首页 > 学术期刊知识库 > 论文基本不等式的研究方向

论文基本不等式的研究方向

发布时间:

论文基本不等式的研究方向

已经完成。基本不等式在国内专家的不懈努力之下,研究进度是已经完成并形成了最终的结论。基本不等式是主要应用于求某些函数的最值及证明的不等式。

比较法,比值法,函数法,数学归纳法等等

(一)主要研究内容非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。⒈非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。(二)研究方向的特色⒈ 变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。2.该研究是现代数学与电力生产的交叉学科研究课题,它对电力生产及管理有着十分重要的理论指导意义和实际应用价值,为控制系统设计、分析和计算都可提供一些重要的理论依据。在应用数学学科的这一研究领域中本课题属于国内外前沿性研究工作。(三)可取得的突破1.深入研究空间、时间、时滞对解的性质的影响,诸如静态解、周期解的存在性、解的存在性、渐近性等问题;寻求它们在含间断项的非线性偏微分方程方面的突破。2.寻求和发现新的处理非单调、非凸不可微能量泛函的方法(如建立Ishikawa迭代序列收敛准则),建立发展型方程G-收敛准则,寻求可行的光滑方法将算子方程光滑化,创建新的先验估计方法。3.应用现代数学所获得的理论,研究最有控制系统的微分方程,为控制系统设计、分析和计算提供一些重要的理论依据和方法。 (一)主要研究内容拓扑学是数学的一个重要而比较年轻的学科分支,可以分成一般拓扑学,代数拓扑学,微分拓扑学三个大分支。50年代后期以来,拓扑学的发展及其对数学的发展和其他学科发展起推动作用。本方向主要研究拓扑学中奇点理论、拓扑空间及其映射的性质以及分支理论中的若干课题及应用。⒈ 奇点理论是微分拓扑学的一个重要分支。20世纪由著名法国数学家 开创的奇点理论,经 . Arnold 等数学家的杰出工作已取得了巨大的成就。在几何学应用方面,几何微分方程及其几何解方面的应用、应用奇点理论和接触几何研究偏微分方程问题,都取得了十分重要的结果。我们致力于这些崭新课题的研究,在一阶偏微分方程组几何解奇点的分类、奇异解的性质和几何解的实现等方面,做了许多工作,作为第一和第二主要成员参加国家自然科学基金项目2项,主持省自然科学基金项目1项,主持省教育厅重点基金项目1项,主办小型国际学术活动1次。也取得了一些达到国际先进或国内领先水平的结果。由于这些研究,我们曾多次应邀参加国际学术会议。获得湖南省科技进步二等奖。我们将继续这方面的研究。⒉ Golubistky 等人于1979引入了应用奇点理论研究微分方程分支问题,近年来国内外已经出现了大量的理论和应用研究成果。我们从一开始就紧跟研究前沿的步伐,用奇点理论研究了几类非线性边值问题,得到若干关于分支解存在性的结果,并应邀参加国际学术会议进行报告。这方面还有大量的工作可以进行,特别是可以与电力系统稳定性问题的研究相结合。⒊ 拓扑空间及其映射的性质是一般拓扑学研究的重要分支之一,主要研究拓扑空间的结构和拓扑空间之间的映射的有关性质。近年来我们主要研究有关度量空间的映射像的若干性质。并取得了一些引人注目的成果,在国外重要学术刊物上发表或待发表论文多篇。(二)研究方向的特色通常在奇点理论中研究Legendrian奇点不考虑对称性,而我们将等变奇点理论与Legendre奇点的研究结合起来。在对偏微分方程及其几何解的研究和分类研究中,我们侧重对更一般的方程分类,并试图对分类后几何解的性质的作进一步的研究,这在以往的研究中尚未及开展。