(1k101)铁基非晶合金(Fe-based amorphous alloys) 铁基非晶合金是由80%Fe及20%Si,B类金属元素所构成,它具有高饱和磁感应强度(), 磁导率、激磁电流和铁损等各方面都优于硅钢片的特点,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电变压器可节能60-70%。铁基非晶合金的带材厚度为左右,广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯, 适合于10kHz 以下频率使用
非晶合金是由超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在。这种非晶合金具有许多独特的性能,由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。
非晶态材料是目前材料科学中广泛研究的一个新领域,也是一种发展迅速的新型材料。所谓的“非晶态”,是相对晶态而言的,是物质的另一种结构状态。它不像晶态那样是原子的有序结构,而是一种长程无序,短程有序的结构,有点类似金属液体的结构。一些合金的非晶态赋予了它比晶态更优异的物理化学性能,使得非晶态材料的研究受到广泛关注。 在非晶态合金中不存在晶态合金中所存在的晶界、位错、扭曲等缺陷,使得其具有优异的机械、物理和化学性能,同时也使得非晶态合金展现出强大的生命力。 1、在机械性能方面,非晶态合金具有高强度、高硬度、高耐磨性、高疲劳抗力、屈服时完全塑性、无加工硬化现象。 非晶态合金具有极高的断裂强度和屈服强度,如非晶态Fe基合金(Fe80P15C5,Fe72Ni8 P15C7)屈服强度在2000~3000MPa,断裂强度约3000MPa,最高达4000MPa,可以用于制作飞机起落架。还可以通过改变成分及控制制备工艺条件等改善其力学性能,以获得超高强度的合金。对于金属材料,通常是高强度、高硬度而较脆,而非晶合金则两者兼顾,它们不仅强度高,硬度高,而且韧性也较好。 非晶态合金在变形时无加工硬化现象。低温时的塑性变形为不均匀变形,而高温时显示出均匀的粘滞性流动。非晶态金属的动态性能也很好,它有高的疲劳寿命和良好的断裂韧性。和非金属玻璃的脆性断裂不同,它的断裂是通过高度局域化的切变变形实现的。许多非晶态金属玻璃带,即使将它们对折,也不会产生裂纹。 2、在化学性能方面,非晶态合金具有较好的耐腐蚀。 由于没有晶粒和晶界,非晶态合金比晶态金属更加耐腐蚀,非晶态耐蚀合金不仅在一般情况下不发生局部腐蚀,而且对于在特殊条件下诱发的点蚀与缝隙腐蚀也能抑制其发展。利用非晶态合金耐腐蚀的优点,可以制造耐蚀管道、电池电极、海底电缆屏蔽、磁分离介质及化学工业的催化剂,目前都已达到了实用阶段,非晶态合金的耐蚀性还可用于长期在泥沙、水流中工作的水轮机上,将大大提高其使用寿命,减少维修费用。 3、在物理性能方面,非晶态合金具有良好的磁学性能以及光学性能。 非晶态合金具具有磁导率和饱和磁感应强度高,矫顽力和损耗低的特点。非晶态合金的磁性能实际上是迄今为止非晶态合金最主要的应用领域。目前,作为软磁材料的非晶合金带材已经实现产业化,并获得了广泛应用。在传统电力工业中,非晶软磁合金正逐渐取代硅钢片,使配电变压器的空载损耗降低60%~80% ,大大节约了能源消耗。 金属材料的光学性能受原子的电子状态所支配,某些非晶态金属由于其特殊的电子状态而具有十分优异的对太阳光能的吸收能力。所以利用某些非晶态材料能够制造出相当理想的高效率的太阳能吸收器,目前应用较多的是非晶态材料为非晶硅。非晶硅太阳电池的应用市场有2个方面:一个是弱光电池市场,如计算器、手表等荧光下工作的微功耗电子产品;二是电源及功率应用领域,如太阳能收音机、太阳帽、庭园灯、微波中继站、航空航海信号灯、气象监测及光伏水泵、户用电源等。 可见,非晶态合金具有优良的性能,在受到广泛研究的同时,也是渐渐用到我们生活的方方面面。但是主要还是集中在磁性材料这一块的应用最广。1、 非晶合金带材在软磁材料中的应用 优异的磁学性能使非晶合金成为当今软磁材料的首选材料,同时磁性材料是迄今为止非晶合金应用最成功的领域。在传统电力工业中,非晶软磁合金带材正逐渐取代硅钢片,是铁基非晶合金除了居里温度与饱和磁感外,铁基非晶合金的各项性能(抗拉强度、硬度、最大磁导率、激磁功率密度等等)都大大优于冷轧硅钢片,尤其是矫顽力大大小于冷轧硅钢片,使得其磁致损耗远低于冷轧硅钢片,这就使得非晶铁心电机的效率大大提高。 2、块体非晶合金的应用 块体非晶合金,又称为大块非晶合金,因其尺寸较大,打破了带状非晶合金和非晶粉末的尺寸限制,可以方便地制成各种机械零件,做为结构材料大规模使用,因而成为目前非晶合金领域研究最热的方向。 例如非晶钢,与传统钢材相比,大块非晶钢性能优异:其屈服强度是传统高强钢的2~3倍,在室温下不具有铁磁性,热稳定性高(玻璃转变温度接近于或高于900K),抗海水腐蚀能力强,因而可以用作未来海军舟见船韵表面防护。由无磁非晶钢所制造的船体,在反探测、抗打击能力方面具有传统钢材无法比拟的优势。 还有轻量化结构材料,铝基非晶合金、镁基非晶合金等低密度材料,强度和硬度都大大超过普通钢铁的材料。 更或者是在一些高档用品中的使用,由块体非晶合金制造的高尔夫球头、滑雪板、棒球棒、滑冰用具有良好的强度,抗塑性变形能力。 3、 其他 非晶态合金对某些化学反应具有明显的催化作用,可以用作化工催化剂;某些非晶态合金通过化学反应可以吸收和放出氢,可以用作储氢材料 非晶合金因弹性极限大大高于普通晶态合金,加上优良的抗疲劳性能、高屈服强度等优点,成为精密仪器弹簧的首选材料 非晶态合金有着如此优良的性能,可以在很多领域带来巨大的改变,但是同样也存在着一些问题。非晶态合金带材厚度宽度有限,产品尺寸受到限制。许多非晶态合金在500℃以下发生晶化,使得工作温度有限,产品稳定性有限制。同时产品的生产成本费用也是一大问题。
路基工程论文
路基指的是按照路线位置和一定技术要求修筑的作为路面基础的带状构造物,是铁路和公路的基础,路基是用土或石料修筑而成的线形结构物。下面是关于路基工程论文的内容,欢迎阅读!
