首页 > 学术期刊知识库 > 篮球数据对比类论文题目

篮球数据对比类论文题目

发布时间:

篮球数据对比类论文题目

论新时代中锋的内外结合与传统中锋的优劣势~

这还用求助吗,直接上网搜一篇不就完了吗,再说啦,我想给你写也没法写,我只能给你写200字,就不能打啦。我给你的评论最大才200多字

篮球教育对青少年的影响

篮球与中国体育

篮球类数据毕业论文

篮球体育运动毕业论文开题报告

一、课题的目的意义:

篮球运动起源于学校,并且在学校中迅速普及,尤其是在滨州学院发展更为迅速。大学校园篮球运动氛围浓厚,有很多大学生都受当今篮球运动形势的影响,喜欢参加篮球运动,为篮球运动在高校的开展提供了深厚的群众基础。滨州学院非体育专业大学生篮球运动也一步步的步入正规。而篮球运动本身就具有很好的教育与锻炼价值,可以起到促进学生身心发展的作用。

滨州学院非体育专业大学生篮球运动中还存在着一系列不和谐的场面。而我国篮球科研领域却极少有针对高校非体育专业大学生篮球运动的深入研究,缺少相关的理论研究和科学指导在一定程度上制约了它的发展。因此,我们非常有必要对高校非体育专业的发展现状,比如学生自身、师资、教学状况、课外篮球活动状况、场地设施等方面进行分析,找到制约滨州学院非体育专业大学生篮球运动发展的症结所在,为有针对性地提出解决对策提供可能。 本文运用专家访谈法、文献资料法、问卷调查法、数理统计法等研究方法,对滨州学院非体育专业大学生篮球运动兴趣、师资队伍、教学状况、场地设施、课余篮球运动的现状与存在的问题进行调查与分析,并提出相应的发展对策与措施,为今后滨州学院非体育专业大学生篮球运动的发展提供有益的参考依据。

二、文献综述(分析国内外研究现状、提出问题,找到研究课题的切入点,附主要参考文献,约2000字):

刘博在对我国高校开展篮球运动的研究与探讨中谈到高校的大学生们是祖国未来的栋梁之才,高校体育事关重大,而篮球运动因其易普及和趣味性强的自身特点,深受广大学生的喜爱,是校园中最受欢迎的体育项目。中国大学生篮球联赛自 1998年开展以来,以独特的魅力迅速把学生、家长和学校融为一体,在大中小学校园内乃至整个社会都引起了强烈的反响,使越来越多的人走到篮球场,加入到这一运动中来。篮球运动的进一步普及和开展不仅丰富了校园文化生活促进了学习、提高了学生身体素质和心理素质,更进一步培养了学生们的集体主义精神和团队协作能力。

胡本东在山东省普通高校篮球选项课教师队伍的现状及发展对策指出篮球选项课师资队伍建设是决定篮球选项课教学质量的重要因素,直接制约着高校篮球教学深化改革的步伐。系统研究篮球选项课教师的.现状,找出差距,分析原因,提出建议,旨在建立一支既有高深的篮球专业知识和技能,又有良好职业道德的高质量的篮球教师队伍。

张凌在普通高校篮球选项课现状及发展对策研究中谈到,在篮球选项课的教学中,可适当增加理论课的授课时数,使学生掌握篮球选项课的基本理论知识和篮球规则、裁判法;在篮球选项课理论课中增加健身知识,使学生正确认识篮球选项课的健身价值,对学生进行“健康第一”和“终身体育”的思想教育。

王荣森在高校普通系大学生参加课外体育活动的现状与对策在开展课外体育活动项目上要尽可能地符合学生的兴趣,对那些场地设施要求不太高、学生又喜欢的运动项目要大力开展,在突出重点的前提下,课外活动的组织内容丰富,适应面要广。

陆红在《高校体育场馆建设及管理》中提到,体育场地和设施紧张曾是高校普遍面临的窘况,再加上高校急剧扩招,场馆面积却增长缓慢,设施更新缓慢,而学生们对场馆设施的要求却在不断地提高。在前不久刚刚公布的“第五次全国体育场地普查数据”中,有这样一组数据,在我国现有的 850080 个体育场地中,教育系统有 558044 个,占全国体育场地总数的 。在教育系统中高等院校有 28741 个,占全国体育场地总数的 ,这个比例在庞大的全国大学生数量面前显得太小。

