首页 > 学术期刊知识库 > 有趣的数学小论文初一

有趣的数学小论文初一

发布时间:

有趣的数学小论文初一

看看下面的。初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!匿名回答采纳率:检举

初一数学小论文浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。 如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。 三、突出学习重点,突破学习难点 传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。 如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。 四、增强训练密度,提高教学效果 在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。 总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了。

教初中的老师们都常半开玩笑地说这样一句话:“初一是基础,初二是关键,要不然初三就完蛋!”初中的数学知识也不例外,初中数学是一个完整的体系.其中,初中二年级的难点最多,初中三年级的考点最多,而初一年级的数学知识点虽然很多,但相对而言都比较简单.因此,很多同学在刚刚进入初中数学的学习时,常常感觉比较简单,甚至觉得和小学没有什么区别,因而并没有感到压力.这些同学往往对初一的数学知识不够重视,与此同时也慢慢积累了很多小问题,而这些问题在学生进入初二年级,遇到很多综合题或复杂的题目时,就会很快凸显出来.这时,学生会感到跟不上老师的进度,感觉学习数学越来越吃力.究其根源,还是因为这部分同学对初中一年级的数学知识不够重视,没有打下坚实的基础. 下面我先具体列举一下初一年级同学在数学学习中主要存在的问题: 1.不能端正学习态度,没有兴趣,甚至存在害怕数学的心理,缺乏主动积极学习的意向. 2.没有养成良好的学习习惯(预习、认真听讲、记录笔记、归纳总结、复习等). 3.在知识上,对数学定义、概念等基本知识点的理解不够准确,只停留在一知半解的层次,特别是对特殊情况等的把握十分含糊. 4.数学能力(审题能力、计算能力、分析方法、数学思想等)或多或少总存在欠缺,导致各种小错误,不能完整的完成题目. 5.在实践做题中,不能领会出题者的意思,简单的说,不能把握题目的关键,找不到正确的解题思路. 6.平时做题速度较慢,考试时不能在规定时间内完成试卷. 以上这些问题如果不能在学生初一阶段得到改善,将会直接导致学生在初二两极分化的阶段出现数学成绩大幅滑坡,甚至导致在初三年级的学习中存在更大的障碍.相反的,如果学生能够在初一的学习过程中打好基础,那么初二的学习只是在知识点上的增多和加深,而在学习习惯和学习方法上,学生是很容易适应的. 那么,针对以上学生容易存在的问题,怎样才能帮助学生打好初一年级的数学基础呢? 我认为有以下几点值得注意: 1)端正学习态度. 任何一个学科都有其各自的学科特点,数学也不例外.只要养成良好的学习习惯,掌握科学正确的方法方法,就一定能够学好数学.但是,数学学习不能投机取巧,数学学习没有捷径可走,要明白保证做题的数量和质量是学好数学的必经之路. 2)养成良好的学习习惯. 课前预习,带着问题听课.看两遍书:第一遍大概了解下一讲或下一章的内容、知识枝干以及重难点等.第二遍对重要的概念、性质、判定、公式等反复阅读,思考其内在联系及其因果关系,并在不明白的地方作上记号,带着问题去听课,也便于求教老师. 课上认真听讲,会记笔记.初一的学生往往对课程的增多、课堂学习量的加大感到不适应,顾此失彼,很大一部分学生觉得数学没有笔记可记,有笔记的学生也记得不够合理,认为教师在黑板上所写的都记下来就是认真听讲,盲目的用记笔记代替听讲与思考,进而导致了听课效果下降.在听课的过程中应该注意做到:听知识的引入和形成过程;听懂教学中的重、难点,尤其是预习中不明白或有疑问的地方;听题目关键部分的提示(突破口)及数学思想方法;听课后小结.记录笔记时应注意:有选择的进行记录,主要记录知识要点、自己的疑点、课本上没有的教师补充的内容、解题的思路、数学思想方法、课堂小结等. 课后认真复习,及时归纳总结.课后要及时温故老师所讲内容,特别是经典例题,分析、归纳、总结,以内化成自己的知识体系,完善认知结构. 此外,学习应有整体计划,学会管理自己的时间. 3)细心、认真地学透课本. 有一部分学生认为课本上的内容很简单,而考试都是难题.其实,这是由于学生没有真正学透课本,考试的内容究其实质,都是课本上的基本概念、基本模型.因此,在初一这一打基础的重要阶段,更要对数学定义、概念等基本知识的十分准确把握,不能只停留在一知半解的层次.对于课本上的基本概念、基本模型的学习,我认为应该注意:重点理解基本概念、基本模型的特殊情况(特例),要抓住定义、概念的本质,全面举例、不重不漏的明确概念、定义等.对概念和公式不能死记硬背,而缺乏与实际题目的联系,在理解的基础上进行记忆可以有效地促进数学的学习.切记:理解和记忆数学的基础知识是学好数学的前提. 4)学会归纳总结复习. 复习总结的工作,不仅仅是老师的事,学生一定要学会自己去做.当你会总结题目,会对所学内容、所做的题目进行分类,了解每一知识点的基本题型,熟悉对应每一题型的解题方法等时,你才真正的做到了知识的内化.归纳总结这个问题如果解决不好,在进入高年级的学习时,同学们会发现,天天做题,成绩却不升反降.究其原因,天天都在做重复的题目,很多相似的题目反复在做,而需要解决的问题却没有专心解决.久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学整体系统的把握,弄的一团糟.总结归纳是把书读薄的过程,题目应该越做越少. 5)建立“改错本”. 建立错题本是一种非常高效率且针对性较强的学习方法,主要用来收集自己的错误和不会的题目.容易犯的错误可能有有审题不细心,计算马虎,书写格式不规范,对概念、公式等理解似是而非,对隐含条件分不清等等.不会的题目往往因为没有思路、思路不清晰或找不到突破口等等.针对前一类错题,我们应该 首先进行独立思考,及时进行反思,弄清产生错误的原因,加以重视.而对于不会的题目,我们要参考教师或答案的讲解,注意体会其思路、思想、悟其道理并总结方法规律,找相关习题进一步巩固.建立一本错解本,可以达到错一次而加深十倍认识的效果. 6)不懂就问,积极讨论. 爱因斯坦说过:“提出问题比解决问题更重要.”遇到不懂的问题,要积极及时的与同学讨论,向老师求教.在提问时,不仅要问其然,还要问其所以然,这对建立良好的数学知识体系非常有好处.这里我想说的是,讨论是一种非常好的学习方法.经过与同学讨论,你可能会获得不同的灵感,从对方那里学到好方法和技巧.值得注意的是,讨论的对象最好是与自己水平相当的同学,这样更有利于大家相互学习. 7)注重实战. 平时每天保证1小时左右的练习时间,自己平时做作业可以给自己限定时间,以提高做题的速度.在实际考试中,也要考虑每部分的完成时间,避免出现慌乱,同时注意调整好心态,把“做作业”当成考试,把“考试”当成做作业.当然,经历大型考试也是必要的锻炼途径. 以上内容是我针对初一年级学生数学学习中常见问题提出的我个人的一些建议,希望对同学们有所帮助.最后我想说的是,每个同学的学习方法都会对根据自己的情况不同而有些许差别,适合你的最有效的方法就是最好的.

