生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体。农作物秸秆是生物质的一个重要组成部分,是当今世界上仅次于煤炭、石油和天然气的第四大能源,在世界能源总消费量中占14%,预计到本世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能源的40%以上,如何让秸秆生物质能源发挥最大的效益,是科学家们重点关注和研究的课题。1秸秆生物质利用的现状秸秆生物质具有多功能性,可作为燃料、饲料、肥料、生物基料和工业原料等。秸秆生物质利用主要有三个方面:一是种植(养殖)业综合利用秸秆:秸秆快速腐熟还田、过腹还田和机械化直接还田、生产优质饲料和食用菌。二是秸秆能源化利用:秸秆生物气化(沼气)、热解气化、固化成型、炭化、纤维素制燃料乙醇。三是以秸秆为原料的加工业:生产非木纸浆、人造板材、包装材料、餐具等产品,以及秸秆饲料加工业和秸秆编织业。国内现状我国农民对作物秸秆的利用有悠久的历史,秸秆除少量用于垫圈、喂养牲畜,部分用于堆沤肥外,大部分都作燃料烧掉。但随着省柴节煤技术的推广,燃煤和液化气的普及,秸秆大量富余。我国是世界上最大的农业生产国,纤维素生物质资源丰富,总量在12亿t以上。目前,农村秸秆综合利用率仅达到,与国家秸秆焚烧和综合利用管理办法中的年利用率达到60%,力争到2015年秸秆综合利用率超过80%的目标要求有很大差距。自20世纪80年代以来,我国生物质能发展迅速,具体表现在:生物质发电从无到有;沼气建设一路高歌;燃料乙醇产量跃居世界第三;生物柴油困境中寻求突破,得以快速发展。国外现状国外生物质能技术开发是从20世纪70年代末期开始的,现在已有了很大进展[7]。秸秆直燃发电的先进设备已投放市场,热解气化技术也飞速猛进,燃料乙醇等多项技术装备已进入规模化和商品化阶段。丹麦是世界上最早使用秸秆发电的国家。丹麦首都哥本哈根以南的阿维多发电厂建于20世纪90年代,是全球效率最高、最环保的热电联供电厂之一,每年燃烧15万t秸秆,可满足几十万用户的供热和用电需求。在加拿大首都渥太华以北的农业区,每年在收割季节,玉米收割机一边收割一边把玉米秆切碎,切碎的玉米秆作为肥料返到田里。在日本,主要有两种秸秆处理方式:混入土中作为肥料,或作粗饲料喂养家畜。近年日本地球环境产业技术研究机构与本田技术研究所共同研制出从秸秆纤维素中提取酒精燃料的技术,向实用化发展。秸秆在美国的用途很广,可作饲料、手工制品,还用来盖房。有关秸秆与纤维素乙醇的提炼问题,则是秸秆综合回收利用在美国的最新进展。2秸秆生物质的能源化应用国内外生物质能利用技术经过20多年的研究和发展,其能源化应用主要有:已经普及的节能灶、小沼气;处于示范、推广阶段的厌氧处理粪便和秸秆气化集中供气技术;处于中试阶段的生物质能压制成型及其配套技术;正在研究中的纤维素原料制取酒精、热化学液化技术、供热发电和燃气催化制取氢气等。可提供的能量主要有电能、热能和交通能源。电能生物质能发电主要有两条工艺技术路线,即气化发电和直接燃烧发电。世界各国高度重视秸秆发电项目的开发,将其作为21世纪发展可再生能源的战略重点和具备发展潜力的产业。丹麦已建有130多座秸秆发电站,秸秆发电等可再生能源已占该国能源消耗总量的24%,丹麦BWE发电技术也在西班牙、英国、瑞典、芬兰、法国等国投产运行多年,其中英国坎贝斯的生物质能发电厂是目前世界上最大的秸秆发电厂,装机容量万kW;其它如日本的“阳光计划”、美国的“能源农场”,美国有350座生物质发电站,总装机容量达7000MW,提供了大约万个工作岗位,2010年美国生物质能发电达到13000MW装机容量;印度有“绿色能源工厂”等,秸秆发电技术已被联合国列为重点项目予以推广。