特别,近十年来奇点理论应用于偏微分方程的几何理论这一领域中通常研究的是一阶方程,而今后的发展将必然以二阶偏微分方程为趋势,因此研究方向在研究方法、对象等方面都有创新意义和特色。我们的研究需要将现代拓扑、微分方程与几何、代数相结合,并且还要借助计算机进行计算或验证,反映了现代数学研究不同分支互相参透的综合趋势,体现了数学的统一性,因而具有交叉学科研究性质。此外拓扑学理论在计算机图形图像的应用在国际上开始的时间不长,还处于起步阶段,我们可以期待在方法上、理论上有所突破,有所创新。(三)可能取得的突破⒈ 在对偏微分方程及其几何解的研究和分类研究中,我们侧重对更一般的方程分类,并试图对分类后几何解的性质的作进一步的研究。⒉ 用奇点理论研究非线性边值问题,争取对边界出现分支的问题取得成果。⒊ 把对拓扑空间及其映射的性质的研究结果用于研究计算机图形图像及电力和交通工程中的应用问题。 (一)主要研究内容在当今科学与工程计算中,存在大量的非线性优化、方程的求解、最小二乘和特征值计算等问题。如何借助于现代化的计算工具对这些问题设计出高效的计算方法,并应用于一些实际问题是我们的主要研究内容。我们的研究工作将集中在下列方面:1.优化计算方法及其应用:研究约束非线性光滑与非光滑方程的数值求解方法,约束最优化问题的高效算法,理论上分析所建立数值方法的性质及实际计算表现。由于电力系统中的安全与稳定性可用非线性方程系统和优化模型描述,我们将运用数学上新的数值方法分析电力系统的安全和稳定性,以适应电力系统市场化改革的需要。2.应用数值线性代数(也称矩阵计算)问题:它是科学与工程计算的核心,主要涉及三大问题:线性代数方程组问题,线性最小二乘问题和特征值问题。我们的研究工作将集中在大型线性方程组并行算法、病态方程组的预处理方法、结构矩阵的特征值和最小二乘问题的快速算法等方面。3.约束矩阵方程问题:约束矩阵方程问题包括矩阵逆特征值问题、矩阵最小二乘问题、矩阵扩充问题及其最佳逼近问题等。我们将研究约束矩阵方程的可解性,解的性质,数值方法及在结构设计、动力系统模型修正等许多工程实际中的应用。(二)研究方向的特色1.在最优化计算方法的研究中,我们均考虑了约束情况,不仅使问题有一般的结构,且更符合实现应用背景。另外,电力系统安全稳定的应用分析,对推动当前电力工业的改革具有重大的现实意义。2.矩阵计算所研究的内容与许多工程问题密切相关,尤其在信号处理方面,经常碰到大规模问题、病态问题和结构矩阵问题。因此,我们的研究无论在理论还是应用都很重要。3.约束矩阵方程的研究既利用了矩阵理论的矩阵分块、分解和降阶等技术,又提出了新的矩阵和矩阵理论。(三)可能取得的突破1.建立约束非光滑方程系统的具有超线性收敛的数值方法;对大规模约束非线性优化问题根据解耦方法建立高效且有理论保证的算法;运用新的数学方法实现电力系统安全稳定运行中的可用输电能力、阻塞管理等问题的在线分析。2.程应用中经常出现的一些特殊的矩阵计算问题设计有效的快速算法,并从理论上进行分析,形成高水平的学术成果。3.新的矩阵集合约束下的矩阵方程或新类型矩阵方程的解的相关问题;提出新的高效数值方法;用已有的约束矩阵方程理论解决某些工程实际问题。(四)主要学术带头人简介童小娇:教授,博士,主要从事非线性方程系统和非线性优化问题数值方法、电力系统安全稳定性的研究。先后主持或参加了国家自然科学基金、湖南省自然科学基金、湖南省教育厅优秀青年等多项课题的研究,并参加了国家973项目《中国大电力系统灾变防治与经济运行若干重大问题的研究》的工作,近6年来在重要刊物上发表论文30多篇。 (一)主要内容我们在马尔可夫过程、随机分析、数理金融、应用数理统计等领域具有雄厚的研究基础,取得了大批在国内外颇具影响的重要研究成果。