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

数学小论文初一有理数

解析几何中“设而不求”的妙用摘要】解析几何的综合问题,常常与直线和二次曲线的位置有关。如何避免求交点,从而简化计算,也就成了处理这类问题的难点和关键。本文谈了如何整体结构意义上的变式和整体思想在解析几何中”设而不求”的妙用。【关键词】解析几何;设而不求;直线;二次曲线解析几何的综合问题,常常与直线和二次曲线的位置有关。如何避免求交点,从而简化计算,也就成了处理这类问题的难点和关键。下面从六个方面举例,介绍“设而不求”这一方法,其实质是整体结构意义上的变式和整体思想的应用。1.与中点弦及弦的中点有关的问题例1:过点A(2,1)的直线与双曲线x2-y2/2=1,交于P1、P2两点,求弦P1P2的中点的P的轨迹方程。解:设P1(x1,y1),P2(x2,y2),则X21-Y21/2=1,X22-Y22/2=1两式作差并整理,得(y1-y2)/(x1-x2)=2·(x1+x2)/(y1+y2)。又设弦P1P2的中点P(x0,y0),因为Kp1p2=KAP,则(y0-1)/(x0-2)=2x0/y0,因此,所求中点P的轨迹方程是2x2-4x-y2+y=0例2:过点Q(4,1)作抛物线y2=8x的弦AB,恰被点Q所平分,求AB所在直线方程:解:设以Q为中点的弦AB端点坐标A(x1,y1),B(x2,y2),则有y21=8x1,y22=8x2,两式相减,得:(y1-y2)(y1+y2)=8(x1-x2),又∵x1+x2=8,y1+y2=2解K=y2-y1x2-x1=8y1+y2=4∴所求直线AB方程是:y-1=4(x-4),即4x-y-15=0。评注:问题虽然简单,但提供了一种有关中点及弦的中点问题求解的程序化方法:设弦的两个端点P1(x1,y1),P2(x2,y2),代入二次曲线方程中并作差,便可以得到一组关于y1-y2/x1-x2、x1+x2、y1+y2的关系式,利用它们的几何意义,即可以方便地得到问题之解。2.与对称性有关的问题例3:已知抛物线C:x-y2-2y=0上存在关于直线:L:y=x+m对称的相异两点,求m的取值范围解:设抛物线C上关于直线L对称的两点是A(x1,y1)、B(x2,y2)代入抛物线方程并作差,得y1-y2/x1-x·2(y1+y2)+2(y1-y2)/x1-x2=1∵y1-y2/x1-x2=-1,∴y1+y2=-3,又将A、B两点坐标分别入抛物线C和直线L的方程中并分别相加,得,x1+x2=y21+y22+2(y1+y2),y1+y2=x1+x2+2m,∴y21+y22=(y1+y2)-2m-2(y1+y2)=3-2m∴y21+y22>(y1+y2)2/2=9/2,即:∴3-2m>9/2,∴m<-3/4评注:通过“设点代点”,整体代换,利用基本不等式得到了一个关于m的不等式,从而寻找到了解决问题的突破口。3.曲线方程的探求问题例4:一条直线L被两条相交直线L1:4x+y+16=0和L2:3x-5y-6=0,截得的线段中点恰好是坐标原点,求直线L的方程:解:设L与L1,L2分别交于M(x0,y0)和N,∵M、N关于原点对称,∴N(-x0,-y0),从而有4x0+y0+6=0,-3x0+5y0-6=0,这两个方程相加,得x0+6y0=0,可见M(x0,y0)在直线x+6y=0上,并且这条直线经过原点,所以,所求直线L的方程为x+6y=0。评注:设而不求,并巧妙地利用对称性,灵活而又生动。4.定值和定点问题例5:过点M(-2,0)的直线L与椭圆C:x2+2y2=2交于P1、P2两点,线段P1P2的中点是P,设直线L的斜率为K(K≠0),OP的斜率为K1。(0为椭圆的中心

额~~~我也是初一的,你们怎么写这个??

数字的历史 公元500年前后,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。 两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的撒拉孙大帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。 大约700年前后,阿拉伯人征眼了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。用什么方法可以将这些先进的数学也搬到阿拉伯去呢? 771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体系,以及印度式的计算方法(即我们现在用的计算法)。由于印度数字和印度计数法既简单又方便,其优点远远超过了其他的计算法,阿拉伯的学者们很愿意学习这些先进知识,商人们也乐于采用这种方法去做生意。 后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝�6�1奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成今天的1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。 阿拉伯数字起源于印度,但却是经由阿拉伯人传向四方的,这就是它们后来被称为阿拉伯数字的原因。