我国的秸秆发电技术虽然起步较晚,但发展较快,国内在建农作物秸秆发电项目136个,分布在河南、黑龙江、辽宁、新疆、江苏、广东、浙江、甘肃等多个省市。根据我国新能源和可再生能源发展纲要提出的目标和国家发改委的要求,至2020年,五大电力公司清洁燃料发电要占到总发电的5%以上,生物质能发电装机容量要超过3000万kW。热能秸秆生物质通过液化或固化等方式制造成燃料可直接供热,或是制造成秸秆清洁煤炭等等。秸秆煤炭是一种新型的生物质再生能源,环保清洁,远远低于原煤的成本和市场价格,应用范围极为广泛,可以代替木柴、原煤、液化气,广泛用于生活炉灶、取暖炉、热水锅炉、工业锅炉等。但是如何将生物质燃料像煤、煤气和天然气一样在老百姓的生活中普及,还需大力宣传和推广。交通能源秸秆的主要成分是碳、氢、氧等元素,有机成分以纤维素、半纤维素为主,其次为木质素、蛋白质、脂肪、灰分等,用秸秆转化的生物燃料如生物乙醇和生物柴油作为交通能源,同石油、天然气和煤等化石燃料相比,最大特点是可再生性和对环境更友好。国际上生物交通能源技术相对成熟,主要路线是:谷物、秸秆、其它植物等发酵生产乙醇-车用油、乙烯、无毒溶剂及上百种化工、原材料产品等;我国秸秆交通能源技术研究虽然起步较晚,但日趋成熟,有些正形成小型规模和商品化。3秸秆生物质能源化应用技术秸秆生物质能源化应用技术主要包括秸秆沼气(生物气化)、秸秆固化成型燃料、秸秆热解气化、直燃发电和秸秆干馏等方式。沼气发酵生物法(生物气化)秸秆生物气化是秸秆在厌氧条件下经微生物发酵而产生沼气和有机肥料的技术工程,可利用稻草、麦秸、玉米秸等多种秸秆,并可与农村生活垃圾、果蔬废物、粪便等混合发酵,原料组合非常灵活,来源充足,有着广阔的发展空间和发展潜力。秸秆沼气技术分为户用秸秆沼气和秸秆沼气集中供气两种形式。秸秆入池产气后产生的沼渣作肥料还田,提高了秸秆资源的利用效率,气化效率通常可达70%~80%。秸秆沼气技术的工艺流程为:秸秆预处理#堆沤#投料#加水封池#点火试气。由于秸秆中含有大量的纤维素、木质素,导致分解速度较慢,产气周期较长。若将秸秆直接入沼气池进行发酵产气慢、气量少、不经济、难以大面积推广应用。为了提高产气量,主要应解决预处理技术和发酵菌种及适合秸秆物料特性的高效厌氧发酵反应器研制等问题。沼气发酵的优点:(1)菌种在适合的情况下,发酵及供能速度快;(2)原料简单易得,利用率较高;(3)前期投入少,不需要大型机械和复杂环境。沼气发酵的缺点:(1)建厂条件高,需要配套的小项目多,投资成本高,短期内效益低;(2)小型沼气工程存在产气不稳定及发酵速度慢、相对效率低的问题;(3)大型沼气工程技术要求高,推广难度大。秸秆气化炉气化法(热解气化)秸秆热解气化是以农作物秸秆、稻壳、木屑、树枝以及农村有机废弃物等为原料,在气化炉中缺氧的情况下进行燃烧,使秸秆在700~850∃的气化温度下发生热解气化反应,产生一氧化碳、氢气、甲烷等可燃气体用于工业发电、热电联产、液体燃料合成、居民集中供气、工业燃气锅炉、工业干燥和采暖供热等方面。秸秆热解气化的优点:(1)秸秆燃烧充分,基本没有烟熏,残余灰烬少;(2)热值高,2t秸秆的热值相当于1t煤,燃烧温度高,火力强,节省时间;(3)燃烧的火焰温度、热能强度可控制调节,并实现开、关两位操作,使用方便;(4)不受季节约束,可实现不间断供气;(5)不需要辅助能源或化学添加剂。秸秆热解气化的缺点:(1)热解气化过程中挥发出多种有机化合物和焦油,若不加以回收利用,易造成环境污染和二次污染;(2)只利用了单一的可燃气,资源利用率低,且存在一定的安全隐患。经过近20年的努力,我国生物质热解气化技术日趋完善。