[摘 要] 路基是公路的主要组成部分,强度高、稳定性和耐久性良好的路基将成为路面结构的良好支承体系,有利于提高路面整体强度和使用性能,延长路面使用寿命,同时,还可以降低路面工程造价和公路养护维修费用。
[关键词] 路基 施工 填挖 压实
第一章 绪论
路基是公路的主要组成部分,是路面的基础,应具有足够的刚度、强度和稳定性,我国是以压实度作为评价路基强度和稳定性的力学指标,并形成了成套的室内外实验标准方法和仪器。
第二章 路基施工的方案
1、路基挖土方:
⑴施工准备阶段:提前对运输道路进行维修,按坡比对挖方段进行测量放样,确定路基宽度,并对土质进行试验,是否符合路基填筑用料,符合要求确定好路基所需填筑的位置,以便挖出的料合理利用;如土质不符合要求,选好弃土场,进行运弃。
⑵施工阶段:
①地表处理:按测量放样所确定的宽度对原地面所不能利用的草皮、树根、腐植土等进行清除。
②机械开挖:清理完地表,按设计的宽度及坡比,采用挖掘机分层纵向开挖,挖至距设计所要求的宽度30cm时为止。当挖深至距设计高程20-30cm时,停止开挖。
③整平:采用平地机和推土机进行平整。
④洒水(晾晒):按照试验室给定最佳含水量的±2%波动范围控制路基土料的'含水量,含水量过小时应洒水翻拌,含水量过大时应晾晒。
⑤机械碾压:碾压开始采用低档慢速,随着路基土质的逐步密实,速度逐步提高。先压外侧后压内侧,曲线地段如有超高,先碾压低处后碾压高处。
2、路基挖石方
①用小炮改造路堑石方的临空面,改变最小抵抗线的指向,减少飞石的威胁;
②采用非电毫秒微差起爆的方法,合理设计起爆顺序,控制每一段起爆的炸药总量,减少爆破震动效应,对开挖范围外岩石的震动;
③认真进行深孔爆破的设计工作,控制飞石距离和方向,减少爆破次数,从而减少爆破工程对周围环境的不利影响;
④采用光面爆破,保证路堑边坡的平整、稳定。
采用光面爆破可以有效地保护石质路堑边坡。钻孔精度对光面爆破的影响很大,提高钻孔的精度,以保证爆破的光面效果。
每次爆破完成后,采用装载机、平地机及运输车及时清理因爆破堆在便道上的土石方。以便车辆通行。
3、路基填土方
⑴施工准备阶段:提前对运输道路进行维修,并要做好土质检验和压实工艺试验,严格按重型击实测定填土的最大干密度和最佳含水量,确定压实度,做好对填土质量进行监控的标准,并据以确定切合实际的工艺流程和技术参数,报监理工程师批准后组织实施,施工准备阶段工作内容如下:
① 确定最佳含水量和最大干密度
② 确定最佳组合的压实机械和合理的压实遍数及碾压速度
③ 确定松铺系数
⑵ 施工阶段:
①基底处理:清除所有腐植土、草皮、树根及洞穴回填夯实,按要求对原地面进行摊平、碾压、压实度必须符合规定要求。对清除的腐植土,选一弃土场集中存放,以备绿化工程及临时占地复耕使用。
②分层填筑:填筑时由低处开始水平逐层填筑。根据试验确定层厚松铺系数。为了保证修整路基边坡后的路堤边缘有足够的压实度。路堤两则各超宽50cm。不同土质的填料应分层填筑,每种填料层总厚度不得小于50cm。
⑶ 摊铺整平:采用推土机、平地机进行整平。
⑷洒水(晾晒):按照试验室给定的最佳含水量±2%的波动范围内控制填料的含水量,含水量过大时应晾晒,过小时应洒水翻拌。
⑸机械碾压:碾压开始用慢速,随着土层的逐步密实,速度逐步提高。一般不超过4km/h,先压边缘后压中间,小半径曲线地段有较大的超高时,碾压顺序宜先低(内侧),后高(外侧)。为解决路肩碾压不实,采用横向与两侧斜交450角交叉碾压,碾压时,横向接头的轮迹重叠不少于40cm,做到不漏压,无死角,确保碾压均匀达到规定的压实度。
4、路基填石方
修筑填石路堤,应将石块逐层水平填筑,分层厚度不宜大于500mm,石料强度不应小于15MPa。石块最大粒径不得超过压实厚度的2/3。人工铺填250mm以上石料时,大面向下摆放平稳,紧密靠拢,缝隙填以小石块或石屑。用重型振动压路机分层洒水压实。压实时继续用小石块或石屑填缝,直到压实层面顶面稳定、不再下沉(无轮迹)、石块紧密、表面平整为止。
5 路基压实
影响路基压实的重要因素
(1)土的性质:不同土质的压实性能差别较大。一般来说非粘性土的压实效果较好,其最佳含水量较小、最大干密度较大,在静力作用下,压缩性较小;在动力作用下特别是在振动作用下很容易被压实。粘质土、粉质土等分散性土的压实效果较差,主要是由于这些细分散性的土颗粒的比表面积大、粘聚力大、土粒表面水膜需水量大,最佳含水量偏高,而最大干密度反而偏小。(2)土的含水量:不同湿度下的土质,用同样压实功能来挤压,将获得不同的密实度和不同的强度。土中水分在压实过程中起到重要的作用。压实开始时,原状土相对湿度低,土颗粒之间的内摩阻力大,因而外力难以克服,故压实的干密度小,表现出土的强度高,密度低;当相对湿度缓慢增加时,水分在土粒间起润滑作用,压实的结果使被压材料(土粒)得以重新调整排列位置,达到较紧密的程度,表现出密度增大,但与此同时,由于水的作用,内摩阻力有所减小,因而强度继续下降。当含水量继续增加,达到一定值(最佳值)时,水的润滑作用已经足够。当水分过多,使起润滑作用以外多余水分进人土粒孔隙中,反而促使土粒分离而不易得到良好压实效果,从而降低了土的干密度;又由于土粒问距增大,内摩阻力与粘结力减小,使土的强度也随之减小。这就是说,在一定功能的压实作用下,含水量的变化会导致土的干密度随之变化,在某一含水量(最佳含水量)下,干密度达到最大值(最大干密度)。各种土的最佳含水量大小不同,一般地,土在天然状态下的含水量值很接近于最佳含水量,因此,在施工作业中,新卸填土应当立即推平压实。达不到最佳含水量的路基填筑用土,宜翻晒或洒水。
路基压实的机具选择与操作
碾压机具和方法:压实机具和方法对压实的影响反映在以下几个方面;①压实机具不同,压力传布的有效深度也不同。一般地,夯击式机具的压力传布最深,振动式次之,碾压式最浅。根据这一特性即可确定各种机具的最佳压实度。然而,同一种机具的压实作用深度,在压实过程中并不是固定不变的。如钢筒式压路机,开始碾压时,因土体松软,压力传布较深,但随着碾压次数的增加,上部土层逐渐密实,土的强度相应提高,其作用深度就逐渐减小了。②压实机具的质量较小时,碾压遍数越多(即时间越长),土的密实度越高,但密实度的增长速度则随碾压遍数的增加而减小。并且密实度的增长有一个限度,达到这个限度后,继续以原来的施压机具对土体增加压实遍数则只能引起弹性变形,而不能进一步提高密实度(从工程实践来看,一般碾压遍数在6遍以前,密实度增大明显,6~10遍增长较慢,10遍以后稍有增长,20遍后基本不增长)。
结论
公路路基的施工质量对公路的使用性能和寿命影响较大,因此在路基的施工过程中应严格规范和要求施工,针对不同的路基采用不同的施工方法,因地制宜。修建稳定性良好、整体强度高的路基,对于发展公路交通事业,提高道路的使用性能,降低工程造价,是公路建设者自始至终所追求的目标。
参考文献
[1]安清,陈磊. 《浅述土质路基填挖方案》、《科技信息(科学教研)》, 2008年,第24期.