1.中国古代在数的方面的贡献 算筹 根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3cm,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带。需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄。别看这些都是一根根不起眼的小棍子,在中国数学史上它们却是立有大功的。而它们的发明,也同样经历了一个漫长的历史发展过程。在算筹计数法中,以纵横两种排列方式来表示单位数目的,其中1-5均分别以纵横方式排列相应数目的算筹来表示,6-9则以上面的算筹再加下面相应的算筹来表示。表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空。这种计数法遵循十进位制。 算筹的出现年代已经不可考,但据史料推测,算筹最晚出现在春秋晚期战国初年(公元前722年~公元前221年),一直到算盘发明推广之前都是中国最重要的计算工具。 算筹的发明就是在以上这些记数方法的历史发展中逐渐产生的。它最早出现在何时,现在已经不可查考了,但至迟到春秋战国;算筹的使用已经非常普遍了。前面说过,算筹是一根根同样长短和粗细的小棍子,那么怎样用这些小棍子来表示各种各样的数目呢? 那么为什么又要有纵式和横式两种不同的摆法呢?这就是因为十进位制的需要了。所谓十进位制,又称十进位值制,包含有两方面的含义。其一是"十进制",即每满十数进一个单位,十个一进为十,十个十进为百,十个百进为千……其二是"位值制,即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置。如同样是一个数码"2",放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我国商代的文字记数系统中,就已经有了十进位值制的荫芽,到了算筹记数和运算时,就更是标准的十进位值制了。 按照中国古代的筹算规则,算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,万位再用纵式……这样从右到左,纵横相间,以此类推,就可以用算筹表示出任意大的自然数了。由于它位与位之间的纵横变换,且每一位都有固定的摆法,所以既不会混淆,也不会错位。毫无疑问,这样一种算筹记数法和现代通行的十进位制记数法是完全一致的。 中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造。把它与世界其他古老民族的记数法作一比较,其优越性是显而易见的。古罗马的数字系统没有位值制,只有七个基本符号,如要记稍大一点的数目就相当繁难。古美洲玛雅人虽然懂得位值制,但用的是20进位;古巴比伦人也知道位值制,但用的是60进位。20进位至少需要19个数码,60进位则需要59个数码,这就使记数和运算变得十分繁复,远不如只用9个数码便可表示任意自然数的十进位制来得简捷方便。中国古代数学之所以在计算方面取得许多卓越的成就,在一定程度上应该归功于这一符合十进位制的算筹记数法。马克思在他的《数学手稿》一书中称十进位记数法为"最妙的发明之一",确实是一点也不过分的。 二进制思想的开创国 著名的哲学家数学家莱布尼茨(1646-1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。当代的许多科学家认为易经中并不含有复杂的二进制思想,可是这本中国古籍中的一些基本思想和二进制在很大程度上仍然有着千丝万缕的联系。 元始的《灵宝经》里面把阴阳定义为阳是自冬至到夏至的上升的气,阴为从夏至到冬至下降的气,这是对地球周期运动的最简练认识。阴阳是一种物质认识,后来转化为思想方式,反者道之动等等,都是这种思想的表现。从而开创了对立统一的思想方式,实际上计算机的电子脉冲的思想是与之一致的,采样定律也是与之一致的。 《易经》是我国伏羲、周文王等当政者积累观天测算经验而成的关于天象气象和人变易的经典,从八卦到六十四卦,就是二进制三位到六位表达,上世纪八十年代还有四位计算机,可以说,周文王的六十四卦在表达能力上已经高于四位计算机。 十进制的使用 《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。 十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。 我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。 十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。著名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。" 分数和小数的最早运用 分数的应用 最初分数的出现,并非由除法而来。分数被看作一个整体的一部分。"分"在汉语中有"分开""分割"之意。后来运算过程中也出现了分数,它表示两整数比。分数的加减乘除运算我们小学就已完全掌握了。很简单,是不是?不过在七、八百年以前的欧洲,如果你有这种水平那么就可以说相当了不起了。那时精通自然数的四则运算就已达到了学者水平。至于分数,对当时人来说简直难于上青天。德国有句谚语形容一个人陷入绝境,就说:"掉到分数里去了"。为什么会如此呢?这都是笨拙的记数法导致的。在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年。 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的著作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的著作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。到公元 1300年前后,元代刘瑾所著《律吕成书》中,已将写成把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。 九九表的使用 作为启蒙教材,我们都背过九九乘法表:一一得一、一二得二……九九八十一。而古代是从"九九八十一"开始,因此称"九九表"。九九表的使用,对于完成乘法是大有帮助的。齐恒公纳贤的故事说明,到公元前7世纪时,九九歌诀已不希罕。也许有人认为这种成绩不值一提。但在古代埃及作乘法却要用倍乘的方式呢。举个例子。如算23×13,就需要从23开始,加倍得到23×2,23×4,23×8,然后注意到13=1+4+8,于是23+23×4+23×8加起来的结果就是23×13。从比较中不难看出使用九九表的优越性了。 根据考古专家在湖南张家界古人堤汉代遗址出土的简牍上发现的汉代"九九乘法表",竟与现今生活中使用的乘法口诀表有着惊人的一致。这枚记载有"九九乘法表"的简牍是木质的,大约有22厘米长,残损比较严重。此前在湘西里耶古城出土的一枚秦简上也发现了距今2200多年的乘法口诀表,并被考证为中国现今发现的最早的乘法口诀表实物。 除了里耶秦简外,与张家界古人堤遗址发现的这枚简牍样式基本一致的"九九乘法表"还曾在楼兰文书中见到过,那是写在两张残纸上的九九乘法表,为瑞典探险家斯文赫定在上个世纪初期发掘。 乘法表在古代并非中国一家独有,古巴比伦的泥版书上也有乘法表。但汉字(包括数目字)单音节发声的特点,使之读起来朗朗上口;后来发展起来的珠算口诀也承继了这一特点,对于运算速度的提高和算法的改进起到一定作用。 负数的使用 人们在解方程或其它数的运算过程中,往往要碰到从较小数减去较大数的情形,另外,还遇到了增加与减小,盈余与亏损等互为相反意义的量,这样,人们自然地引进了负数。 负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负。在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之"。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。 在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的"正负术"即"同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之。"这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则。它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述。 在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去。有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的"。直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。 从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。负数概念引进后,整数集和有理数集就完整地形成了。 圆周率的计算 圆周率是数学中最重要的常数之一。对它的计算,可以作为显示出一个国家古代数学发展的水平的尺度之一。而我国古代数学在这方面取得了令世人瞩目的成绩。 我国古代最初把圆周率取作3,这虽应用起来简便,但太不准确。在求准确圆周率值的征途中,首先迈出关键一步的是刘徽。他创立割圆术,用圆内接正多边形无限逼近圆而求取圆周率值。用这种方法他求得圆周率的近似值为,也有人认为他得到了更好的结果:。青出于蓝,而胜于蓝。后继者祖冲之利用割圆术得出了正确的小数点后七位。而且他还给出了约率与密率。密率的发现是数学史上卓越的成就,保持了一千多年的世界纪录,是一项空前杰作。2.阿拉伯数字并不是阿拉伯人最早发明的,而是最早起源于印度。据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,其中东都巴格达更胜一筹。这样,西来的希腊文化,东来的印度文化,都汇集于此。阿拉伯人将两种文化理解并消化,形成了新的阿拉伯文化。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就好似在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。到后来,人们虽然弄清了“阿拉伯数字”的来龙去脉,但有大家早已习惯了“阿拉伯数字”这个叫法,所以也就沿用下来了。3.人类认识0早,还是认识1早。1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单而又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。 由此可以看出,他们是同时被创造的。但我个人认为,人类是先认识1,因为初一的教科书上写着,负数是在人们的生产生活中产生的。人类应该是先发明了用1,2,3...数数,然后发现有东西没有了再用0表示,再发明了负数。4.数学中的符号+ - × ÷ ∧(表示乘方)√(开方)是有理数基本运算符号。 由于研究的需要,人类创造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展。 在中学数学中,常见的数学符号有以下六种:一、数量符号 如,圆周率;a,x等。二、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或-),比号(:)等。三、关系符号如“=”是“等号”,读作“等于”;“≈”或“=”是“约等号”读作“约等于”;“≠”是“不等号”。读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“‖”是“平行符号”,读作“平行于”;“⊥”是“垂直符号”,读作“垂直于”等。四、结合符号 如小括号( ),中括号[ ],大括号{ }。五、性质符号 如正号(+)、负号(-),绝对值符号(||)。六、简写符号 如三角形(△),圆(⊙),幂()等。这些符号的产生,一是来源于象形,实际上是缩小的图形。如平行符号“‖”是两条平行的直线;垂直符号“⊥”是互相垂直的两条直线;三角形符号“△”是一个缩小了的三角形;符号“⊙”表示一个圆,中间的一点表示圆心,以免与数0及英文字母O混淆。二是来源于会意,即由图形就可以看出某种特殊的意义。如用两条长度相等的线段“=”并列在一起,表示等号;加一条斜线“≠”,表示不等号;用符号“>”表示大于(左侧大,右边小),“<”表示小于(左侧小,右边大),意思不难理解;用括号“( )”、“[ ]”、“{}”把若干个量结合在一起,也是不言而喻的。三是来源于文字的缩写。如我们以后将要学到的平方根号“”中的“√”,是从拉丁字母Radix(根值)的第一个字母r演变而来。相似符号“∽”是把拉丁字母S横过来写,而S是Sindlar(相似)的第一个字母。还有大量的符号是人们经过规定沿用下来的。当然这些符号并不是一开始就都是这种形状,而是有一个演变过程的,这里就不多讲了。数学符号的产生,为数学科学的发展提供了有利的条件。首先,提高了计算效率。古时候,由于缺少必要的数学符号,提出一个数学问题和解决这个问题的过程,只有用语言文字叙述,几乎象做一篇短文,难怪有人把它称为“文章数学”。这种表达形式很不方便,严重阻碍了数学科学的发展。当数量、图形之间的关系能够用适当的数学符号表达后,人们就可以在这个基础上,根据自己的需要,深入进行推理和计算,因而能更迅速地得到问题的解答或发现新的规律。其次,缩短了学习的时间。初等数学发展到今天,已有两千多年的历史,内容非常丰富,而其中主要的内容今天能够在小学和中学阶段学完,这里数学符号是起一定作用的。例如,我们的祖先开始只有1、2少数几个数字的概念,而今天幼儿园的小朋友就能掌握几十个这样的数。分析原因,除了古今生活条件不同,人们的见识差别极大以外,今天已有一套完整的记数符号,人们容易掌握。第三、推动了深入的研究。我们研究数学概念和规律,不仅需要简明、确切地表达它们,而对它们内部复杂的关系,需要深人地加以探讨,没有数学符号的帮助,进行这样的研究是十分困难的。所以,数学符号的应用,是多快好省地研究数学科学的重要途径。我国宋朝著名科学家沈括曾经说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。比如,古代各民族都有自己的记数符号,但在长期使用过程中,印度——阿拉伯数码记数方法显示出更多的优点,因而其他的数码符号逐渐淘汰,国际上都采用了这种记数方法。

