是qPCR相对定量的基本原理。不过有两个因素:(1)人的肉眼无法准确的判断PCR终点信号,于是出现了特殊的设备—荧光PCR仪;(2)不同的靶标基因的扩增效率不同,因此无法直接比较,因此催生了 ∆∆ Ct法。

真正的绝对定量PCR称为数字PCR(dPCR,1999年Kinzler等首次提出数字PCR的概念),它是在终点PCR和极限稀释的基础上通过泊松分布计算得出拷贝数的绝对定量方法。在Simmonds等的研究中,他们通过将DNA分子稀释到单拷贝,然后根据PCR的终点信号和泊松分布规律,计算了靶标基因的分子数目,不过他们没有进一步发展该技术,很长一段时间内该技术都是以分子计数的特点应用的。dPCR一方面因受到qPCR的长期压制,另一方面受到检测仪器的限制,直到2006年以后才逐渐显示出技术复苏的景象。

1993年,Zachar等在《核酸研究》上介绍了利用PCR对靶标基因进行相对定量的数学原理;2001年,Livak KJ等介绍了2 - ∆∆ Ct 法的推导过程,局限性及应用。

当然这些原理很简单,即使不看论文也很容易理解。因为PCR的指数扩增,当我们把终点的判断标准固定时,起始模板量高的样本最先到达,起始模板量低的样本消耗更多的循环数,并且每相差一个循环,代表起始浓度相差2倍,即N1/N2 = 2 -(Ct1-Ct2) 。检测不同样本时, ∆ Ct可能受样本量差异的影响,因此引入了内参基因的校正。内参基因,也叫管家基因或者看家基因,一般认为他们在生物体不同时空组织中保持恒定表达,那么两个样本内参基因的 ∆ Ct就代表了样本量的差异,靶标基因的 ∆ Ct – 内参基因的 ∆ Ct即为靶标基因的真实表达量差异,这就是2 - ∆∆ Ct 法。

但是有几个问题需要注意:(1)PCR并非全程都是指数增长期,比较必须在对数扩增期进行(2)一般默认对数增长期扩增效率是100%,这并不严谨,尤其是一些扩增困难的模板,效率可能与100%差异很大,纵向分析某基因的表达量(如基因A在不同生产阶段/不同组织的表达量)时,仍使用2 - ∆∆ Ct 可能并不太准确(3)不同靶标基因的扩增效率是不同的,因此横向比较不同靶标基因时,可能造成较大的误差。

鉴于此,我们在设计引物时,应该尽可能使靶标的长度、GC%、Tm保持接近,从而保证相近的扩增效率。 PrimerBank 和 qPrimerDB 分别是国外和国内比较优秀的qPCR引物检索网站,收录了大量物种的qPCR引物数据,具有一定参考价值。此外,Pfaffl等(2001),Rao(2013)等对2 - ∆∆ Ct 法进行了一些校正,采用的方法主要就是通过对同一模板梯度稀释进行扩增效率校正,具有一定参考意义。

qPCR绝对定量有两种方法:(1)先获得一个拷贝数已知的参照基因,再获得靶标基因与该参照的比值,然后根据已知值获得检测样本的确切数目,从这个角度看绝对定量就是借助了“拷贝数已知”这一外力的相对定量。1990年,Gilliland等就描述了这一原理。(2)Simmonds等报道的方法,将DNA模板做极限稀释,一直到PCR体系中仅含有一个模板分子,此时只需要乘以稀释倍数就可以得到样本中靶标基因的拷贝数。这一方法是dPCR的技术原型,在实际操作中很有困难,首先需要很多稀释梯度,其次普通的10-20uL体系中仅含有一个模板分子经常很难扩增成功。

绝对定量最广泛的应用是分子计数,如RNA分子数的精确测定,DNA基因组上的基因拷贝数鉴定等。Southern杂交法是外源基因拷贝数鉴定使用最广泛的方法,但随着qPCR技术的不断发展,基于qPCR绝对定量的拷贝数鉴定的报道逐渐增多,并且大量研究表明qPCR方法与Southern杂交得到的结果基本一致甚至更加精确。Song等(2002)利用qRT-PCR估计了转基因玉米愈伤组织和植物中的转基因拷贝数,该研究还使用Southern杂交重新测量了玉米愈伤组织和植物中的“精确”转基因拷贝数,结果qRT-PCR的测量结果与“精确”结果有较高相关性,因此,他们认为 qRT-PCR可以作为一种评估转基因玉米拷贝数的有效手段。

拷贝数鉴定的关键是获得一个拷贝数已知的标准品,质粒容易提取和纯化,因此常用于构建绝对定量的标准品。把携带靶标基因的重组质粒提纯到极高的纯度,精确测定其核酸浓度,根据公式:N = × 10 23 (copy/mol) × M DNA (g) / (DNA length(bp) × 650(g/mol/bp)) 即可计算出标准品拷贝数,式中N代表分子数目,M DNA 代表质粒重量。以此标准品绘制logN与Ct的标准曲线,然后根据靶标基因的Ct值即可反推出靶标基因的精确个数。同时我们要从基因组上选择一个基因拷贝时已知的参照基因,按同样方式绘制标准曲线、进行分子计数,然后测定统一样本中把靶标基因与参照基因的分子数,带入上述公式即可得到靶标基因的实际拷贝数。一般,应该选择基因组上拷贝数较低,物种内保守性极高的基因作为参照基因。