国外研究现状 世界上第一条铁路于1825年诞生于英国,至今已有180多年。在那以前地面的交通运输工具主要就是马车。与马车相比,火车运量大,速度快,具有明显优越性,因而得到迅速发展。19世纪末到二十世纪初是铁路大发展的时期。作为一种新兴的运输方式,铁路运输具有集中,大宗,便捷,安全,全天候的优势,对于西方资本主义经济的发展是功不可没的。随着经济的迅速发展,科技的不断提高,传统铁路已不能满足社会发展的需求。20世纪60年代以来,高速铁路在世界发达国家崛起。百年铁路重振雄风,传统铁路再展新姿。铁路发展进入了一个崭新的阶段。高速铁路的蓬勃发展,在世界范围内引发了一场深刻的交通革命。高速铁路因为具有安全性高,能耗少,效益好等一系列技术经济优势而发展迅速,但也有许多问题是不容我们忽视的,地基加固便是其中的一个重要方面。现代铁路修筑经验表明,作为支乘路基的地基不允许发生基底破坏,也不允许发生过大的工后沉降和沉降速率。以往的铁路设计标准,只考虑对基底强度作要求,即不允许发生基底破坏,而对其变形的要求没有给予重视。日本东海道新干线建成后,由于软土地基沉降造成轨道状态不良,不能达到设计速度和运量的要求。在吸取了东海道新干线经验教训后,日本对支乘高速铁路路基的地基提出了强度要求。对不符合强度要求的地基要采取加固或减少工后沉降的措施。许多国家对路堤(尤其是低路堤)的基底相应提出了强度和土质的要求。不符合要求者均要采取措施进行加固处理。前联邦德国在地基条件差的地方修建新线路基时,采取了各种加固措施,如振动捣固,混凝土喷浆,化学加固,砂浆或排水管构筑,土层加固,更换土层等。 国内研究现状我国铁路长期以来一直是各种运输方式的骨干。直到20世纪50年代初期,铁路运输还是卖方市场,买票难,乘车难。90年代以来,各地纷纷建设高速公路,几乎所有的高速公路都与铁路平行,民航事业也飞快发展,铁路事业一度陷入低谷。究其原因,铁路速度太慢是原因之一。1995年,铁道部领导决定,在既有线上在不做大的改造的条件下进行普遍提速,并逐步发展建设高速铁路。自从20世纪60年代,世界上第一条高速铁路开通运营以来,世界上已有近10个国家的31万多公里各种类型的高速铁路投入运营。多数国家的高速铁路都取得了良好的社会和经济效益。在铁路运输业,尤其是客运业很不景气的时候,给新兴铁路注入了一剂强心针。我国更是提出了建设京沪高速铁路的计划。京沪高速铁路沿线地区包括北京,上海,天津三个直辖市以及河北,山东,安徽,江苏等省份,沿线地形复杂,地基加固便显得尤其重要。我国铁路路基主要病害是路基下沉。除因填土压实度不足造成外,还有不少是因基底变形所致的。对支乘高速铁路路基的地基来说,除了强度要求外,还有变形条件要求。此外,即使发生地震,也不致发生破坏和下沉。为确保上部轨道结构的平衡性,减少养护维修工作量,高速铁路必须严格控制沉降变形。因此,对地基的要求相应较高。根据日本,法国及德国的经验,满足高速铁路的轨道平顺性,除要严格控制路基的均匀沉降外,不均匀沉降更为关键。路基与桥台及路基与横向结构物过渡段地层变化较大处和不同地基处理措施连接处,是不均匀沉降容易产生的常见部位。故在地基处理和路堤设计中应采取逐渐过渡的方法,减少不均匀沉降,以满足轨道平顺性要求。建国以来,我国在地基工程的建设上取得了难能可贵的成绩,特别是对特殊土地基,以及各种复杂地形,地质,气候条件下的地基。无论在科研,工程实践水平,测试技术上都有很大发展和提高,积累了丰富的经验。随着我国高速铁路,重载铁路和大运量铁路的兴建,对铁路地基工程的质量和标准提出了新的要求。虽然过去50年来地基工程取得了很大成绩,但为了适应上述要求,还存在着一些必须重视,急待解决的问题。首先是地基施工必须满足技术标准要求的问题,尤其是基床直接受动荷载和季节循环的影响,并与轨道结构相互作用。没有稳定可靠的基床,轨道强度再高,也不能适应运量增长的要求。所以,在施工时就要严格把关,对基床土质和密度加强检测,健全施工管理制度。地基质量问题已逐渐被人们认识和重视,根据运输发展的紧张趋势,提高客货列车速度和增大运量,已成为提高运输质量的主要目标。因此。只有保证施工质量,才能改变地基在铁路工程结构中历来是最薄弱环节的现状。其次,应继续组织地基科研工作,如抗滑支挡工程中,黏性土抗滑桩中桩上荷载的研究;软土地基加固措施及设计计算方法的研究,运筹管理原则在施工中的应用;养护工作中处理基床病害的新材料,新技术的开发等。
市场经济的直接影响是物价的时涨时落,近两年来,我们又面临着新的一轮物价上涨,特别是钢材、水泥、燃油料、当地料、火工品等主要材料的价格上涨对基建行业产生巨大的冲击,许多施工企业面临生死存亡的挑战,定量分析物价上涨等因素对工程造价带来的影响,随时掌握市场经济的变化,作为建设单位可以随时掌握和控制物价因素对建设投资和概算的影响,设计单位可以预测物价上涨对未来几年工程造价影响的大小,施工企业可以做到心中有数,立于不败之地,把物价不稳带来的损失减小到最小,对于项目的成败和企业的发展具有重大意义。关键词:材料涨价;铁路工程;公路工程;造价影响0 引言市场经济的直接影响是物价的时涨时落,近两年来,我们又面临着新的一轮物价上涨,特别是钢材、水泥、燃油料、当地料、火工品等主要材料的价格上涨对基建行业产生巨大的冲击,许多企业面临生死存亡的挑战,定量分析物价上涨等因素对工程造价带来的影响是我们必须面临的新的课题,对企业的发展也显的尤为突出和现实。1 工程概况我们以新建铁路某段工程作为例,该工程路线全长,管段工程类型多,结构复杂,综合性强,包含了隧道工程、桥涵工程、路基工程、轨道工程等铁路项目的站前工程。下面以某新建铁路线某段工程为例进行分析。该段线路全长,管段工程类型多,结构复杂,包含了路基工程、桥涵工程、隧道工程、轨道工程等站前工程。本管段内主要工程量有:路基2381延米;八股道站场1座;桥梁延米/10座,其中双线特大桥2座、大桥5座(其中包含4线大桥延米/2座),中桥3座;涵洞13座;双线隧道共8264延米/座。该项目投标时内部分劈总造价为万元,其中隧道工程占,桥梁工程占,路基工程占,轨道工程占,由于轨道工程所占比重很小,本次分析不考虑。太中银铁路项目编制办法采用的是《铁路基本建设工程设计概算编制办法》(铁建管[1998]115号文,以下简称“115号文”)及《关于对铁路工程定额和费用进行调整的通知》(铁建设[2003]42号文,以下简称“42号文”),基期价格是《铁路工程建设材料预算价格》(2000年水平)(铁建设[2001]28号文以下简称“28号文基价”),设计概算(投标文件)材料价差已调到铁建设函[2006]2号文关于发布铁路工程建设2005年度材料价差系数水平;目前太中银铁路项目材料调价方式主要是采用相对于铁路“115号文”“42号文”编制办法的基期价,每年由铁道部发布材料价差系数进行价差调整,太中银站前工程施工合同中合同价款调整条款中明确铁道部批准调整的有关费用(如材料价差系数调整等);允许按铁道部发布的材料价差系数进行价差调整。针对太中银铁路项目的特点,由于其材料供应方式为主要材料采用的是甲控料,因此分析时重点考虑了水泥、钢材、当地料、火工品、燃油料五大材料及辅助材料价格上涨对工程造价的影响。两个测算小组分别对该段工程进行定量分析的方法,以太中银铁路工程项目概算编制原则为基础,同时采用公路新定额进行施工图预算编制,采用同一时期材料价格,把两个小组的数据用归纳统计的方法分析各种涨价因子对该工程造价的影响。2 材料涨价对铁路工程造价的影响 材料价格上涨分年度对造价的影响 按照该段工程到目前为止完成的工程量,我们重点分析测算了段工程每半年主要材料价格(含运杂费)上涨对所完成工程量造价的影响,其中:2007年上半年段工程完成总价值占合同额(其中路基工程0%,桥涵工程,隧道工程)主要材料上涨到2007年上半年价格水平对总造价影响,其中对路基工程影响0%,桥涵工程影响,隧道工程影响。2007年下半年段工程完成总价值占合同额(其中路基工程,桥涵工程,隧道工程)主要材料上涨到07年下半年价格水平对总造价影响,其中对路基工程影响,桥涵工程影响,隧道工程影响。