数学小论文初一实数

数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”。这不禁让我重新对这一理念加以剖析。19世纪恩格斯说:“数学是关于空间形式和数量关系的学科。”而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值。在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化。下面从三个方面谈谈自己的感想。(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维。”可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础。在义务教育阶段学生要学习整数、小数、分数、有理数、实数等数的概念,这些概念本身是抽象的,但通过数学的学习,使学生能将这些数的概念与它们所表示的实际意义建立起联系,例如,一百万有多大,一把黄豆大约有多少粒等等。在课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题。数学与现实生活是密切相关的。联合国教科文组织早在八十年代初就提出“数学问题解决应作为学校数学教育的中心”。因此,有价值的数学更多地体现在学生用数学的眼光和思维去观察、认识日常生活现象,去解决生活中的问题,获得或提高适应生活的能力。过去教师一直非常重视学生笔算的正确率和熟练度,学生缺乏估算意识与估算方法。但在日常生活中恰恰是估算较笔算用得更为广泛。我们常常需要估计上学、上班所用的时间,估计完成某一任务(烧饭、买菜、做作业等)所需的时间,估计写一篇文章所需的纸量,放置冰箱所需地方的大小,估计一次旅游所需的费用等等。因此,加强估算,培养学生估算意识,发展学生的估算能力,具有重要的价值。新课程标准也反复强调要加强估算,淡化笔算。观察是指人对周围事物或现象进行全面、深入的察看,按照事物或现象的本来面目,研究和确定它们的性质和关系的一种心理现象。数学教学活动中的观察,就是有意识地对事物的数和形的特点进行感知活动,即对符号、字母、数字或文字所表示的数学关系式、命题、几何图形的结构特点进行的察看。 数学教学中必须重视学生观察能力的培养,其理由是显而易见的:首先,培养学生的观察能力是实现数学教学目标的需要。《义务教育全日制初级中学数学指导纲要》指出:初中数学教学,必须“使学生掌握数量关系、几何图形的基础知识和基本技能,具有一定的运算能力、处理数据的能力和初步的空间想象力、逻辑思维能力。”心理学告诉我们:感知和知觉是人类认识事物过程的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、有步骤、有组织的持久的知觉活动。观察又是一种主动的、对思维起积极作用的感知活动。它不单纯是事物在人的意识中的直接反映过程,还包括积极的思维活动。事实上,在观察过程中,观察者必须根据观察到的现象或特征随时进行分析、比较、抽象、概括,否则就无法通过观察来研究和确定事物或现象的性质和关系。可见,观察是认识的基础,是思想的触觉。离开了观察能力的培养,学生就不可能具备完整的数学能力与数学素养,数学教学的目标也就不可能直正实现。 其次,培养学生的观察能力是全面提高学生数学素质的需要。素质教育呼唤着学科教学以培养学生的创新精神和实践动手能力为宗旨,而创新能力必须以学生的综合素质为基础和前提。初中数学是一门学习简易的数学运算和图形关系知识及其初步应用技能的课程,以现代公民所必需的数学基础知识和技能作为基本的教学内容。数学教学要根据数学本身的特点,着重培养和发展学生的运算能力、处理数据的能力、逻辑思维能力、空间想象能力、数学信息的表达和交流能力。观察能力对于数学学习中各种能力的培养都具有直接或间接的促进作用。无论是图形的识别、数据之间关系的把握,还是基本规律的发现、综合分析能力的提高都离不开认真、仔细的观察。同时,数学活动中的观察并不狭义地指直观的考察,需要眼、脑并用,而且观察的对象也并非都具有直观的形象。因此,观察能力,无疑是学生数学综合能力的重要组成部分。 再次,培养学生的观察能力是提高学生数学学习质量和课堂教学效率的需要。不可否认,现在的初中数学教学中存在着学生学习的质量不高、课堂教学效率低下的弊端。究其原因,当然各种各样,但学生的观察能力滞后,缺乏观察的习惯和基本的能力是其中的一个重要的原因。试想,一个没有观察习惯、毫无观察能力的学生,怎么能够发现图形之间、数据之间的内在关系?惟其如此,学生数学学习的低质量、数学教学的低效率也就不足为怪了。可见,培养并提高学生的观察能力,是改革数学课堂教学的重要切入点和突破口之一。教师在教学的各个环节中,应落实观察的手段,充分显示这一教学观,切实重视对学生观察能力的培养。 那么,数学教学中如何培养学生的观察力呢?笔者以为可着重从以下几个方面入手: 一、 激发浓厚的观察兴趣 学习是由内在的心理因素引起的,内在的动机比外驱力更活跃、更持久,更具有主动性,而兴趣则是内在学习动机的集中体现。激发学生对观察产生浓厚的兴趣,教师可采用许多方法: 以美引趣。学生对美具有一种近乎天然的向往。数学具有自身的魅力,数学美集中在数学的简单、统一、对称、奇异等方面。数学图形所展现的外在形式美、数学的抽象概括性所体现的简单统一的内在美、数量关系与空间形式所呈现的对称美、数学思想所表现的奇异美的原则,充分利用数学自身的特征和特有的美,引导学生通过观察发现并发掘数学中的美,就能激发学生对观察的浓厚兴趣,激励学生求知的强烈愿望。 以用促趣。引导学生观察并解决实际中的数学问题,使学生真正认识观察在解答数学问题的重要作用,更能培养学生持久的观察兴趣。