特别是李应求教授及其领导的课题组在两参数马氏过程、随机环境中的马氏链及分支过程和相关函数方程等方向上的科学研究;以及在 IC卡操作系统、IC卡应用集成技术的研究方面,在人力资源管理、电力负荷预报、交通随机模型、金融风险模型等领域取得了卓有成效的应用。我们的研究工作将主要集中在下列方面:1.随机环境中马氏链理论的研究:随机环境中马氏链是当代随机过程研究的热点,已取得了丰富的成果,但这些工作都有待深入和拓展。在这方面我们主要研究其一般理论如不可约性、常返性、瞬时性及其相应的链的性质,大偏差理论,遍历理论,有关开问题等;一些具体过程如随机环境中分枝过程、随机游动、单生链、超过程等的性质。我们在这方面的研究将进一步完善随机环境中马氏过程的整个理论体系。2.两参数马氏过程理论研究:两参数马氏过程是当代随机过程研究的另一热点,已取得了丰富的成果,但目前研究进展缓慢,特别是两参数马氏过程样本轨道性质的研究。究其原因主要是由于此时过程的时间参数无全序关系,我们在单参数马氏过程研究中使用的首达时、无穷小算子等的方法已无法借鉴,需要引进新的概念和方法,但目前在此方面仍无突破性进展。3.应用研究:课题组已成功地将概率统计应用于广西电力局短、中、长期电力负荷预测及其所属的桂林电力局短、中、长期电力负荷预测,取得了很好的经济效益和社会效益,我们将总结经验,继续做好这方面的应用研究。此外,我们目前正开展将概率统计应用于人力资源管理方面,图象处理方面和金融等国民经济领域中的应用研究。 (一)主要研究内容本方向主要研究实、复分析中的几何函数论,亚纯函数的值分布论以及调和分析中的若干课题及应用。⒈几何函数论是一个经典的研究领域,曾经吸引了许多数学家的高度关注。自上世纪七、八十年代以来,随着卷积理论、微分从属、分数次微积分算子以及极值点、支撑点理论的应用,几何函数论的研究又重新焕发了青春。我们致力于这些崭新课题的研究,在卷积算子、微分从属、分数次微积分算子与单叶函数论的结合研究方面,做了大量工作,也取得了许多重要结果,曾获得湖南省优秀自然科学论文一等奖。我们将继续这方面的探索,并已在将有关结论向拟共形映射和多复变函数拓广方面做了一些工作。⒉亚纯函数的值分布论自上世纪二十年代创立以来,一直是复分析研究中的一个热门课题。特别是近一、二十年来,关于亚纯函数的唯一性理论,微分方程的复振荡理论更是吸引了众多数学工作者的关注。我们从一开始就紧跟研究前沿的步伐,目前在亚纯函数的4值问题的研究方面取得了突破性进展,在将亚纯函数的唯一性与微分方程的复振荡的结合研究方面,做了一些尝试性的工作。⒊调和分析是分析数学的主要分支之一,它主要是利用分析的工具研究函数空间的结构和积分算子在函数空间上的有界性,交换子就是其中的一类重要算子。由于交换子可用于刻划某些函数空间,并在微分方程理论中有许多重要应用,因此研究与各种积分算子相关联的多线性算子(交换子的非平凡推广)在各类函数空间中的有界性,就成为近些年来十分活跃和热门的研究课题。我们主要研究关于多线性算子的加权有界性,多线性算子在Hardy空间和Herz空间的有界性等等,并取得了一些引人注目的成果,在国内外重要学术刊物上发表论文多篇。⒋复分析理论在交通、电力工程中的应用。我们曾经应用复分析理论研究了路面温度场的问题,解决了一个弹性体中的温度应力分布问题,以此研究作为一个子课题的“七﹒五”攻关项目曾获得交通部科技进步一等奖。我们将继续开展这方面的研究工作。(二)研究方向的特色⒈几何函数论与微分方程、特殊函数的结合研究,共形映射与拟共形映射的结合研究,可以突破一些技术难关,从而能更为有效的获得一些经典的结果和新结果,创立一些新方法。⒉亚纯函数的唯一性理论与微分方程的复振荡研究的结合,有可能获得微分方程复振荡理论的一些新结果。