2008年上半年段工程完成总价值占合同额(其中路基工程,桥涵工程,隧道工程)主要材料上涨到2008年上半年价格水平对总造价影响,其中对路基工程影响,桥涵工程影响,隧道工程影响。 五大材料同时上涨对铁路工程造价的影响 我们测算了五大主材上涨对太中银铁路项目该项目部所承担工程造价的影响,分析了主要材料(五大材)同时上涨从1%至50%对工程造价的影响,可以发现假如五大主材同时上涨10%,路基工程造价上涨,桥涵工程造价上涨,隧道工程造价上涨,对整体造价影响达。 单项主要材料对铁路工程造价的影响 水泥上涨对工程造价的影响。我们分析了该段工程中水泥从上涨1%至50%对各类工程和造价的影响,可以得出结论,水泥上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响。从分析可以看出的水泥涨价对隧道工程影响最大,桥涵工程次之,路基工程影响较小。 钢材上涨对工程造价的影响。我们分析了该段工程中钢材从上涨1%至50%对各类工程和造价的影响,可以得出结论,钢材上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响。可以看出:钢材涨价对影响桥涵工程最大,隧道工程次之,路基工程影响较小。 当地料上涨对工程造价的影响。我们还分析了该段工程中当地料从上涨1%至50%对各类工程和造价的影响,可以得出结论,当地料上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响。分析看出的当地料涨价对影响桥涵工程最大,隧道工程次之,路基工程影响较小。 火工品上涨对工程造价的影响。火工品上涨对隧道工程影响较大,我们分析了该段工程中火工品从1%至50%上涨对各类工程和造价的影响,可以得出结论,火工品上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响0%,对隧道工程影响。分析看出的火工品涨价对隧道工程影响最大,路基工程次之,桥涵工程影响较小。 燃油料上涨对工程造价的影响。我们分析了该段工程中燃油料从1%至50%上涨对各类工程和造价的影响,可以得出结论:燃油料上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响。分析看出的燃油料涨价对路基工程影响最大,隧道工程次之,桥涵工程影响较小。 辅助材料涨价对铁路工程造价的影响 随着主要材料的上涨,辅助材料也同期上涨,我们对辅助材料上涨对工程造价影响做了测算,辅助材料每上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响,分析看出的辅助材料涨价对桥涵工程影响最大,路基工程次之,隧道工程影响较小。从上述分析可以看出,由于铁路工程中材料费用占的比重较大,本工程材料费用占44%,各项材料因子价格上涨对工程造价产生了巨大影响,其中,主要材料的涨价对桥涵工程影响最大,隧道工程次之,路基工程影响较小。3 材料上涨对公路工程造价的影响 五大材料同时上涨对公路工程造价的影响 我们根据太中银铁路该段工程施工图数量按照公路新定额进行了预算编制,材料单价采用公路新定额基价(2006年水平),编制出各类章节费用组成,其中隧道工程占,桥梁工程占,路基工程占。同样我们主要测算了五大主材上涨对工程造价的影响,分析了主要材料(五大材)同时上涨从1%至50%对工程造价的影响,发现假如五大主材同时上涨10%,路基工程造价上涨,桥涵工程造价上涨,隧道工程造价上涨,对整体造价影响达 单项主要材料对公路工程造价的影响 水泥上涨对工程造价的影响。我们分析了该段工程中水泥从1%至50%上涨对各类工程和造价的影响,得出结论:水泥上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响。水泥涨价对桥涵工程影响最大,隧道工程次之,路基工程影响较小。 钢材上涨对工程造价的影响。我们分析了该段工程中钢材从1%至50%上涨对各类工程和造价的影响,可以看出,钢材上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响。分析看出的钢材涨价对影响桥涵工程最大,隧道工程次之,路基工程影响较小。 当地料上涨对工程造价的影响。我们分析了该段工程中当地料从1%至50%上涨对各类工程和造价的影响,可以看出,当地料上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响。当地料涨价对影响桥涵工程和隧道工程基本一样,路基工程影响较大。 火工品上涨对工程造价的影响。火工品上涨对隧道工程影响较大,我们分析了该段工程中火工品从1%至50%上涨对各类工程和造价的影响,分析看出,火工品上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响0%,对隧道工程影响。火工品涨价对隧道工程影响最大,路基工程次之,桥涵工程影响较小。 燃油料上涨对工程造价的影响。我们分析了该段工程中燃油料从1%至50%上涨对各类工程和造价的影响,可以看出,燃油料上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响。燃油料涨价对路基工程影响最大,隧道工程次之,桥涵工程影响较小。 辅助材料涨价对公路工程造价的影响 随着主要材料的上涨,辅助材料也同期上涨,我们对辅助材料上涨对工程造价影响做了测算,辅助材料每上涨10%,工程造价上涨,其中对路基工程影响,对桥涵工程影响,对隧道工程影响,辅助材料涨价对隧道工程影响最大,桥涵工程次之,路基工程影响较小。 各种材料涨价对公路工程成本的影响 从材料涨价对公路工程分析可以看出,由于在公路工程中材料费用占的比重较大,本工程材料费用占46%,各项材料因子价格上涨对工程造价产生了巨大影响,和铁路工程一样,主要材料的涨价对桥涵工程影响最大,隧道工程次之,路基工程影响较小。4 综合对比分析通过对材料涨价对铁路、公路工程的定量分析可以看出:各种材料价格上涨对工程造价的影响程度是不一样的,且同一种材料价格上涨对铁路、公路影响的影响程度也各不相同,我们把同一类材料价格上涨对铁路、公路影响的影响程度进行量化,对比如下:①五大材料同时上涨对铁路、公路工程造价的影响分析对比,同时上涨10%时路基工程铁路比公路低,桥梁工程铁路比公路低,隧道工程铁路比公路低,整体造价影响铁路比公路低。②单项材料中水泥价格上涨对铁路、公路工程造价的影响对比,水泥上涨10%时路基工程铁路比公路高,桥梁工程铁路比公路高,隧道工程铁路比公路高,整体造价影响铁路比公路高。③单项材料中钢材价格上涨对铁路、公路工程造价的影响对比,上涨10%时路基工程铁路比公路低,桥梁工程铁路比公路低,隧道工程铁路比公路低,整体造价影响铁路比公路低。④单项材料中当地料价格上涨对铁路、公路工程造价的影响对比,上涨10%时路基工程铁路比公路低,桥梁工程铁路比公路低,隧道工程铁路比公路低,整体造价影响铁路比公路低。⑤单项材料中火工品价格上涨对铁路、公路工程造价的影响对比,上涨10%时路基工程铁路比公路低,桥梁工程铁路和公路一样,隧道工程铁路比公路高,整体造价影响铁路比公路高。⑥单项材料中燃油料价格上涨对铁路、公路工程造价的影响对比,上涨10%时路基工程铁路比公路低,桥梁工程铁路比公路高,隧道工程铁路比公路高,整体造价影响铁路比公路高。⑦单项材料中辅助材料价格上涨对铁路、公路工程造价的影响对比,上涨10%时路基工程铁路比公路高,桥梁工程铁路比公路高,隧道工程铁路比公路低,整体造价影响铁路比公路高。综上所述,材料涨价因素对工程造价影响较大,定量分析和研究物价因素上涨对铁路、公路工程的影响,随时掌握市场各种材料的价格变化,作为建设单位可以随时掌握和控制物价因素对建设投资和概算的影响,设计单位可以预测物价上涨对未来几年工程造价影响的大小,施工企业可以做到心中有数,立于不败之地,把物价不稳带来的损失减小到最小,对于项目的成败和企业的发展具有重大的现实意义。参考文献:[1]铁建管[1998]115号.关于发布《铁路基本建设工程设计概算编制办法》的通知[S].[2]铁建管[2006]113号.关于发布《铁路基本建设工程设计概(预)算编制办法》的通知[S].[3]JTG B06-2007 关于公布《公路工程基本建设项目概算预算编制办法