我国自行研制的集中供气和户用气化炉产品已进入实用化试验及示范阶段,形成了多个系列的炉型,可满足多种物料的气化要求,在生产、生活用能、发电、干燥、供暖等领域得到利用。现已研发出突破性的生物质能源联产综合利用技术,即在气化炉内将生物质材料在限制供氧的条件下燃烧,发生一系列燃烧反应,同时回收产生的气、液、炭和热水。热解产生的气体主要含有甲烷、乙烯、一氧化碳、氢气等可燃性气体,可将其输入燃气轮机发电或直接向用户供气;产生的液体中含有酸类、醇类、酯类、醛类、酮类、酚类等多种化学成分,可用作家畜、家禽饲养中的消毒杀菌液、除臭剂,或用作促进作物生长的叶面肥,在有机农作物种植中施用;产生的固体生物质炭经过处理可作为工业用炭、生活用炭、有机复合肥、肥料缓释剂等;冷却炉体产生的热水可用于工业或民用,这项技术具有良好的推广和应用前景。直接燃烧法直接燃烧法是直接将收集的秸秆生物质原料集中、粉碎、干燥后投入锅炉中燃烧发电,可以采用锅炉-蒸汽-蒸汽轮机-发电机的工艺方式,也可以采用热电联供的方式以提高系统效率。该技术基本成熟,已经进入商业化应用阶段。对于秸秆发电厂来说,给料方式主要有两种:一种是切碎给料,一种是整包给料。以6MW秸秆直燃发电系统为例,该系统采用汽轮机组进行发电,发电效率20%,自用电率10%,碳转化率90%,系统总供电效率18%。直接燃烧法是目前在秸秆生物质能源化利用中最简单方便也是唯一实现规模化应用的方法。但缺点明显:其热效率仅为气化的三分之一,且投资大;由于秸秆燃料中碱金属以及氯元素的含量相对较高,燃烧后将产生较强的高温腐蚀,并引发床料聚团、结渣等问题;燃烧面积大,不能充分利用资源;生物质燃烧过程产生的细粒子影响城市和区域空气质量,降低大气能见度,损害人体健康,甚至影响区域和全球气候。根据国外生物质发电厂运行实绩统计以及我国权威部门测算,生物质燃烧发电成本远高于常规燃煤发电成本,约为煤电的倍。尽管如此,大力发展秸秆发电,不仅可以减少由于在田间地头大量焚烧、废弃秸秆所造成的污染,变废为宝,化害为利,而且对解决“三农”问题、促进经济发展具有重要作用。截至2008年8月底,我国共上马了生物质能发电项目136个,总装机规模220万kW。液化乙醇法乙醇作为替代能源,已在巴西、美国、瑞典、中国等得到应用。传统的由玉米秸秆制备乙醇的工艺包括预处理、水解、发酵3个步骤。通过预处理分离木质素等不利于发酵的成分、破坏纤维素的束状结构、提高纤维素水解效率、降低纤维素酶的成本、开发木糖发酵用的微生物菌种和优化生产过程等,均是生产乙醇的关键。而最近研究出的木材液化过程中,木质素首先被液化,其次是半纤维素,最后才是纤维素,这就有可能将秸秆中木质素等不利于发酵制备乙醇的成分与纤维素分离,达到秸秆预处理的目的。分离的程度是制备乙醇的关键。利用农作物秸秆为原料生产生物乙醇,同时联产重要的碳四平台化合物丁二酸。丁二酸可生产新型可降解塑料PBS等新材料,有着极其广阔的投资与应用前景。据了解,我国每年约产生亿t玉米秸秆,利用纤维素转化利用技术,可生产1500万t生物燃料及1800万t加工产品,相当于4500万t石油产生的价值。秸秆乙醇项目还可实现真正意义上的纯生物流程生产。其生产过程基本不消耗化学能源,每6t秸秆纤维大约产生1t乙醇、1t二氧化碳,除去损耗的余渣约,可代替煤用于锅炉。整个流程将是真正意义上的取之自然、用于自然、回归自然的纯天然过程。随着技术的不断进步,麦秸、玉米秆、稻草经过生产加工,最终都可以变成能够替代石油的燃料乙醇,可逐步替换目前的石油制品燃料,降低中国过高的原油依赖度,对缓解我国能源短缺、提高农民收入、保护大气环境等均有重要的战略意义。