⒊关于多线性算子的各种有界性的研究,是调和分析中的一个最新研究课题。⒋着眼于上述几个分支的相互关联、相互渗透关系的探索与研究,以期从一个更高的角度来从事相关课题的研究,从而在方法上,理论上有所突破,有所创新。(三)可能取得的突破⒈深化微分从属与单叶函数的结合研究的理论与应用,并由此解决单叶函数论中的几个难题。⒉将亚纯函数的唯一性理论应用于微分方程的复振荡理论的研究,获得其振荡性质的新结果。⒊获得若干多线性算子在一些函数空间上的有界性结果。 (一)主要研究内容代数学是数学的一个重要的基础分支。传统的代数学有群论,环论,模论,域论,线性代数与多重线性代数(含矩阵论),有限维代数,同调代数,范畴等。目前,代数学的发展有几个特征:其一是与其它数学分支交叉,例如与几何,数论交叉产生了代数几何,算术几何,代数数论等目前数学主流方向,矩阵论与组合学交叉产生了组合矩阵论。其二是代数学与计算科学,计算机科学的交叉,产生了计算代数,数学机械化,代数密码学,代数自动机等新的方向。随着计算科学的发展,矩阵论仍处在发展的阶段,显示出其生命力。其三是一些老的重要代数学分支从代数学中独立出来形成新的数学分支,如李群与李代数,代数K理论。而一些老的代数学分支(如环论)己不是热点了。1.矩阵几何及应用:目前矩阵几何的发展主要有三个方面:一是将矩阵几何的研究推广到有零因子的环上; 二是将矩阵几何基本定理中的条件化简或寻找其它等价条件,并找出特殊情况下的简单证明;三是将矩阵几何的研究范围扩大到保其它的几何不变量以及无限维算子代数中。我们近几年的研究重点在环上矩阵几何与算子保持问题。2.环上矩阵论及应用:四元数与四元数矩阵论在物理学,力学,计算机科学,工程技术中具有较好的应用,受到国内外工程技术界的重视。矩阵方程在很多实际问题(例如控制论, 稳定性理论)中有重要的作用,也是长期的研究热点。我们将研究环上矩阵论与四元数矩阵论的一些尚未解决的重要问题,带约束条件的矩阵方程求解理论,并讨论它们在实际问题中的应用。3.群论及应用:群论是代数学的基础,也是物理学的基本工具。典型群是群的一种很重要的类型。我们将研究环上典型群的一些重要问题,用群的算术条件(如:群的阶及元素的阶,特征标次数,共轭类长等)刻画群的结构,并对它们进行分类。研究数域或整数环上一般线性群的有限子群,用群的某些算术条件刻画群的结构并对其进行分类。4.Clifford代数,Hopf代数及应用:目前,Clifford代数,Hopf代数己成为物理学中的热门工具。二维Clifford代数就是四元数。我们研究Clifford代数, Hopf代数的一些重要的问题,并讨论它们在实际问题中的应用。5.代数学在计算机科学与信息科学的应用:随着信息化进程与因特网的深入与飞速发展,信息安全问题日益重要,保护网上信息安全是一个极为重要的新课题。主要采用加密技术与数字鉴定,实际上是数学技术,主要用到代数学,组合数学与数论。图像压缩处理是信息处理中的一个困难和极为重要的问题,我们在代数学方面有较好的基础。(二)研究方向的特色1.矩阵几何是数学大师华罗庚开创的一个数学研究领域,并由中国数学家万哲先院士等继承和发展,属于代数几何的范畴,“具有中国特色”。目前,我们在此领域的研究处于国内一流水平。2.随着计算机科学的发展,环上矩阵论成为重要的数学工具,也是今后代数学研究的重要方向之一。3.随着互联网的迅猛发展,信息安全日益重要,而近年来代数自动机是计算机科学与代数学交叉的一个研究方向。因此,它们的基础理论研究特别重要。(三)可取得的突破继续保持矩阵几何与矩阵论研究的国内一流水平,根据我院的实际情况,发展群论,Clifford代数,Hopf代数,代数自动机,代数密码学等新的研究方向,争取在这些新的方向上得到一些有学术影响的成果。