强度高,钛合金的密度一般在左右,仅为钢的60%,纯钛的强度才接近普通钢的强度,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,可制出单位强度高、刚性好、质轻的零、部件。目前飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。热强度高,使用温度比铝合金高几百度,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。钛合金的工作温度可达500℃,铝合金则在200℃以下。 抗蚀性好,钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。 低温性能好,钛合金在低温和超低温下,仍能保持其力学性能。低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。因此,钛合金也是一种重要的低温结构材料。 化学活性大,钛的化学活性大,与大气中O、N、H、CO、CO2、水蒸气、氨气等产生强烈的化学反应。含碳量大于时,会在钛合金中形成硬质TiC;温度较高时,与N作用也会形成TiN 硬质表层;在600℃以上时,钛吸收氧形成硬度很高的硬化层;氢含量上升,也会形成脆化层。吸收气体而产生的硬脆表层深度可达~ mm,硬化程度为20%~30%。钛的化学亲和性也大,易与摩擦表面产生粘附现象。 导热系数小、弹性模量小,钛的导热系数λ=()约为镍的1/4,铁的1/5,铝的1/14,而各种钛合金的导热系数比钛的导热系数约下降50%。钛合金的弹性模量约为钢的1/2,故其刚性差、易变形,不宜制作细长杆和薄壁件,切削时加工表面的回弹量很大,约为不锈钢的2~3倍,造成刀具后刀面的剧烈摩擦、粘附、粘结磨损。
【摘要】元素钛(Ti是一种过渡金属,在过去很长一段时间内人们一直认为它是一种稀有金属。从20世纪40年代以后,钛及其亿合物被广泛应用于飞机、火箭、导弹、人造卫星、宇宙飞船、舰艇、军工、医疗以及石油化工等领域。科学家预言:21世纪金属钛将是冶金工业是最重要产品之一。 人类在使用金属的历史进程中,经历了铜、铁、铝之后,第四种将被广泛应用的金属元素是哪一种呢? 这种金属已被科学家预言为钛。这是因为钛具有熔点高、硬度大、可塑性强、密度小、耐腐蚀等优点。一、钛的发现和性质 钛是1791年被英国牧师格累高尔发现的。1795年马丁,克拉普罗特在分析一种金红石时,认识到这种矿石是一种金属氧化物,并将这种金属命名为钛,由于钛很容易和常见的金属形成合金,在发现后很多年内,许多人企图从它的化合物中将它分离出来,都未获成功,直到1910年才由美国化学家亨特将很纯的TiCl4和金属Na一齐放进耐高压的钢缸中,将缸加热到红热,冷却后,洗去NaCl得到纯度高达%的钛。 钛的年产量表1910年 1947年 1948年 1955年 1957年 1962年 1972年 吨 2吨 10吨 万吨 2万吨 10万吨 20万吨进入70年代以来,钛的年产量仍以15%的速度稳步上升。例如英国,10年内对钛材料的需求量至少增长了800%。 钛外观似钢,具有银灰光译。钛的强度大,钛合金抗拉强度达180kg/mm3。钛的特性是度小(),硬度大,熔点高(1675℃),高纯度钛具有良好的可塑性,但当有杂质存在时变得脆而硬。在室温时钛不与氯气、稀硫酸、稀盐酸和硝酸作用,但能被氢氟酸、磷酸、熔融碱侵蚀。钛很容易溶解于HF+HCl(H2SO4)中,钛最突出的性能是对海水的抗腐蚀性很强,有人将一块钛沉入海底,五年以后取上一看,上面粘附着许多小动物与海底植物,本身却一点也没有被锈蚀,依上亮光闪闪!二、钛及其主要化合物的应用 钛具有超众的性能和储藏量大(在地壳中约占总重量的,在金属世界里排行第七,含钛的矿物多达70多种、在海水中含量是1ug/L,在海底结核中也含有大量的钛)的特点。目前钛的用途发展很快,已被广泛应用于飞机、火箭、导弹、人造卫星、宇宙飞船、舰艇、军工、轻工、化工、纺织、医疗以及石油化工等领域。 极细的钛粉,是火箭的好燃料;钛的抗腐蚀能力,比常用的不锈钢强15倍,使用寿命比不锈钢长10倍以上。在电影的底片和正片制作中,需要使用多种强酸强碱等药物,它们对洗印设备腐蚀十分严重,洗印设备中的齿轮最多只能使用几个月,1980年西安电影制片厂试用钛材,结果设备运转一年多时间,齿轮丝毫没有腐蚀。 钛在外科医疗手术上的应用,也非常引人入胜。目前,外科接骨是用不锈钢,使用不锈钢有一个缺点,就是接骨愈合之后,要把不锈钢片再取出来,这是件十分痛苦的事。不然,不锈钢会因生锈而对人体产生危害。如果改用钛制的“人造骨胳”将使骨科技术完全改观。在头损坏的地方,用钛片与钛螺丝钉,过了几个月,骨头就会重新生长在钛片的小孔与螺丝里,新的肌肉纤维就包在钛的薄片上,钛骨骼宛如真正的骨骼一样和血肉相联,起到支撑和加固作用,所以,钛被人们赞誉为“亲生物金属”。现在它已开始应用于膝关节、肩关节、肋关节、头盖骨、主动心瓣、骨骼固定夹等方面。 在炼钢工业中,少量钛是良好的脱氧、除氮及除硫剂。 二氧比钛是一种宝贵的白色颜料,叫钛白。钛白兼有铅白的掩盖性能和锌白的持久性能,它是世界上最白的物质之一,1克钛白可以把450多平方厘米的面积涂得雪白。特别可贵的是钛白无毒。现在每年用做颜料的二氧化钛有几十万吨。 由于二氧化钛具有高熔点的性质,常被用来制造耐火玻璃、釉料、珐琅、陶土、耐高温的实验器皿等。 如何开发海水中的铀资源,是个大难题,海水中含有40万吨铀,从1956年起,人们才找到一种最有希望的铀吸附剂—水合二氧化钛,从此研制了一套以二氧化钛为基础的海洋提铀技术,每克吸附剂已达到吸附1毫克铀的水平。 四氯化钛在湿空气中会冒出大量白烟。由于它具有这种特性,在军事上常用它作为人造烟雾剂。特别是在海洋上,水汽多,一放四氯化钛,浓烟就象一道白色的长城,挡住了敌人的视线。 钛酸钡晶体被广泛应用于超声波仪器和水底探测器中。这是因为具有受压斩改变形状时,会产生电流;一旦通电又会改变形状。把钛酸钡放在超声波中,它受压便会产生电流,由它所产生的电流的大小可以测知超声波的强弱;相反,用高频电流通过它,则可以产生超声波。 在用金色装饰工艺品和日用品中,由于它们的硬度低、容易刺破和磨损,不能耐久。当在这些物质的表面镀一层氮化钛时,外观几乎和黄金的镀层一模一样,而比黄金以及硬质合金更耐磨,这种镀层被誉为具有“永不磨损性”。 有机钛聚合物,可用作表面活性剂、分散剂、抗水剂或防锈剂。三、钛合金的应用 目前人类使用的四个系列的贮氢金属中,钛系是其中一种,也是比较便宜的一种,但目前人类还没有找到更理想的“贮氢金属”,一旦这个问题解决了,人们就可以用氢做燃料。 “钛飞机”可以减轻机体重量5吨,多载乘客100多名。在新型喷气发动机中,钛合金已占整个发动机重量的18~25%;在最新出现的超音速飞机上,钛的使用量几乎占到整个机体结构总重量的95%,所以,如果没有钛合金就很难发展目前的超音速飞机。 用钛制造的潜艇,不仅比钢制潜艇经久耐用,而且可以潜入更大的深度,钛潜艇可以下潜到4500米以下,这是钢制潜艇无法逾越的界限。用钛制造军舰、轮船,不用涂漆,在海水中航行几年也不会生锈。由于钛不是铁磁体物质,不会被磁水雷发现,这点在军事上特别重要,如果没有钛炼成的耐热钢,目前使用的常规武器步枪和机枪的寿命也只能是最初的秒。 利用钛和锆对空气的强大吸收力,可以除去空气,造成真空。用钛锆合金制成的真空泵,可以把空气抽到只剩下十亿分之一。 钛铌合金是理想的超导材料。