如在一元二次方程与系数的教学中提出如下观察材料:已知X1、X2是方程X2+(K+2)X-1=0的两个根,且X13-11X1=X2,求K的值。对于这个问题,教师通过启发学生得出:X1+X2=-(K+2)①,X1X2=-1②,X13-11X1=X2③,由此,根据与系数运用时含有的特性——对称性,要求学生进行如下观察:1、③式中的X1与X2的指数是否相等;2、能否用X1的倒数表示X2;3、通过②③两式形变等式,能否表示成两根的和与两根的积。在观察中发现简洁、明了的变形,实施解决疑难问题的方案。 以成导趣。成功的体验,能使学生产生愉悦的内心激动,使其增强学习的信心。在数学教学中,学生观察的对象是图形、数量关系、逻辑过程等。教师在教学过程中要尽可能鼓励学生主动观察,为学生创设获得成功的机会和条件。结合教材内容,有意识地向学生介绍数学通过观察发现数学定理、解决数学难题的事例,并设计一些富有趣味性的练习,让学生通过自己的观察、分析,总结概括出数学概念,发现公式、定理的证明,掌握那些特殊题型的解题技巧,品尝成功的喜悦,调动学生主动观察的积极性。 二、培养正确的观察方法 初中学生在心理上缺乏观察事物所必须具备的基本素质,在掌握知识经验的水平上缺乏观察的能力和数学教学的特点,因此,只有注重对学生观察方法的指导和培养,才能保证观察的正确性。 首先,要引导学生在观察时把握合理的顺序,养成学生从整体到局部,又由局部到整体的观察习惯。发现不合理的观察方法,应通过示范分析及时指出,加以指正。例如,在几何的起始教学中,对观察材料:已知如图A、B、C、D、E、F是直线上的六点,图中共有几条线段? A B C D E F 教师在指导学生进行观察,得出观察结论后,可进行提问:1、以A为端点的线段有几条?2、以B、C、D、E为端点的线段有几条?3、你的观察顺序与正确的观察顺序有何不同?借此引导学生认识有序观察事物的合理性与重要性。其次,要引导学生懂得观察的渐进性,养成反复观察、仔细观察的习惯。要真正提示内在规律,需要从不同的数学角度出发,进行广泛的观察:既要观察事物表面的、明显的特点,还要观察内在的、隐蔽的特征;既要观察已知的材料,又要观察未知的、隐含的关系。如在等腰三角形的教学中,对于观察材料: A 如图,在△ABC中,AB=AC, P是BC上任意一点,PE⊥AB于E, D PF⊥AC于F,CD⊥AB于D,求证CD=PE+PF。 E F B C P 教师应启发学生按面积之和与大三角形面积相等的数量关系的角度和全等三角形的判定定理的角度进行观察,以求得一题多解。 再次,要引导学生了解常用的观察方法(如分类观察、从一般到特殊的观察、从特殊到一般的观察、对比观察等等),掌握观察的一般步骤:明确观察的目的和任务;制定周密的观察计划,做好有关知识的充分准备;在观察过程中做好观察记录;观察后对得到的材料进行整理、分析、归纳和总结。通过一定时间的训练,让学生能够较为熟练地自主观察。 三、养成良好的观察品质 观察不是消极的注视,不是被动的感知,而是一种“思维的知觉”,是智力发展的基础。因此,在培养学生观察能力时,必须十分重视观察的目的性、全面性、精确性、深刻性等良好观察品质的培养。 1、 培养观察的目的性 初中学生对观察材料缺乏全部感知的能力,总是有选择地以少数事物作为知觉的对象。教师在教学过程中,对观察对象叙述的语言要准确,提出观察任务时目标要明确,分析时要紧紧围绕确定的观察目的。例如,在利用配方法解一元二次方程中,对要求观察的材料: 解下列一元二次方程:①(X-1)2=2,②X2-2X+1=2,③X2-2X-1=0可提出如下观察要求:1、①式左、右两边的代数式有何特征?2、[MSOffice1]②式的左边能否转化为完全平方式?3、式的左边能否转化为完全平方式?通过提问,让学生有目的、分层次地观察,积极主动地感知观察对象,实现观察目的。 2、 培养观察的全面性 观察的全面性,要求通过观察反映事物的全貌以及事物的组成部分和相互联系;在较为复杂结构的图形中全面反映事物的某种属性;指出在某种特定的情况下感知对象所能发生的各种可能性。在观察中,由于学生缺乏对事物之间内在联系的全面理解,导致感知的对象不能反映各种可能的现象经常发生。在教学过程中,教师要帮助学生把握事物的基本属性,在初步观察的基础上,分析观察对象内在的规律性,鼓励学生依照一定的程序,深入观察。同时,教师要及时对观察的结果提出自己的观点,与学生相互讨论,对学生观察中出现的遗漏,要分析原因,加以补救,使观察结论全面、完整。 3、 培养观察的精确性 观察不能仅仅满足于了解事物的全貌,还要精确把握事物的特征,对不同事物既能发现它们的相似点,又能辨别它们的细微差别。教师要充分利用各种教学手段,如列表比较、对比观察等,利用现代教学手段,通过形象直观、富有动感的图片、画面,启迪学生发现观察对象的特征,揭示观察对象的本质。 4、培养观察的深刻性 观察的目的之一是提高学生的思维能力,因此,观察必须始终与思维训练紧密结合,尤其要重视对观察对象隐含条件的发掘,通过观察能力的培养,逐步使学生的数学思考意识抽象概括化、思考对象形式化、思考过程逻辑化、思考结果应用化。 总之,数学教学必须十分重视学生观察能力的培养:要运用多种手段,激发学生的观察兴趣;通过训练,使学生掌握观察的基本方法,具有良好的观察品质,逐步养成主动观察、善于观察的习惯,使数学教学更好地适应素质教育的需要。[附]参考文献 1.浙江省教育委员会:《义务教育全日制初级中学数学教学指导纲要》,浙江教育出版社,1997年11月9第二版). 2.王子兴: 《中学数学教育心理研究》,湖南师范大学出版社,1999年5月9 第一版) 3.朱智贤: 《思维发展心理学》,北京师范大学出版社,1986年版.从中筛选点有用的写吧!!!