金胜真在武汉市篮球消费现状与对策研究中指出篮球消费是指人们为了满足自身篮球运动方面的需要而消耗物质资料和劳务的,具有社会性质的经济行为。一定量的经济支出,不仅是人们参与篮球运动的前提条件,也是篮球消费市场得以发展、壮大的社会和经济基础。

综上所述:

本文对我国篮球科研领域却极少有针对高校非体育专业大学生篮球运动的深入研究,缺少相关的理论研究和科学指导在一定程度上制约了它的发展。因此,我们非常有必要对滨州学院非体育专业大学生篮球的发展现状,比如学生自身、师资、教学状况、课外篮球活动状况、场地设施等方面进行分析,找到制约滨州学院非体育专业大学生篮球运动发展的症结所在,为有针对性地提出解决对策提供可能。

三、课题研究的内容、方法和预期目标:

本文运用专家访谈法、文献资料法、问卷调查法、数理统计法等研究方法,对滨州学院非体育专业大学生篮球运动兴趣、师资队伍、教学状况、场地设施、课余篮球运动的现状与存在的问题进行调查与分析,并提出相应的发展对策与措施,为今后滨州学院非体育专业大学生篮球运动的发展提供有益的参考依据。

四、所需仪器设备、材料情况:

篮球 笔 调查问卷 计算机 等

最佳答案电话受理淘宝网、退款投诉 、店铺管理、 商品发布、信用评价、推荐物流疑难处理、故障咨询等问题受理淘宝网、退款投诉、店铺管

那你写一篇关于大交易的吧那个比较有深度。

我就是青少年,我很有心得,中锋技术实在不难,但我不够高不够壮,意识则取决于个人,后天的培养终究是有限的

篮球教学篮球论文题目

我是学体育的,也经常写论文,我认为论文的题目应该简洁明了:如 当代篮球中锋技术,不但简单,而且它既包含进攻也包含防守。至于论文内容里中锋的具体技术可以参考NBA比赛评论。我认为中锋应该既高大又灵活,既能内又能外。

中场扣篮(三不上篮)与力学

篮球与中国体育

中国篮球未来的发展趋势

数据的分析对比论文题目

可以参考下面的1、保险消费群体分析研究—以上海地区为例/以某险种为例2、美元走势与某大宗商品价格走势相关性分析3、基于多元统计的上海市各区县经济综合实力评价研究4、上海市人口规模与结构变动趋势分析5、GDP增速与居民收入增长变化相关性分析-以上海市为例6、上海市居民幸福感现状的调查研究7、上海市经济增长与环境污染的实证研究8、上海金融学院《统计学》课程考核满意度的调查研究9、上海市统计学本科毕业生就业的调查研究10、上海市城乡收入差距变动及其对经济的影响研究11、上海市经济增长、能源消费与环境污染间互动性研究12、上海市主导产业的选择研究--基于聚类分析和因子分析13、医药行业上市公司绩效评价--基于因子分析和聚类分析14、创业板上市公司经营绩效评价研究--基于因子分析和聚类分析15、电力行业上市经营绩效的实证研究--基于主成分分析、因子分析与聚类分析16、航运中心建设背景下上海市物流需求预测分析——基于XX预测技术17、上海市小微型科技企业融资能力的评估分析——基于XX分析方法18、大学生网络购物影响因素的实证研究——以上海金融学院为例19、大学生专业课自主学习的实证研究——以上海金融学院为例20、自贸区建设背景下大学生职业能力的现实考量与培养策略——以上海金融学院为例21、上海自由贸易区建设金融资源配置的统计数据分析及对策22、基于VAR模型的股票指数与宏观经济统计建模—以上海综合指数为例23、沪深300和道琼斯指数对比分析(或:股指期货与沪深300指数相关性分析)24、股票指数运行方向预测----基于成交量交易数据统计分析25、宏观经济与股票指数关系----基于货币发行量的统计分析视角26、基于因子分析法的上市公司财务状况评价研究27、因子分析法在中小企业板块上市公司综合业绩评价中的应用28、上海市各区县综合发展潜力评价研究29、上海市各区县经济发展潜力的综合评价研究30、上海市城镇居民消费的典型相关分析31、股票市场成交量和股价变动的统计实证研究——以A股市场为例32、基于高频数据的期货统计套利策略分析——以上海期货交易所铜期货合约为例33、多品种商品期货相关性研究——基于协整检验和误差修正模型的实证分析34、上证A股指数走势预测研究——基于时间序列模型35、大学生在数学学习中焦虑情绪产生因素分析——基于非参数统计方法36、上海银行间短期债券回购利率和同业拆借利率的协整分析37、上海(餐饮或)旅游市场需求预测研究——基于时间序列分析方法38、关于统计学专业应届生的就业优势因素分析——以上海地区为例39、基于协整检验的上海物流产业与经济增长互动关系研究40、基于股价高频数据的波动率与成交量动态关系研究——以A股市场为例41、上海技术进步对能源效率影响的实证分析42、中国各地区能源效率的测算与分析43、XX地区产业能源效率的测算与分析44、XX地区能源效率的影响因素分析45、XX地区能源消费与产业结构相关性研究