国家发改委宣布:中国将在未来使用更多的非粮乙醇燃料来替代原油,具体包括2010年开始每年使用超过200万t非粮农作物提炼出来的乙醇燃料以及20万t生物柴油,而到2020年分别增加至1000万t和200万t。压块固化燃烧法植物细胞中除含有纤维素、半纤维素外还含有木质素,木质素是具有芳香族特性的结构单体为苯丙烷型的立体结构高分子化合物,其常温下不溶于任何有机溶剂,但在200~300∃时会软化液化,此时如施加一定的压力可使其与纤维素紧密粘接,并与相邻秸秆颗粒互相胶接,冷却后即可固化成型。秸秆制煤、制炭技术是以玉米、大豆、棉花、水稻等农作物秸秆,以及废弃的花生壳、锯末、杂草、稻壳、树枝等为燃料,在隔绝空气的条件下,快速处理成秸秆炭,经粉碎后,再与粘土和其它粘合剂混合,压制成蜂窝煤型或炭棒型。压块固化燃烧的优点:(1)通过生物质压块机等进行短时间内的转化,非常方便省时;(2)密度大,燃烧时间长,体积缩小6~8倍,密度为;(3)热值高,方便运输和贮藏。压块固化燃烧的缺点:成本较高,尚未能推广用于电厂,多为小范围的供热等。压块固化是极具投资价值的高回报技术。秸秆煤炭应用范围广,可以代替木柴、液化气,能广泛用于生活炉灶、取暖炉、热水锅炉、工业锅炉等。根据农业部的目标,2010年,结合解决农村基本能源需要和改变农村用能方式,全国将建成400个左右秸秆固化成型燃料应用示范点,秸秆固化成型燃料年利用量达到100万t左右;到2015年,秸秆固化成型燃料年利用量达到2000万t左右。其它方法目前,还有将秸秆通过固态微贮水解预处理和催化产氢即利用氢能并通过氢能发电的研究。4展望据专家预测,如果将秸秆利用技术产业化,以50km为半径建设小型秸秆加工厂,那么按秸秆到厂价40元%t-1,农民每亩就可增收200元以上;如果我国每年能利用全国50%的作物秸秆、40%的畜禽粪便、30%的林业废弃物,以及开发5%的边际土地种植能源作物,并建设约1000个生物质转化工厂,那么其产出的能源就相当于年产5000万t石油,约为一个大庆油田的年产量,可创造经济效益400亿元并提供1000多万个就业岗位。今后我国秸秆生物质能利用技术将在以下方面发展:高效直接燃烧技术与设备、集约化综合开发利用、新技术开发。希望国家各级政府和部门加快推进秸秆生物质能源综合利用,促进资源节约型、环境友好型社会建设。 详情请咨询 河北浩瀚农牧机械制造有限公司 官网
2010 年,秸秆综合利用率达到,利用量约5 亿吨。其中,作为饲料使用量约 亿吨,占;作为肥料使用量约 亿吨(不含根茬还田,根茬还田量约 亿吨),占;作为种植食用菌基料量约 亿吨,占;作为人造板、造纸等工业原料量约 亿吨,占;作为燃料使用量(含农户传统炊事取暖、秸秆新型能源化利用)约 亿吨,占,秸秆综合利用取得明显成效。1.多元化利用格局形成。秸秆由过去仅用作农村生活能源和牲畜饲料,拓展到肥料、饲料、食用菌基料、工业原料和燃料等用途;由过去传统农业领域发展到现代工业、能源领域。秸秆能源化利用发生了质的变化,从农民低效燃烧发展到秸秆直燃发电、秸秆沼气、秸秆固化、秸秆干馏等高效利用。秸秆工业化利用发展迅速,秸秆人造板、秸秆木塑等高附加值产品实现了产业化生产,产品已经应用于北京奥林匹克公园、上海世博会等多项重大工程。2.技术水平明显提高。通过自主创新、引进消化吸收,多项技术取得一定突破。秸秆沼气、秸秆固化、秸秆人造板、秸秆木塑等综合利用工艺技术以及秸秆联合收获、粉碎、拾捡打包等机械装备得到成功应用;秸秆直燃发电技术装备基本实现国产化;秸秆清洁制浆等多项技术的应用部分实现了造纸工业污水循环利用和达标排放;自主研发的秸秆人造板粘合剂已经实现甲醛零排放。3.综合效益快速提升。通过大力推进秸秆综合利用,带动相关产业加快发展,重点地区的秸秆焚烧问题基本得到解决,大气环境污染问题得到有效缓解,带动了农村剩余劳动力就业、促进了农业增效和农民增收。2010 年养畜消耗的秸秆相当于节约粮食5000 万吨;作为燃料使用相当于节约标煤约6000 万吨,实现了环境效益、经济效益和社会效益的多赢。