基本不等式毕业论文

我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网

看你使用的目的了如果你是想要证明一个别的东西,但是证明的过程中需要用到别人的这个不等式的结论,那么直接用就可以,标注好引用就行了如果你的最终目的是证明这个不等式,那么你就不能直接用了,就得想一种全新的方式证明它,否则就属于抄袭了。

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

研究论文的基本方式

毕业论文采用的研究方法有哪些

毕业论文采用的研究方法有哪些,在写论文的时候需要用到研究方法,研究的方法有很多种,不同的研究方法使用的方式也是不一样的,以下就是我为大家整理的一些关于毕业论文采用的研究方法有哪些的资料,大家一起来看看吧!

1、调查法

调查法是现在用户在撰写论文过程中使用最多的研究方法,调查法主要是通过用户系统化的搜集有关研究课题的现在状况或者历史状况进行综合分析得到研究成果的方式。

2、观察法

观察法,顾名思义就是用户借助自己的感官和一些其它的辅助工具对研究对象进行直接的观察,记录数据内容,以此来获得研究论文课题的方式,很多大型的科研机构等都是采用这种方法进行课题研究。

3、实验法

实验法相信只有接触过化学课程的用户都是可以理解的,实验法主要是通过控制实验对象的各方面要素来明确研究对象间的关系,这是现在很多用来发现研究对象间关系的方法之一。

4、文献法

文献法主要是通过不断的搜集该课题相关的'文献资料,进行系统全面的分析,以此来得到研究数据的方法,但是用户一定要知道挑选的论文文献资料一定要全面,这样才能全面的分析研究成果。

1、归纳方法与演绎方法 :归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。

门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。

2、分析方法与综合方法 :分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。

分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。

3、因果分析法 :就是分析现象之间的因果关系,认识问题的产生原因和引起结果的辩证思维方法。使用这种方法一定要注意到真正的内因与结果,而不是似是而非的因果关系。

要注意结果与原因的逆关系,一方面包括“用原因来证明结果”,同时也包括“用结果来推论原因”。不同的事物,一般都一身二任,既是原因,又是结果,而且一个结果往往有不同层次的几个原因。因此,在研究过程中,对所分析的问题必须寻根究底。

论文的研究方法如下:

1、调查法:调查法是最基本常用的科学研究方法,包括问卷调查、资料收集、访谈等形式,对得到的大量资料进行比较、分析、总结、归纳,从而得出一般性结论。

2、文献研究法:根据研究目的需求,通过查阅文献获得资料,全面地、正确地掌握所要研究问题发展历史,研究进展和未来趋势的一种方法,是快速了解进展最为有效方法,也用来指导研究选题,挖掘坦山前沿热点等。

3、实证研究法:依据现有的科学理论和实践的需要,设计实验证实确定条件因素与此改现象之间的因果关系的活动。阐明自变量与某一因变量的本质关系。

4、定量分析法:以实际数据“量”化研究解析某一现象规律等差异,使人们对研究对象的认识精确化,利于科学地揭示规律,把握本质,并理清关系,结合数理模型可以预测事物的未来发展趋势。

5、定性分析法:对研究对象进行“质”的分析。具体运用到归纳和让扒中演绎、分析综合以及抽象概括等具体研究方法,进一步进行思维加工,以达去粗取精、去伪存真、由此及彼、由表及里,最终认识事物的本质、揭示纷繁复杂表象下的内在规律。

6、经验总结法:对过往大量实践活动进行归纳与分析,提升为一般性、系统性的经验理论方法。再经过不断的修正完善,指导自己和他人研究开展,经验水平与主体认知层次能力高低有很大关系。

论文研究的意义:

1、是前人没有研究过的,也就是说研究领域中一个新颖有意义的课题,被前人所忽略的。

2、前人有研究过,或者阐述过但阐述论证的不全面和有不足的地方,作者加以丰满,或者驳斥前人的观点。

不等式的证明方法研究论文

微积分在不等式中的应用[摘要]本文应用微积分讨论了一些不等式的解法和证明,进一步揭示了微积分作为一种实用性很强的数学方法和工具,在求解不等式中的作用。[关键词]微积分高等数学不等式不等式是数学研究的一个基本问题,是属于初等数学的重要内容。不等式的证明方法多种多样,初等数学中常用的方法有恒等变形,使用重要不等式,用数学归纳法等,这些方法往往需要极高的技巧和超强的变形能力。微积分是高等数学的核心,微积分思想方法是高等数学乃至整个数学的典型方法,微积分思想方法的引入为解决不等式证明的难题找到了突破口,用这来解不等式可使解题思路变得简单。下面就通过实例分析微积分在证明不等式中的应用。1、用导数的定义证明不等式例1.设f(x)=a1sinx+a2sin2x+…+ansinnx,已知f(x)≤sinx,求证:a1+2a2+…+nan≤1。证明:方法1:因为f(0)=0,由已知f(x)-f(0)x-0≤sinxx(x≠0)∴limx→0f(x)-f(0)x-0≤1圯f'(0)≤1即a1+2a2+…+nan≤1。导数的定义是微积分的基础,此题还可运用两个重要极限及变形进行证明。方法2:由f(x)≤sinx,得f(x)x≤sinxx(x≠0),即a1sinxx+a2sin2xx+…+ansinnxx≤sinxx两端同时取x→0时的极限得limx→0a1sinxx+a2sin2xx+…+ansinnxx≤limx→0sinxx由重要极限及其变形知:limx→0sinkxx=k∴a1+2a2+…+nan≤1,证毕。2、利用函数的单调增减性定理1:设函数y=f(x)在[a,b]上连续,在(a,b)内可导(1)若在(a,b)内,f'(x)>0,那么函数y=f(x)在[a,b]上单调增加;(2)若在(a,b)内,f'(x)<0,那么函数y=f(x)在[a,b]上单调减少。由定理1我们总结出运用单调性证明不等式的一般方法与步骤:(1)移项,使不等式一端为“0”,另一端即为所作的辅助函数f(x);(2)求出f'(x),并判断f(x)在指定区间的增减性;(3)求出区间端点的函数值,作出比较即得所证。例2.设b>a>0,证明:lnba>2(b-a)a+b。分析:当b>a>0时,lnba>2(b-a)a+b圳(lnb-lna)(a+b)>2(b-a)证明:令f(x)=(lnx-lna)(a+x)-2(x-a)(x≥a)∵f'(x)=1x(a+x)+(lnx-lna)-2f''(x)=-ax2+1x=x-ax2≥0(x≥a)所以f'(x)单调增加,又f'(a)=0,于是f'(x)≥0(x≥a)因而f(x)单调增加,又f(a)=0,故当b>a>0时,有f(b)>f(a)=0即(lnb-lna)(a+b)-2(b-a)>0,亦即lnba>2(b-a)a+b。3、用微分中值定理证明不等式定理2(罗尔定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)f(a)=f(b);则在(a,b)内至少存在一个点ξ,使得f'(ξ)=0。定理3(拉格朗日中值定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;则在(a,b)内至少存在一个点ξ,使得f'(ξ)=f(b)-f(a)b-a。

柯西不等式证明写法如下:

柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。

相关信息:

柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。

据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。

1、三角不等式

三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子(这里不作介绍)。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。

2、均值不等式

均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

3、柯西不等式

柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。

但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。

柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中非常重要,是高等数学研究内容之一。

4、几何平均不等式

根号ab,称为几何平均数,这个体现了一个几何关系, 即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b, 那么那个垂线在圆内的一半长度就是根号ab,并且 (a+b)/2≥根号ab! 这就是它的几何意思,也是称之为几何平均数的原因。

算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。

5、杨氏不等式

杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。

论文均值不等式的研究方法

均值不等式是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

均值不等式部分的公式:

a^2+b^2 ≥ 2ab

√(ab)≤(a+b)/2 ≤(a^2+b^2)/2

a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac

被称为均值不等式。·即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为“调几算方”。

其中:

,被称为调和平均数。

,被称为几何平均数。

,被称为算术平均数。

,被称为平方平均数。

参考资料来源:百度百科-均值不等式

怎么绑蝴蝶结,蝴蝶结怎么系,教你一个简单实用的办法

a,b 大于0 ,a+b=m( m大于0 ), 则 m 大于等于 2根号 ab,仅当a=b 时取等号。

使用均值不等式时一定要牢记三个步骤:一正二定三相等!也就是说数字首先要都大于零,然后他们之间通过加或乘可以有定值出现,第三就是检验等号是不是取得到。。一般第三步很容易被忽略,因此这也是均值不等式的易错点之一。如有疑问可以追问。

  • 索引序列
  • 论文基本不等式的研究方向
  • 基本不等式毕业论文
  • 研究论文的基本方式
  • 不等式的证明方法研究论文
  • 论文均值不等式的研究方法
  • 返回顶部