清华大学利用光学干涉原理和离子氮化钛处理制成了画面清晰、层次分明的山川水墨画。在目前使用的最常见的两种不锈钢中,铬镍钛18-8-1型(含铬18%、镍8%、钛1%)是工业上最常用的。 碳化钛(TiC)颇象碳化铁,具有金属光泽。可它比碳化铁具有更高的熔点和更高的硬度。所以,它有着实际应用价值。 用钛制器皿保存的食物,色、香、味经久不衰;钛制炊具既轻巧,又不会生锈,最合科学卫生。 用钛合金制成的高压容器,能够耐受2500个大气压的高压。 钛和镍组成的合金,被成为“记忆合金”。这种合金制成预先确定的形状,再经定型处理后,若受外力变形,只要稍微加热便可恢复原来的面貌。这种合金目前已在不少领域得到应用。如美国阿波罗号飞船上用的天线,就是这种记忆合金;上海第一医学院附属第九人民医院已将这种记忆合金用于妇女绝育手术中;另外还可用于仪表、电子装置等领域。 现在,对钛的广泛使用最大障碍是钛很难冶炼。因为钛的熔点很高,冶炼钛就要在更高的温度下进行,而在高温下钛的化学性质又变得很活泼,因此冶炼要在惰性气体保护下进行,还要不使用含氧材料,这就对冶炼设备、工艺提出了很高的要求。目前冶炼的钛70%左右用在制造飞机、导弹、宇宙飞船、人造卫星等方面。 目前人类对钛的应用仅仅是一个良好的开端,金属钛的前程无量,所以钛被授予“21世纪金属”的称号。
钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有比强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到锨合金材料的重要性,相继对其进行研究开发,并得到了实际应用。 第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金,该合金使用量已占全部钛合金的75%~85%。其他许多钛合金都可以看做是Ti-6Al-4V合金的改型。 20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。耐热钛合金的使用温度已从50年代的400℃提高到90年代的600~650℃。A2(Ti3Al)和r(TiAl)基合金的出现,使钛在发动机的使用部位正由发动机的冷端(风扇和压气机)向发动机的热端(涡轮)方向推进。结构钛合金向高强、高塑、高强高韧、高模量和高损伤容限方向发展。 另外,20世纪70年代以来,还出现了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形状记忆合金,并在工程上获得日益广泛的应用。 目前,世界上已研制出的钛合金有数百种,最著名的合金有20~30种,如Ti-6Al-4V、、、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、SP-700、Ti-6242、Ti-1023、Ti-10-5-3、Ti-1023、BT9、BT20、IMI829、IMI834等[2,4]。 钛合金可以分为α、α+β、β型合金及钛铝金属间化合物(TixAl,此处x=1)四类。 2. 钛合金的新进展 近年来,各国正在开发低成本和高性能的新型钛合金,努力使钛合金进入具有巨大市场潜力的民用工业领域阳。国内外钛合金材料的研究新进展主要体现在以下几方面。 (1)高温钛合金。 世界上第一个研制成功的高温钛合金是Ti-6Al-4V,使用温度为300-350℃。随后相继研制出使用温度达400℃的IMI550、BT3-1等合金,以及使用温度为450~500℃的IMI679、IMI685、Ti-6246、Ti-6242等合金。目前已成功地应用在军用和民用飞机发动机中的新型高温钛合金有.英国的IMI829、IMI834合金;美国的Ti-1100合金;俄罗斯的BT18Y、BT36合金等。表7为部分国家新型高温钛合金的最高使用温度[26]。 近几年国外把采用快速凝固/粉末冶金技术、纤维或颗粒增强复合材料研制钛合金作为高温钛合金的发展方向,使钛合金的使用温度可提高到650℃以上[1,27,29,31]。美国麦道公司采用快速凝固/粉末冶金技术戚功地研制出一种高纯度、高致密性钛合金,在760℃下其强度相当于目前室温下使用的钛合金强度[26]。 (2)钛铝化合物为基的钛合金。 与一般钛合金相比,钛铝化合物为基钠Ti3Al(α2)和TiAl(γ)金属间化合物的最大优点是高温性能好(最高使用温度分别为816和982℃)、抗氧化能力强、抗蠕变性能好和重量轻(密度仅为镍基高温合金的1/2),这些优点使其成为未来航空发动机及飞机结构件最具竞争力的材料[26]。 目前,已有两个Ti3Al为基的钛合金Ti-21Nb-14Al和Ti-24Al-14Nb-#在美国开始批量生产。其他近年来发展的Ti3Al为基的钛合金有Ti-24Al-11Nb、Ti25Al-17Nb-1Mo和Ti-25Al-10Nb-3V-1Mo等[29]。TiAl(γ)为基的钛合金受关注的成分范围为Ti-(46-52)Al-(1-10)M(at.%),此处M为v、Cr、Mn、Nb、Mn、Mo和W中的至少一种元素。最近,TiAl3为基的钛合金开始引起注意,如Ti-65Al-10Ni合金[1]。 (3)高强高韧β型钛合金。 β型钛合金最早是20世纪50年代中期由美国Crucible公司研制出的B120VCA合金(Ti-13v-11Cr-3Al)。β型钛合金具有良好的冷热加工性能,易锻造,可轧制、焊接,可通过固溶-时效处理获得较高的机械性能、良好的环境抗力及强度与断裂韧性的很好配合。新型高强高韧β型钛合金最具代表性的有以下几种[26,30]: Ti1023(Ti-10v-2Fe-#al),该合金与飞机结构件中常用的30CrMnSiA高强度结构钢性能相当,具有优异的锻造性能; Ti153(Ti-15V-3Cr-3Al-3Sn),该合金冷加工性能比工业纯钛还好,时效后的室温抗拉强度可达1000MPa以上; β21S(),该合金是由美国钛金属公司Timet分部研制的一种新型抗氧化、超高强钛合金,具有良好的抗氧化性能,冷热加工性能优良,可制成厚度为的箔材; 日本钢管公司(NKK)研制成功的SP-700()钛合金,该合金强度高,超塑性延伸率高达2000%,且超塑成形温度比Ti-6Al-4V低140℃,可取代Ti-6Al-4V合金用超塑成型-扩散连接(SPF/DB)技术制造各种航空航天构件; 俄罗斯研制出的BT-22(TI-5v-5Mo-1Cr-5Al),其抗拉强度可达1105MPA以上 (4)阻燃钛合金。常规钛合金在特定的条件下有燃烷的倾向,这在很大程度上限制了其应用。针对这种情况,各国都展开了对阻燃钛合金的研究并取得一定突破。羌国研制出的Alloy c(也称为Ti-1720),名义成分为50Ti-35v-15Cr(质量分数),是一种对持续燃烧不敏感的阻燃钛合金,己用于F119发动机。BTT-1和BTT-3为俄罗斯研制的阻燃钛合金,均为Ti-Cu-Al系合金,具有相当好的热变形工艺性能,可用其制成复杂的零件[26]。 (5)医用钛合金。 钛无毒、质轻、强度高且具有优良的生物相容性,是非常理想的医用金属材料,可用作植人人体的植人物等。目前,在医学领域中广泛使用的仍是Ti-6Al-4v ELI合金。但后者会析出极微量的钒和铝离子,降低了其细胞适应性且有可能对人体造成危害,这一问题早已引起医学界的广泛关注。羌国早在20世纪80年代中期便开始研制无铝、无钒、具有生物相容性的钛合金,将其用于矫形术。日本、英国等也在该方面做了大量的研究工作,并取得一些新的进展。例如,日本已开发出一系列具有优良生物相容性的α+β钛合金,包括、、和,这些合金的腐蚀强度、疲劳强度和抗腐蚀性能均优于Ti-6Al-4v ELI。与α+β钛合金相比,β钛合金具有更高的强度水乎,以及更好的切口性能和韧性,更适于作为植入物植入人体。在美国,已有5种β钛合金被推荐至医学领域,即TMZFTM(TI-12Mo-^Zr-2Fe)、Ti-13Nb-13Zr、Timetal 21SRx()、Tiadyne 1610()和Ti-15Mo。估计在不久的将来,此类具有高强度、低弹性模量以及优异成形性和抗腐蚀性能的庐钛合金很有可能取代目前医学领域中广泛使用的Ti-6Al-4V ELI合金。