秸秆生物质通过液化或固化等方式制造成燃料可直接供热,或是制造成秸秆清洁煤炭等等。秸秆煤炭是一种新型的生物质再生能源,环保清洁,远远低于原煤的成本和市场价格,应用范围极为广泛,可以代替木柴、原煤、液化气,广泛用于生活炉灶、取暖炉、热水锅炉、工业锅炉等。但是如何将生物质燃料像煤、煤气和天然气一样在老百姓的生活中普及,还需大力宣传和推广。交通能源秸秆的主要成分是碳、氢、氧等元素,有机成分以纤维素、半纤维素为主,其次为木质素、蛋白质、脂肪、灰分等,用秸秆转化的生物燃料如生物乙醇和生物柴油作为交通能源,同石油、天然气和煤等化石燃料相比,最大特点是可再生性和对环境更友好。国际上生物交通能源技术相对成熟,主要路线是:谷物、秸秆、其它植物等发酵生产乙醇-车用油、乙烯、无毒溶剂及上百种化工、原材料产品等;我国秸秆交通能源技术研究虽然起步较晚,但日趋成熟,有些正形成小型规模和商品化。3秸秆生物质能源化应用技术秸秆生物质能源化应用技术主要包括秸秆沼气(生物气化)、秸秆固化成型燃料、秸秆热解气化、直燃发电和秸秆干馏等方式。
第一条为大力推进生态文明建设,防治大气污染,保护和改善生态环境,促进农作物秸秆(以下简称“秸秆”)综合利用和农业增效、农民增收,根据《中华人民共和国农业法》、《中华人民共和国大气污染防治法》等法律法规,结合本省实际,作如下决定。第二条本省行政区域内全面禁止露天焚烧秸秆及树叶、荒草等,逐步建立秸秆收集储运利用体系。第三条促进秸秆综合利用和禁止露天焚烧工作,应当坚持政府推动、市场主导,因地制宜、分类指导,规划引领、政策扶持,综合施策、疏堵结合,源头防控、以用促禁,试点示范、全面推进的原则。第四条各级人民政府是促进秸秆综合利用和禁止露天焚烧工作的责任主体,农业、环境保护等相关部门按照规定的职责分别负责本行政区域内秸秆综合利用和禁止露天焚烧工作,并建立健全行政首长负责制、目标管理责任制和工作协调机制,综合运用行政、法治、经济、科技等手段,着力推进秸秆综合利用和禁止露天焚烧工作。第五条县级以上人民政府应当建立由发展和改革、农业、财政、环境保护、科技、公安、交通等部门参加的秸秆综合利用和禁止露天焚烧工作协调机制,按照各自职责分工,统筹协调,密切配合,互相支持,共同做好秸秆综合利用和禁止露天焚烧工作。第六条省人民政府应当根据本决定,组织编制全省秸秆综合利用中长期规划并组织实施。第七条设区的市、县(市、区)人民政府应当组织发展和改革、农业、财政、科技等部门,编制本行政区域秸秆综合利用规划,根据当地秸秆资源情况和综合利用现状,科学确定秸秆利用肥料化、饲料化、能源化、基料化、原料化等用途的发展目标,统筹安排秸秆综合利用项目和产业化发展布局。第八条省、市、县(区)财政部门应当根据当地秸秆综合利用产业化发展需要,将秸秆综合利用资金纳入本级财政预算,加大财政投入力度,重点支持秸秆机械化粉碎还田、秸秆青贮饲用、秸秆收集储运服务体系建设、生物质炉具推广以及秸秆气化、固化成型等资源化利用,并将秸秆收割、青贮、捡拾打捆、秸秆粉碎、机械化深松等农机具纳入农机补贴范围,结合耕地作业加强对秸秆机械化还田作业支持力度。第九条县级以上人民政府应当制定有利于促进秸秆综合利用产业发展的财政、投资、用地、用电、信贷、保险等扶持政策;对利用秸秆发电、加工板材等综合利用秸秆的企业,税务等有关部门应当根据秸秆实际利用量,按照国家有关规定落实税收减免、电价补贴等优惠政策。