。。。。。大家好: 数轴,是规定了唯一的原点,唯一的正方向和唯一的单位长度的这么一条直线。 我先给大家介绍一下怎么做一个数轴:画一条水平直线,在直线上取一点表示0,规定叫做原点,选取某一长度就得到了一个数轴。所有的有理数都可以用数轴上的点来表示。作为单位长度,规定直线上向右的方向为正方向。从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零。 提醒一下各位,数轴是一种特定几何图形;原点、正方向、长度单位称数轴的三要素,这三者缺一不可. 数轴的用处可大了:你可以用数轴来比较两个实数的大小,左边小,右边大。而且任何一个有理数都可以用数轴上的一个点来表示。但数轴上的数不都是有理数,比如你可以用圆规截取像根号二这样的数。 说到绝对值,也和数轴息息相关。因为任意一个数与原点的距离就是它的绝对值。如果想像不出绝对值大小,就去数轴上看看吧。同样,两个数在数轴上的距离也可以表示为两个数的差的绝对值。提醒一下别弄错,任何一个数的绝对值都是非负数,因为距离都是非负数。 总而言之,数轴很有用,It helps students a lot. 有时候我做有关不等式的题时,我就会画一个数轴,标上数字,添上符号,问题就迎刃而解了。 谢谢额。。。啊啊啊,我乱编了那么多,你自己改改吧分数就给我算了,我那么辛苦的啊谢谢

“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。论文按内容分类,大概有以下几种:①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;如:探究大桥的热胀冷缩度②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;如: 一台饮水机创造的意想不到的实惠③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法如: 分式“家族”中的亲缘探究如: 纸飞机里的数学④对自己数学学习的某个章节、或某个内容的体会与反思如: “没有条件”的推理如: 小议“黄金分割”如: 奇妙的正五角星① 课题要小而集中,要有针对性;② 见解要真实、独特,有感而发,富有新意;③ 要用自己的语言表述自己要表达的内容(四) 评价数学小论文的标准什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与

有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。 由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。 例如:在教学“求两个数的最小公倍数”时,课始,我创设了这样一个情景:皇塘每6分钟有一辆中巴车开往常州(向东),8分钟有一辆中巴车开往丹阳(向北)。现在刚好有两辆中巴车同时分别开往常州和丹阳,问再过几分钟,又有两辆中巴同时开往常州和丹阳?数学在我们得生活当中是无处不在到,小到买菜的讨价还价,大到火箭的设计......其实我们在学习数学得过程中是为了培养自己得逻辑判断能力,让自己得思维更严谨,我们在学校学习数学,不单单只是为了去记住一个公式,而是在学习这个公式得推倒得过程中渐渐得培养了自己得思维逻辑能力,可以说,一个人的数学学好了,对于一件事得判断能力会大大增强,所以学好数学,不单单只是为了应付考试,而是在学习一项在社会生存得基本技能.

数学小论文初一600

我也正愁呢..给你个参考 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:…而…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的…处。音乐家们则认为将琴马放在琴弦的…处会使琴声更柔和甜美。 数…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的处,效率将大大提高,这种方法被称作“法”,实践证明,对于一个因素的问题,用“法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。 不过估计现在也没有用了。那么少的分要写那么多字。

“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 关于公布初一数学小论文评比的结果 一等奖 班 级 姓 名 作 品 初一(9) 李 旦 《旋转变换》 初一(9) 李 娜 《数学的妙趣》 初一(5) 朱智妙 《奇妙数学——一题多解》 二等奖 初一(11) 冯梦雪 《一题多解》 初一(11) 周利思 《我更爱数学了》 初一(9) 应梦瓯 《学好数学其实并不难》 初一(5) 蒋必为 《神奇的x,神秘的方程式》 初一(1) 邹夏莹 《举一反三》 初一(2) 林婵娟 《游戏中的天平——数学》 三等奖 初一(11) 张建森 《我说三角形》 初一(5) 黄宇婷 《解决问题的朋友》 初一(6) 应晓娟 《我的学习体验》 初一(11) 周 强 《概率》 初一(7) 黄飞霞 《我更爱数学了》 初一(5) 王颖颖 《美妙的镶嵌图》 初一(5) 刘晶晶 《不可忽视的无理数》 初一(9) 余爱青 《我和数学的故事》 可以自己搜索

我还葽找初一生物论文呢!!