Ti-6Al-4V属于TC4的名义化学成分通称。
Ti-6Al-4V(TC4)属于国标钛合金,执行标准“GB/T 2965-2007”
Ti-6Al-4V(TC4)兼有α及β两类钛合金的优点,即塑性好、热强性好(可400℃在长期工作)、抗海水腐蚀能力很强,生产工艺简单,可以焊接、冷热成型,并可通过淬火和时效处理进行强化。主要应用于飞机压气机盘和叶片、舰艇耐压壳体、大尺寸锻件、模锻件等。
Ti-6Al-4V(TC4)还具有良好的低温工作性能。在-196℃以下仍然具有良好韧性,用于制造低温高压容器,如火箭及导弹的液氢燃料箱等。
Ti-6Al-4V(TC4)化学成分如下图:
导读: 本文报道了Cr7Mn25Co9Ni23Cu36高熵合金(HEA)在热处理条件下的相分解以及二次相的形成对其拉伸力学响应的影响。显微组织分析表明,800 C 2 h和600 C 8 h的热处理会导致σ相的形成,但在600 及2h以下的热处理中没有观察到σ相。将实验观察到的热稳定性和相与计算的相图进行比较,并借助热力学和动力学进行合理化。基于从头计算讨论了相分解的机理,结果表明分解成两个固溶体相在能量上优于具有标称组成的单一固溶体相。
对于金属结构材料,实现强度和延展性的良好结合是一个重要目标。常用方法包括优化合金成分和控制加工路线。多主合金或高熵合金的发现拓宽了合金设计的领域,是材料领域的重要突破。
目前,已经使用了许多方法来开发具有良好性能的热等静压合金,其中,热处理是一种简单、有效和廉价的提高合金力学性能的方法。近年来,学者们热衷于研究热处理对某些合金的显微组织和力学性能的影响。结果表明,当温度从0 升至1000 时,无相分离发生,说明HEA在较宽的温度区间内具有良好的相稳定性。
近日,哈工大陈瑞润教授团队通过电弧熔炼设计和制备了Cr7Mn25Co9Ni23Cu36 HEA,其在室温和铸态下展现出非常好的强度和延展性组合,研究成果发表于金属顶刊《Acta Materialia》,以 “Experimental and theoretical investigations on the phase stability and mechanical properties of Cr7Mn25Co9Ni23Cu36 high-entropy alloy”为题。文中研究了200 1000 下热处理对合金显微组织和室温力学性能的影响,并将实验相组成和热稳定性与热力学计算进行比较。用计算相图法(CALPHAD)确定的生成吉布斯能分析了σ相和FCC相的稳定性。此外,讨论了高温下的相分解机理。
论文链接:
SEM和TEM图像显示,合金800 热处理2h时,形成了富Cr和富Co的σ相,这与CALPHAD的预测相吻合。
在 600 的温度下热处理的样品中没有观察到σ相,但通过CALPHAD进行了预测。这种差异和动力学因素有关,600 热处理时间的延长证实了合金的显微组织变化。
EMTO-CPA的计算结果表明,在低温和高温下,与名义成分的合金相比,分解体系(FCC_1和FCC_2)在能量上是优选的。
热处理温度从200 提高到600 ,屈服强度和抗拉强度分别从401 MPa提高到581 MPa,以及从700 MPa提高到829 MPa,同时,伸长率从35%降低到22%。这些变化归因于600 C热处理时纳米沉淀的细化。
由于屈服和极限抗拉强度分别下降至303 MPa和530 MPa,延展性降低至断裂应变的15%,因此800 C热处理导致断裂韧性下降,强度的显著降低是由于形成的σ析出物分布不均,尺寸无明显变化。σ相的形成对合金的拉伸力学性能是有害的。
层错是晶体面序列上的不规则性。因此,晶体基态结构中的层错与过剩的能量有关,称为层错能(SFE)。
在此,来自美国俄亥俄州立大学的Maryam Ghazisaeidi等研究者,重新讨论了层错能(SFE)的意义和致密合金中晶格位错平衡解离的假设。相关论文以题为“Stacking fault energy in concentrated alloys”发表在Nature Communications上。
论文链接:
SFE测量了相对于另一个原子平面的剪切能量成本,因此,直接与晶体对变形的响应有关。根据Frank法则,在晶格位错分解为部分位错以降低弹性能的过程中,会产生层错。因此,层错区域的大小(部分位错之间的距离),是由部分位错之间的排斥性弹性相互作用和它们之间产生层错的能量之间的平衡所决定的,即SFE。 在面心立方(fcc)晶体中,SFE和位错的解离宽度会影响位错的迁移率、交叉滑移的能力和孪晶的形成,所有这些因素都决定着晶体的力学行为。
通过合金化引入化学变化,进一步影响SFE,进而影响力学响应。在fcc晶体中,层错区域以部分位错为界,由两个具有六方致密排列(hcp)结构的原子平面组成。Suzuki等人研究表明,该区域溶质的平衡浓度可能与平均体积浓度不同。溶质向或从层错区偏析或耗尽,改变了SFE,进而影响位错行为。而这种现象,已在许多合金体系中广泛观察到。
随着合金的成分变得更加复杂,例如,在不锈钢或高温合金中,SFE的合金化效应,在决定相互竞争的变形机制中起着更加突出的作用。例如,钢中马氏体相变和机械孪生等二次变形模式的激活均与SFE直接相关。随着SFE的减小,变形机制由位错滑移向位错滑移和孪晶(孪生诱导塑性效应或TWIP效应)转变为位错滑移,γfcc转变为ϵhcp马氏体相变(相变诱导塑性效应或TRIP效应)。
高熵合金(HEAs)将成分的复杂性带到一个新的极端。HEAs是等浓度或接近等浓度的多组分合金,其中溶质和溶剂的概念不存在。在这种情况下,SFE很可能受到局部原子构型的影响,因为一些原子键比其他原子键更难打破。Smith等人观察了CoCrNiFeMn中层错宽度沿位错线的局部变化,证明了HEAs中局部效应的重要性。
但在这里,有两个基本问题急需解决:(1)SFE还能被认为是晶体特有的固有属性吗?(2)解离距离和位错迁移率仍然受SFE控制吗?
鉴于此,研究者使用NiCo系统模型进行了计算演示,该模型完全可混溶,可以检测一系列成分和温度。此外,hcp和fcc的有利度以及SFE的符号可以通过改变成分来调整。此外,该体系不容易形成SRO,因此,可以将这种效应从随机合金中仅由成分波动引起的效应中分离出来。
研究表明,SFE在纯金属中具有独特的价值。然而,在超过稀释极限的合金中,SFE值的分布取决于局部原子环境。通常,部分位错之间的平衡距离是由部分位错之间的排斥性弹性相互作用和SFE的唯一值之间的平衡决定的。这种假设被用来从金属和合金中位错分裂距离的实验测量来确定SFE,通常与计算预测相矛盾。研究者在模型NiCo合金中使用原子模拟,研究了在具有正、零和负平均SFE的成分范围内的位错解离过程,令人惊讶的是,在所有情况下,在低温下都能观察到稳定的、有限的分裂距离。然后,研究者计算了去相关应力,并检查了部分位错的力平衡,考虑了对SFE的局部影响,发现即使SFE分布的上界在某些情况下也不能满足力平衡。此外,研究者还证明了在浓固溶体中,位错与局部溶质环境相互作用产生的阻力,成为作用于部分位错的主要力。在这里,研究者证明了高溶质/位错相互作用的存在,而这在SFE的实验测量中是不容易测量且容易忽略的,从而使得SFE的实验值不可靠。(文:水生)
图1 等原子CrCoNi介质熵合金离解位错的表征。
图2 晶格位错离解过程中能量的示意图变化。
图3 NiCo随机合金中边缘位错的解离。
图4 解离过程中作用在肖克利部分位错上的力。
图5 NiCo随机合金有限温度fcc-hcp自由能与局部层错能的比较。
图6 NiCo随机合金中边缘位错的去相关过程。
图7 fcc Co中存在部分位错的Ni溶质相互作用能图。
图8 溶质/位错相互作用的估计。