拷贝数鉴定具有多种形式,双标准曲线并不是必需的,如果能够确认靶标基因与参照基因的扩增效率都接近100%,也可使用2 - ∆∆ Ct 法测量靶标基因的拷贝数,林维石等(2013)就通过该方法得到了与Southern杂交一致的拷贝数鉴定结果。

基因分型的方法有很多,Landegren等(1998)在报道中综述了多种用于基因分型的技术方法,其中发展到现在应用最为广泛的就是qPCR法和测序法。测序法最为准确,并且能够发现新基因型,是基因分型或SNP检测的金标准,但它比较慢,且操作比较繁琐。qPCR检测操作简单且速度极快,目前有十分广泛的应用。

qPCR法基因分型的基本原理是:3’-末端不匹配的引物无法正常扩增靶标基因。1989年,Wu等和Newton等先后报道了ASPCR法和法用于检测等位基因,这种方法容易理解,假设已知SNP位点为A/T,如果3’-A引物PCR产物产生终点信号可判断为A基因型,3’-T引物产生终点信号为T基因型,两种引物均产生信号即为杂合型。1995年,Livak等报道了利用不同荧光标记的探针检测SNP的方法,这种方法中,分别针对两种基因型设计两条不同荧光标记的探针,并设置纯和基因型的对照,随着PCR扩增如果荧光信号靠近A参照代表A基因型,靠近B参照代表B基因型,如果位于A和B之间则为杂合型(如下图)。

2003年,Papp等报道了一种基于高分辨率溶解曲线的SNP分型方法,这种方法也是基于3’-末端不匹配的引物,A基因型设计正常长度的引物,B基因型则在引物5’端添加10-15bp的高GC序列,经过PCR扩增后,不同基因型产物的Tm就会发生变化,依赖于qPCR仪的高分辨率溶解曲线,可以快速区分基因型。

1995年以后,qPCR相关的研究论文数量呈指数式增长,成为分子生物学最热门的领域之一。近年来,随着分子诊断行业的崛起,qPCR在医疗领域发挥着越来越重要的作用。qPCR在快速发展的同时,也产生了一些问题,如判断标准不一致,检测精确度没有统一标准,RNA检测假阳性较严重等。2009年,多个科研院所及医疗单位合作发布了qPCR的 MIQE指南 ,该指南规范了qPCR的常用术语,如Ct应称为Cq,RT-PCR应写作RT-qPCR等,并对分析的敏感性、特异性、精度等进行了规范性要求,此外指南还对样本处理、核酸提取、逆转录、qPCR甚至数据分析都作了详尽的规范。该指南由9部分组成,共85个参数,以确保以qPCR实验的实用性、准确性、正确性和可重复性。虽然该指南已经有些年份,但遵守这些规范能够让你的研究更易重复,也有助于审稿人和编辑快速评估你的稿件。

注:指南的内容和附表可以在这里获取:

参考文献 [1] Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350‐1354. doi: [2] Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487‐491. doi: [3] Simmonds P, Balfe P, Peutherer JF, et al. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J Virol. 1990;64(2):864‐872. [4] Simmonds P, Zhang LQ, Watson HG, et al. Hepatitis C quantification and sequencing in blood products, haemophiliacs, and drug users. Lancet. 1990;336(8729):1469‐1472. doi:(90)93179-s [5] Higuchi, R et al. “Simultaneous amplification and detection of specific DNA sequences.” Bio/technology (Nature Publishing Company) vol. 10,4 (1992): 413-7. doi: [6] Wittwer CT, Ririe KM, Andrew RV, et al. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques. 1997;22(1):176‐181. doi: [7] Zachar V, Thomas RA, Goustin AS. Absolute quantification of target DNA: a simple competitive PCR for efficient analysis of multiple samples. Nucleic Acids Res. 1993;21(8):2017‐2018. doi: [8] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402‐408. doi: [9] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi: [10] Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3(3):71‐85. [11] Gilliland G, Perrin S, Blanchard K, Bunn HF. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990;87(7):2725‐2729. doi: [12] Song P, Cai C, Skokut M, et al. Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS™-derived transgenic maize[J]. Plant Cell Reports, 2002, 20(10): 948-954. doi: [13] 林维石等:利用实时荧光定量比较Ct法检测转基因小鼠外源基因拷贝数[J]. 生物技术通讯, 2013, 4(24): 497-500. doi: [14] Wu DY, Ugozzoli L, Pal BK, Wallace RB. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A. 1989;86(8):2757‐2760. doi: [15] Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17(7):2503‐2516. doi: [16] Huang MM, Arnheim N, Goodman MF. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 1992;20(17):4567‐4573. doi: [17] Livak KJ, Marmaro J, Todd JA. Towards fully automated genome-wide polymorphism screening. Nat Genet. 1995;9(4):341‐342. doi: [18] Landegren U, Nilsson M, Kwok P Y. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis[J]. Genome research, 1998, 8(8): 769-776. doi: [19] Papp AC, Pinsonneault JK, Cooke G, Sadée W. Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves. Biotechniques. 2003;34(5):1068‐1072. doi:

核酸检测论文数学

近期疫情反弹,有些城市又开始了封城和一轮又一轮的核酸检测,为什么需要做那么多轮核酸检测?核酸检测为阴性到底能不能足以说明自己没有被感染?

假如在一次核酸检测中发现了阳性,那么是不是一定就感染了新冠呢?其实是不一定的,我们可以从数学上来说明这个道理。

核酸检测不能保证完全百分百的准确,也就是说存在 假阳性 和 假阴性 的可能

核酸检测结果:

评价核酸检测是否准确有两个概念:

灵敏度和特异性如果都是百分之百的话说明是完全准确的,但是现实中往往因为各种原因不可能达到百分之百准确,最多只能是接近于百分之百。

假设有一个国家,经过一轮调查发现有1‰的人感染了新冠病毒,现在进行一轮核酸检测,这个核酸检测的灵敏度和特异性就的99%,现在张三去做了这个灵敏度和特异性都是99%的核酸检测,结果发现张三第一次检测结果为阳性,那么张三真感染的概率有多大?

我们来分析一下,目前这个国家有1‰的人感染了,现在张三有两种可能,第一种是感染了,第二种是未感染,感染的可能是1‰,未感染的可能是999‰,但是不管他感染没感染,他都有可能被检测为阳性,也有可能被检测为阴性。那么经过第一次核酸检测张三的结果如下表

目前已经知道张三已经被检测出阳性,那么表格中第二行的阴性我们就不用管了,他只有可能是真感染且被检测为阳性,或者未感染被检测为假阳性也就是只有表格中第一行的那个概率,那么可以得出以下公式

最后计算得出结果大约等于9%,也就是说用一个灵敏度和特异性都是99%的试剂盒去检测张三,检测结果为阳性,那他也只有9%的可能是真的感染了,大部分的可能是没有感染,很有可能是一个假阳性,原因就在于这个国家的感染率很低,只有1‰,它远远低于了1%的假阳性比例,所以一次阳性并不能说明就真正感染了,如果这个人经过了二次检测,结果又会怎么样。

二次检测的时候,张三的感染率已经不是1‰了,因为他经过第一次检测是阳性了,所以他的感染率已经从1‰变成了9%,那么就可以得出如下的表

那么再来计算一下二次检测为阳性的话真感染的概率有多大

所以如果检测两次并且两次都是阳性,那么就有91%的可能性确认为一个感染者,如果还是不放心还可以进行三次、四次等等。所以如果我们想确诊一个人的话单靠核酸检测是不准确的,反过来说单靠核酸检测来排除一个人也是不准确的,这也就是说为什么住院时候还要查血、查抗体、查肺部CT等等。

核酸分脱氧核糖核酸和核糖核酸,包括DNA和RNA,核酸的最小组成成分是核苷酸,包含脱氧核苷酸和不脱氧核糖核酸,基因是DNA的一部分,不同的人DNA不同,核苷酸的含氮碱基包括腺嘌呤,鸟嘌呤等等。核苷酸包括含氮碱基,五碳糖,磷酸根。核酸是一种聚合物。 核酸检测目前多是通过取咽试子的方法,病毒感染口腔黏膜上皮以后会寄宿在口腔黏膜上皮,通过采咽拭子可以达到取样的目的。 一种病毒只有一种核酸,称为DNA病毒或RNA病毒。通过检测这些病毒,可以判断有没有病毒感染。核酸检测需要人员固定时间,固定地点,采样。需要耗费政府和卫生机关一些人力,财力,物力。采样的目的是检测是否有新冠病毒的脱氧核糖核酸。新冠病毒来源广泛,我们都无法准确预测,只有把自己检验出来的人体DNA与新冠病毒DNA作比较,才能可能把疾病控制在可控范围内,才能真正给人民一份满意的答卷。 我们都希望数学家能站出来研究疫情和探究规律,需要物理学家在技术层面发表论文,需要医学家在我们的领地研制疫苗,描述污染。中国抗疫的成功使得人们都承认中国政府,需要努力克服困难。 我们不应该放弃老年人和穷人。酸性条件下舒适区易感染肺炎。越是发展快的地方越是需要人努力,人们必须认识到生命的宝贵和重要。

  • 索引序列
  • pcr核酸检测原理论文
  • 核酸检测论文
  • pcr扩增检测论文
  • pcr检测国外论文
  • 核酸检测论文数学
  • 返回顶部