巧算“24”点一, 摘要 在我们的生活中,“24点”这个游戏已经被人们所熟知。在1~10这些数字中,任意挑取四个数字,运用+、-、×、÷和()这些运算符号,使之和差积商等于24。那么,如何更简便地计算“24点”呢?如:以下这组数字:4,3,3,6算法:(3÷3×4)×6=24再例如:5,1,8,3算法:5×3+1+8=24二, 问题的提出&探究目的 假设四个自然数a、b、c、d,有a≤10,b≤10,c≤10,d≤10。那么,如何快速的将这四位数字运用+、-、×、÷和()这些运算符号,使之和差积商等于24?等于n时呢?三, 探究过程 先看几组实例:数字方法9,5,3,4(5×3-9)×43,3,6,8(3×3-6)×86,8,5,4(5+4-6)×83,7,5,6[(7+5)÷3]×65,4,8,5(4-5÷5)×83,5,8,4(5-3)×(8+4)1,9,8,5(8-5)×(9-1)1,8,6,18÷(1+1)×66,6,5,3(5-3)×(6+6)1,3,4,4(3-1+4)×4由以上表格得出第一种算法:利用公因式的算法∵24=72÷3=48÷2=1×24=2×12=3×8=4×6∴1,其中若a为24的约数,那么应优先考虑使b,c,d的和差积商为24÷a。其一般形式为(b?c?d)×a=24(?为+、-、×、÷中的一个)对于a,b,c,d,其组合有16896种可能,据不完全统计,这是可能性最大的一种。 2,a,b,c,d中,其中若a为24的约数,但(b?c?d)×a≠24,则应优先考虑(a?b)?(c?d)或(a?b)?(c?d)=24。据不完全统计,a×b-c×d和(a±b)?(c±d)的几率较大(?为+、-、×、÷中的一个)同理,推广到任意四个小于10的自然数a,b,c,d,使他们的和差积商等于n,则若n为合数,则(b?c?d)×a=n和(a?b)?(c?d)或(a?b)?(c?d)=n,这两种组合的可能性最大。且据不完全统计,若n的约数越多,这两种的可能性最大。(?为+、-、×、÷中的一个)3,最可能出现的几种情况:(不完全统计)(1)(a—b)×(c+d)(2)(b+c)÷d×a (3)(b-c÷d)×a (4)(b+c-d)×a 请看第二组实例:数字方法1,3,5,6(5+1)×3+69,9,6,5(9-6)×5+97,6,5,16×5+1-77,4,7,37×4+3-79,6,4,59+6+4+59,3,1,4(4+1)×3+93,8,4,43×8-4+4不难看出,第一种算法并不适合所有的牌组。那么,无法使用第一种牌组时,我们应该怎样去做呢?于是,我便做出了如下几种的归纳:1, 若a?b=24,c=d,则有a?b+c-d=24(?为+、-、×、÷ 中的一个,且前后的?为同一运算符号)2, 若a?b=25,c=d,则有(a?b)×c÷d=24(?为+、-、×、÷ 中的一个,且前后的?为同一运算符号)3, 同理,推广到任意四个小于10的自然数a,b,c,d,使他们的和差积商等于n 。n的约数越少,则出现(a?b?c)±d和(a?b)±(c,d)的几率越高。(?为+、-、×、÷中的一个)4, 据不完全统计,以下两种算法的机率较大。(1)a×b+c-d (2)(a-b)×c+d 经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,列出几种情况:1,1,1,k,其中k≠82,2,2,k,其中k=1,2,65,5,5,k,其中k≠1,4,5,6,96,6,6,77,7,7,k,其中k≠3,48,8,8,k,其中k=7,8,99,9,9,k,其中k≠3k,k,k,k,其中k≠3,4,5,6以下均为不规则:6,4,3,7 4,6,4,7 3,4,8,8 9,4,4,5 7,7,9,4 9,9,1,4 等

小学数学有趣课堂论文题目

如何使数学课有数学味

数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!

中职数学教学论文题目

1、线性方程的叠加原理及其应用

2、作为函数的含参积分的分析性质研究

3、周期函数初等复合的周期性研究

4、“高等代数”知识在几何中的应用

5、矩阵初等变换的应用

6、“高等代数”中的思想 方法

7、中职数学教学中的数学思想和方法

8、任N个自然数的N级排列的逆序数

9、“高等代数”中多项式的值,根概念及性质的推广

10、线性变换“可对角化”的条件及“对角化”方法

11、数域概念的等价说法及其应用

12、中职数学教学与能力培养

13、数学能力培养的重要性及途径

14、论数学中的基本定理与基本方法

15、论电脑、人脑与数学

16、论数学中的收敛与发散

17、论小概率事件的发生

18、论高等数学与初等数学教学的关系

19、论数学教学中公式的教学

20、数学教学中学生应用能力的培养

21、数学教与学的心理探究

22、论数学思想方法的教与学

23、论数学家与数学

24、对称思想在解题中的应用

25、复数在中学数学中应用

26、复变函数论思想方法在中学数学教学中的应用

27、复变函数论思想方法在中学数学竞赛中的应用

28、代数学基本定理的几种证明

29、复变函数的洛必达法则

30、复函数与实函数的级数理论综述

31、微积分学与哲学

32、实数完备性理论综述

33、微积分学中辅助函数的构造

34、闭区间上连续函数性质的推广

35、培养学生的数学创新能力

36、教师对学生互动性学习的影响

37、学生数学应用意识的培养

38、数学解题中的 逆向思维 的应用

39、数学直觉思维的培养

40、数学教学中对学生心理素质的培养

41、用心理学理论指导数学教学

42、开展数学活动课的理论和实践探索

43、《数学课程标准》解读

44、数学思想在数学教学中的应用,学生思维品质的培养

45、数形结合思想在中学数学中的应用

46、运用化归思想,探索解题途径

47、谈谈构造法解题

48、高等数学在中学数学中的应用

49、解决问题的策略思想--等价与非等价转化

50、挖掘题中的隐含条件解题

51、向量在几何证题中的运用

52、数学概念教学初探

53、数学 教育 中的问题解决及其教学途径

54、分类思想在数学教学中的作用

55、“联想”在数学中的作用研究

56、利用习题变换,培养学生的思维能力

57、中学数学学习中“学习困难生”研究

58、数学概念教学研究

59、反例在数学教学中的作用研究

60、中学生数学问题解决能力培养研究

61、数学教育评价研究

62、传统中学数学教学模式革新研究

63、数学研究性学习设计

64、数学开放题拟以及教学

65、数学课堂 文化 建设研究

66、中职数学教学设计及典型课例分析

67、数学课程标准的新增内容的尝试教学研究

68、数学课堂教学安全采集与研究

69、中职数学选修课教学的实话及效果分析

70、常微分方程与初等数学

71、由递推式求数列的通项及和向量代数在中学中的应用

72、浅谈划归思想在数学中的应用

73、初等函数的极值

74、行列式的计算方法

75、数学竟赛中的不等式问题

76、直觉思维在中学数学中的应用

77、常微分方程各种解的定义,关系及判定方法

78、高等数学在中学数学中的应用

79、常微分方程的发展及应用

80、充分挖掘例题的数学价值和 智力开发 功能

小学数学教学论文题目参考

1、小学数学教师几何知识掌握状况的调查研究

2、小学数学教师教材知识发展情况研究

3、中日小学数学“数与代数”领域比较研究

4、浙江省Y县县域内小学数学教学质量差异研究

5、小学数学教师教科书解读的影响因素及调控策略研究

6、中国、新加坡小学数学新课程的比较研究

7、小学数学探究式教学的实践研究

8、基于教育游戏的小学数学教学设计研究

9、小学数学教学中创设有效问题情境的策略研究

10、小学数学生活化教学的研究

11、数字 故事 在小学数学课堂教学中的应用研究

12、小学数学教师专业发展研究

13、中美小学数学“统计与概率”内容比较研究

14、数学文化在小学数学教学中的价值及其课程论分析

15、小学数学教师培训内容有效性的研究

16、小学数学课堂师生对话的特征分析

17、小学数学优质课堂的特征分析

18、小学数学解决问题方法多样化的研究

19、我国小学数学新教材中例题编写特点研究

20、小学数学问题解决能力培养的研究

21、渗透数学思想方法 提高学生思维素质

22、引导学生参与教学过程 发挥学生的主体作用

23、优化数学课堂练习设计的探索与实践

24、实施“开放性”教学促进学生主体参与

25、数学练习要有趣味性和开放性

26、开发生活资源,体现数学价值

27、对构建简洁数学课堂的几点认识和做法

28、刍议“怎样简便就怎样算”中的“二指技能”现象

29、立足现实起点,提高课堂效率

30、宁缺毋滥--也谈课堂教学中有效情境的创设

31、如何让“生活味”的数学课堂多一点“数学味”