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

这个不难,我擅长.

大数据只是一个时代背景,具体内容可以班忙做

关于篮球数学小论文题目

篮球教会我的不只是篮球NBA教会我的不只是篮球阐述篮球带来的快乐。。最主要的是篮球的某种精神例如:有个镜头我永远都忘不了2001年总决赛第三场球完了后,小艾和科比在快进更衣室门口相遇,当时小艾的眼神足以杀死人,科比抬着高傲的头颅看都不看小艾一眼,小艾主动上去和科比握手,科比装作没看见,头也不回地走了,那一刻小艾显得多么无奈。—— 从那一刻起,科比已经输了,不是输在球技上,而是输在做人上. 。科比可以拿着三枚总冠军戒指 81分记录向小艾炫耀, 但是,小艾的精神境界是科比一世都无法企及的。他教会我一件事:“只要认为是对的,即便是对抗全世界,不要被那些舆论所影响、击倒,要有勇气战斗下去。他教会我只要坚持做自己,即便是被人认为是「叛逆」,也要战斗下去。你说他是我的神也好,佛也好,我服膺的是他这种精神,这是一种信仰。有个人站在你面前,他就是这麼做著,他始终忠於他的信念。所谓「武士精神」,亦不过如此,而这正是我所信奉的。我看NBA十多年,不曾带给我这种感动。这种「我要打十个」的气魄,不是只有「英雄主义」而已,而是战斗到底的决心。那些酸AI的人们,他们不懂,因为他们不会、也不敢有这种体验,他们更不会了解,许许多多喜欢.的人,到底为什麼喜欢他?这不是靠长得帅就可以得到的拥护。”2004年 一个18岁的男孩(凯文 约翰逊)在街上被一群16-20岁的人围住 抢劫 他们抢走凯文身上财务 然后命令凯文脱掉身上穿的艾弗森3号球衣 凯文誓死不从紧紧保护着球衣不让他们抢走 那群歹徒拿出手枪 凯文依旧不让他们把艾的球衣从身上抢走 一声枪响 凯文被后面一个歹徒击中脖子 球衣还是让那伙歹徒抢走 两年过去 一天报纸披露 一个孩子的妈妈让医院使用安乐死 结束她孩子的生命 那个孩子就凯文约翰逊 就这样 这件事被媒体报道出来 艾弗森也知道这件事 他很震惊 他亲自去那座医院 随后艾给凯文安排葬礼 后来凯文母亲说 凯文下葬的时候是穿着艾弗森送的崭新球衣入土的 别人问 你儿子这样做不值得 凯文妈妈说 这是我儿子的选择 你们不知道凯文多么爱艾弗森 我不反对我儿子去追艾弗森 在艾弗森身上 我儿子学到的比我们教的更多

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

这也来问,太离谱了把

- =什么大学,还篮球论文

  • 索引序列
  • 篮球数据对比类论文题目
  • 篮球类数据毕业论文
  • 篮球教学篮球论文题目
  • 数据的分析对比论文题目
  • 关于篮球数学小论文题目
  • 返回顶部