图9 解离过程中作用在肖克利部分位错上的各种力的图解演示。
1、高熵合金元素使用概述 2、高熵合金的腐蚀行为 3、几种制备高熵合金的方法 基于组成元素,研究者将目前己有的高熵合金分成七大类,包括 3d过渡族高熵合金 、 难熔金属高熵合金 、 轻金属高熵合金 、 镧系高熵合金 、 青铜和黄铜高熵合金 、 贵金属高熵合金 、 间隙化合物高熵合金 ,其中前两类高熵合金的研究较为广泛。 定义 :3d过渡族高熵合金在高熵合金家族中占据了半壁江山,主要组成元素为 Co、Cr、Cu、Fe、Mn、Ni、Al、Ti和V ,绝大多数FCC单相固溶体高熵合金属于3d过渡族高熵合金体系,但随着BCC稳定元素的加入,合金体系会从单相FCC向FCC+BCC双相转变,最终可获得单相BCC合金。 举例 :在AlxCoCrCuFeNi合金体系中当x=0.5时,枝晶臂和枝晶间均为FCC相,当提高A1含量至x=1.0时,在等原子比合金的枝晶臂中出现BCC相,而枝晶间则为FCC+BCC双相结构,进一步提高A1含量至x=2.0,BCC相的相对含量进一步提升。相组成比例的改变带来的是合金硬度等本征性能的改变(维氏硬度自约200Hv上升至约560Hv),进而带来耐磨性等使役性能的提升,这很好地体现出材料研究中成分-结构-性能-使役性能的调控思想。 定义: 难熔高熵合金的主要组成元素为Hf、Mo、Ta、Zr、Ti、Nb、W、V和Cr,另外也会根据性能需求加入Si或 Al 等非难熔元素。 特点:一方面,难熔高熵合金的研究着眼于新型高温结构材料的应用前景,其合金元素的熔点( 2128 - 3695K )、质量密度(- g/cm3)和杨氏模量(68-411GPa)均为研究者提供了广阔的选择空间。另一方面,Wu等发现在 HfNbTiZr 等原子比体系中,仅通过固溶强化获得的单相BCC合金即可具有 ~879MPa 的屈服强度和%的延伸率,因而相较于Nb基合金而言具有更好的耐磨性和更低的摩擦系数,这表明难熔高熵合金体系具有工程应用的可能性。而Ti、Zr、Nb、Ta的组合更倾向于形成单相固溶体,有助于合金力学性能的优化。 1、对于3d过渡族高熵合金而言,其耐蚀性主要源于Cr、Al及Ti元素的添加,在表面形成钝化膜,抑制腐蚀的进一步发生。这与传统金属如不锈钢等非常相似,其本质是依靠可纯化组元去保护不可钝化的组元。如Chen等研究了高熵合金在模拟海水及酸雨中的腐蚀与磨损行为,其结果表明合金表面所形成的 Al2O3 和 Cr2O3 钝化膜在腐蚀磨损的过程中起到重要的保护作用。 2、而多数难熔高熵合金的组成元素本身在工作介质中就可以形成稳定纯化膜,如Ta、Nb、Zr、Ti等,所以难熔高熵合金在工作介质中将处于各组元竞争形成氧化膜的情况,并没有哪种组元会出现严重的活性溶解,因而其耐蚀性要更加优异,特别是针对于生物医用等对于腐蚀速率更为敏感的应用背景中。 Motallebzadeh等研究了 TiZrTaHfNb 和 Zr 高熵合金在PBS溶液中的电化学行为,其结果表明,由于表面钝化膜的保护作用,这两种高熵合金表现出高于316L不锈钢、CoCrMo和Ti6 Al4V的极化电阻,且在线性扫描中其纯化平台可延伸至1800mV Ag/AgCl,没有发生点蚀且腐蚀电流密度低于Ti合金等传统医用金属。其表面钝化膜的主要成分为Ti02,Zr02,HfO2,Nb205和Ta205。相近的结果见于Chen等对TiTaHf中熵合金的研究中,该合金在SBF溶液中浸泡7天后,XPS结果表明其表面钝化膜主要成分为Ti02,Zr02和Ta205,这种等原子比合金表面所形成的混合氧化物膜的腐蚀抗性要优于组元种类相近的传统合金,如TilOTa6Nb合金。 电弧炉 :电弧炉(electric arc furnace)利用电极电弧产生的高温熔炼矿石和金属的电炉。气体放电形成电弧时能量很集中,弧区温度在 3000℃ 以上。对于熔炼金属,电弧炉比其他炼钢炉工艺灵活性大,能有效地除去 硫 、 磷 等杂质,炉温容易控制,设备占地面积小,适于优质合金钢的熔炼。 缺点 : 1、电弧熔炼可能并不适用于熔点较低的元素(如Mg、Zn 和Mn),因为这些元素容易蒸发,不易控制其成分,它们可以考虑电阻加热或感应加热。 2、传统熔炼方式制备HEA时容易产生孔洞、组织疏松、晶粒粗大、成分偏析等缺陷,这些都显著降低了HEA的耐蚀性。定义 :激光熔覆工艺具有加热、冷却快,熔覆层均匀致密、显微缺陷少等优点,此外还很容易实现微熔覆,对基体的热影响很小。该技术类似于等离子喷涂,不同的是它使用一个集中的激光束作为热源。这种技术通常会产生冶金结合,具有优于等离子喷涂的粘结强度。 优点 :突出优点是激光束可以聚焦并集中在一个很小的区域,这使得基板的热影响区非常浅,从而最大限度地减小了基板材料破裂、变形或变化的可能性。 定义 :磁控溅射是一种物理气相沉积(PVD)技术,广泛应用于各种金属、半导体、绝缘体等单层或复合薄膜材料的制备,具有设备简单、易控制、涂层面积大、附着力强等优点。 缺点 :采用磁控溅射制备HEA 涂层时,虽然涂层结构连续性及致密性较好,沉积快而基体升温慢,容易控制涂层的性能及厚度,但是靶材利用率较低,涂层厚度也受到限制,因此目前采用磁控溅射制备耐蚀性HEA 涂层也有一定的局限。 优点 :电沉积技术具有耗能低、操作简单、选择性好、环境污染小等优点,可在金属部件表面镀覆一层防腐蚀性镀层。镀层的基本要求是厚度均匀、致密,且与基体材料结合良好。在电沉积过程中,电解液成分及其浓度,以及温度、pH、电流密度、时间等参数均可精确控制。 缺点 :目前采用电沉积工艺制备高熵合金涂层的研究比较少,这主要是由于HEA 中元素的电负性差异大,造成HEA 中的成分较难控制,同时由于受电镀液传质的影响,镀层容易产生裂纹,从而影响涂层的耐蚀性。 参考文献: [1]宋芊汀. (TiZrNbTa)_(90)Mo_(10)高熵合金的腐蚀与磨损行为[D].中国科学技术大学,2020. [1]龙琼,胡素丽,黎应芬,李娟,龙绍檑.高熵合金耐蚀性研究的现状及最新进展[J].电镀与涂饰,2020,39(04):231-240.
硅铝合金是用量最大的硅合金。硅铝合金是一种强复合脱氧剂,在炼钢过程中代替纯铝可提高脱氧剂利用率,并可净化钢液,提高钢材质量。硅铝合金密度小,热膨胀系数低,铸造性能和抗磨性能好,用其铸造的合金铸件具有很高的抗击冲击能力和很好的高压致密性,可大大提高使用寿命,常用其生产航天飞行器和汽车零部件。
国内研究现状:1、研究对象:国内研究主要针对不同材料的耐腐蚀性能进行研究,如钢材、铝合金、镁合金等。2、研究方法:国内研究主要采用标准的盐雾试验方法,如GB/T10125-2012《金属材料.盐雾试验方法》等。3、研究成果:国内研究成果主要包括材料的腐蚀速率、腐蚀形貌、腐蚀机理等方面的研究,为材料的腐蚀性能评估提供了重要的参考。金属盐雾试验在国内外都得到了广泛的应用和研究,为材料的腐蚀性能评估提供了重要的手段和参考。
铝是一种比较年轻的金属,其整个发展历史也不过200年,而有工业生产规模仅仅是20世纪初才开始的。但由于铝及其合金材料具有一系列优良特性,诸如密度小, 比强度和比刚度高、弹性好、抗冲击性能良好、耐腐蚀、耐磨、高导电、高导热、易表面着色,良好的加工成形性以及高的回收再生性等,因此,在工程领域内,铝一直被认为是“机会金属”或“希望金属”,铝工业一直被认为是“朝阳工业”。发展速度非常快,铝材已广泛用于交通运输、包装容器、建筑装饰、航空航天、机械电器、电子通讯、石油化工、能源动力、文体卫生等行业,成为发展国民经济与提高人民物质和文化生活的重要基础材料。在国防军工现代化、交通工具轻量化和国民经济高速持续发展中占有极为重要的地位,是许多国家和地区的重要支持产业之一。特别是当今世界人类的生存和发展正面临着资源、能源、环保、安全等问题的严峻挑战,加速发展铝工业及铝合金材料加工技术更有着重大的战略意义。铝及铝材加工工业进入了一个崭新的发展时期。注:这是在中国知网上找到的,希望能帮到你