32、有效教学,让数学课堂更精彩

33、提高数学课堂教学效率之我见

34、为学生营造一片探究学习的天地

35、和谐课堂,让预设与生成共精彩

36、走近学生,恰当提问--谈数学课堂提问语的优化策略

37、谈小学数学课堂教学中教师对学生的评价

38、课堂有效提问的初步探究

39、浅谈小学数学研究性学习的途径

40、能说会道,为严谨课堂添彩

41、小学数学教学中的情感教育

42、小学数学学困生的转化策略

43、新课标下提高日常数学课堂效率的探索

44、让学生参与课堂教学

45、浅谈新课程理念下如何优化数学课堂教学

46、数学与生活的和谐之美

47、运用结构观点分析教学小学应用题

48、构建自主探究课堂,促进学生有效发展

49、精心设计课堂结尾巩固提高教学效果

50、浅谈数学课堂提问艺术

51、浅谈发式教学在小学数学教学中的运用

52、浅谈数学课堂中学生问题意识的培养

53、巧用信息技术,优化数学课堂教学

54、新课改下小学复式教学有感

55、让“对话”在数学课堂中焕发生命的精彩

56、小学几何教学的几点做法

初中数学教学论文题目

1、翻转课堂教学模式在初中数学教学中的应用研究

2、数形结合思想在初中数学教学中的实践研究

3、基于翻转课堂教学模式的初中数学教学设计研究

4、初中数学新教材知识结构研究

5、初中数学中的研究性学习案例开发实施研究

6、学案导学教学模式在初中数学教学中的实践与研究

7、从两种初中数学教材的比较看初中数学课程改革

8、信息技术与初中数学教学整合问题研究

9、初中数学学习困难学生学业情绪及其影响因素研究

10、初中数学习题教学研究

11、初中数学教材分析方法的研究

12、初中数学教师课堂教学目标设计的调查研究

13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究

14、初中数学教师数学教学知识的发展研究

15、数学史融入初中数学教科书的现状研究

16、初中数学教师课堂有效教学行为研究

17、数学史与初中数学教学整合的现状研究

18、数学史融入初中数学教育的研究

19、初中数学教材中数学文化内容编排比较研究

20、渗透数学基本思想的初中数学课堂教学实践研究

21、初中数学教师错误分析能力研究

22、初中数学优秀课教学设计研究

23、初中数学课堂教学有效性的研究

24、初中数学数形结合思想教学研究与案例分析

25、新课程下初中数学教科书的习题比较研究

26、中美初中数学教材难度的比较研究

27、数学史融入初中数学教育的实践探索

28、初中数学课堂教学小组合作学习存在的问题及对策研究

29、初中数学教师数学观现状的调查研究

30、初中数学学困生的成因及对策研究

31、“几何画板”在初中数学教学中的应用研究

32、数学素养视角下的初中数学教科书评价

33、北师大版初中数学教材中数形结合思想研究

34、初中数学微课程的设计与应用研究

35、初中数学教学生成性资源利用研究

36、基于问题学习的初中数学情境教学模式探究

37、学案式教学在初中数学教学中的实验研究

38、数学文化视野下的初中数学问题情境研究

39、中美初中数学教材中习题的对比研究

40、基于人教版初中数学教材中数学史专题的教学探索

41、初中数学教学应重视学生直觉思维能力的培养

42、七年级学生学习情况的调研

43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考

44、新课程背景下学生数学学习发展性评价的构建

45、初中数学学生学法辅导之探究

46、合理运用数学情境教学

47、让学生在自信、兴趣和成功的体验中学习数学

48、创设有效问题情景,培养探究合作能力

49、重视数学教学中的生成展示过程,培养学生 创新思维 能力

50、从一道中考题的剖析谈梯形中面积的求解方法

51、浅谈课堂教学中的教学机智

52、从《确定位置》的教学谈体验教学

53、谈主体性数学课堂交流活动实施策略

54、对数学例题教学的一些看法

55、新课程标准下数学教学新方式

56、举反例的两点技巧

57、数学课堂教学中分层教学的实践与探索

58、新课程中数学情境创设的思考

59、数学新课程教学中学生思维的激发与引导

60、新课程初中数学直觉思维培养的研究与实践

2021各阶段数学教学论文题目相关 文章 :

★ 优秀论文题目大全2021

★ 大学生论文题目大全2021

★ 大学生论文题目参考2021

★ 优秀论文题目2021

2021毕业论文题目怎么定

★ 2021教育学专业毕业论文题目

★ 2021优秀数学教研组工作总结5篇

★ 2021数学教学反思案例

★ 2021交通运输方向的论文题目及选题

★ 小学数学教学论文参考(2)

新颖的数学论文题目有:

1、数学模型在解决实际问题中的作用。

2、中学数学中不等式的证明。

3、组合数学与中学数学。

4、构造方法在数学解题中的应用。

5、高中新教材中数学教学方法探讨。

6、组合数学恒等式的证明方法。

7、浅谈中学数学教育。

8、浅谈中学不等式的几何证明方法。

9、数学教育中学生创造性思维能力的培养。

10、高等数学在初等数学中的应用。

11、向量在几何中的应用。

12、情境认识在数学教学中的应用。

13、高中数学应用题的编制和一些解题方法。

14、浅谈反证法在中学教学中的应用。

15、探索证明线段相等的方法。

16、几个带参数的二阶边界值问题的正解的存在性研究。

17、关于丢番图方程1+x+y=z的一类特殊情况的研究。

18、变限积分函数的性质及应用。

19、有限集上函数的迭代及其应用。

20、小学课堂环境改着的行动研究。

21、网络环境下小学数学主题教学模式应用研究。

22、培养小学生数学学习兴趣的教学策略研究。

23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。

24、小学生数学创新思维的培养。

25、促进小学生数学课堂参与的数学策略研究。

26、使学生真正成为学习的主人。

27、改革课堂教学的着力点。

28、谈素质教育在小学数学教学中的实施。

29、素质教育与小学数学教育改革。

30、浅谈学生数学思维能力的培养。

创设情境,培养学生创造个性;构建数学生活的美好乐园;精彩不容“错”过;上“活”概念课,灵动新课堂;“小情境”成就“大课堂”;让数学“压力”变成“魅力”;让数学中的“错”更精彩;如何让学生在快乐中学数学;兴趣,开启智慧的大门;追求和谐之美 塑造数学魅力;数学课让学生“动”起来。

  • 索引序列
  • 有趣的数学小论文初一
  • 数学小论文初一有理数
  • 数学小论文初一实数
  • 数学小论文初一600
  • 小学数学有趣课堂论文题目
  • 返回顶部