第十条各级人民政府应当积极推进秸秆全量化利用示范项目建设,以促进秸秆肥料化、饲料化、能源化、基料化、原料化利用为抓手,建立以市场为导向、秸秆利用企业为龙头、新型农业经营主体和广大农民参与的秸秆综合利用机制;充分发挥市场主体作用,鼓励引导各类企业和社会资本进入秸秆综合利用领域,扶持和发展一批秸秆综合利用重点企业,形成秸秆综合利用产业链,加快秸秆综合利用产业发展步伐。第十一条各级人民政府应当采取扶持政策措施,大力推广秸秆粉碎还田、免耕播种和保护性耕作技术;充分利用国家农机补贴政策,鼓励农民群众购买农业机械,采取秸秆机械化粉碎还田、快速腐熟还田、养畜过腹还田和制作有机肥等方式,不断提高秸秆肥料化利用率。第十二条各级人民政府应当采取扶持政策措施,积极推进秸秆养畜示范项目建设,大力发展饲料加工业,加快秸秆饲料化利用。鼓励规模养殖场、专业养殖户和饲料加工企业利用青贮、氨化、微贮和发酵等技术制作秸秆饲料,提高饲料品质。鼓励发展粮饲玉米种植,推广秸秆青贮、全株玉米青贮等技术,促进养殖业发展。第十三条各级人民政府应当采取扶持政策措施,大力推进秸秆压块利用,推广生物质采暖炉具;鼓励秸秆利用企业投资建设生物质成型燃料压块基地,利用秸秆生物气化(沼气)、热解气化、固化成型及炭化等技术发展生物质能。积极推进秸秆联户沼气工程,拓宽农村沼气发展空间。合理安排利用秸秆发电及工业锅炉燃煤替代项目。第十四条各级人民政府应当采取扶持政策措施,积极推进食用菌产业园建设,鼓励支持发展以秸秆为基料的食用菌生产,大力扶持发展秸秆基质产业,引导和带动秸秆基料化产业发展。第十五条各级人民政府应当采取扶持政策措施,积极发展以秸秆为原料的加工业,采用清洁工艺生产以秸秆为原料的农业育苗钵、绿化草毯、土壤改良有机炭肥等;鼓励发展以秸秆为原料的人造板材、包装材料、工业用纤维、人造革填充剂等产品;扶持发展秸秆编织业。
农作物秸秆常见利用如下:
1、以犁耕作业为主要手段,将秸秆整株、根茬或粉碎后直接翻埋到土壤中。或以秸秆粉碎、破茬、旋耕、耙压等机械作业为主,将秸秆直接混埋在表层和浅层土壤中。还可以用秸秆覆盖还田技术,是将作物秸秆或者残茬直接铺盖于土壤表面,这样可以减少土壤水分的蒸发
2、秸秆肥料化。发展有机肥产业,推广利用秸秆工厂化造肥,加大利用秸秆配制生物有机肥扶持力度。
3、农作物秸秆饲料化。秸秆在未经处理的状态下,可以用作粗饲料供给反刍动物食用,比如喂养耕牛。但是由于秸秆本身蛋白质含量比较低,木质素和纤维素的含量比较高,如果直接作为饲料其适口较差。
秸秆还田注意事项
1、注意数量,每亩地所能接受的秸秆数量是有限的,不要把多亩地的秸秆,集中到一亩地还田。
2、可以追施一定量的氮肥,因为秸秆在土壤分解时,会吸收一部分的氮素,如果不补充一些氮肥的话,下季作物会因缺氮,出现发黄的情况。
3、注意浇水,一方面是为了减少“跑风”情况,一方面有利于促进秸秆的分解。
4、病虫害严重的地块,玉米秸秆还田后,尽快喷施杀虫剂或杀菌剂,避免后续发生更加严重。
法律分析:原农业部办公厅、财政部办公厅联合发布了《关于开展农作物秸秆综合利用试点促进耕地质量提升工作的通知》(农办财[2016]39号),提出中央财政采用“以奖代补”的方式,安排10亿元专项资金,在北方10个省开展秸秆综合利用试点,到2019年,由试点向全国全面铺开,中央财政累计投入超过60亿元。支持内容:用于支持秸秆综合利用的重点领域和关键环节,包括秸秆能源化利用等秸秆综合利用税收优惠政策
法律依据:《中华人民共和国土地管理法》
第一条 为了加强土地管理,维护土地的社会主义公有制,保护、开发土地资源,合理利用土地,切实保护耕地,促进社会经济的可持续发展,根据宪法,制定本法。
第二条 中华人民共和国实行土地的社会主义公有制,即全民所有制和劳动群众集体所有制。全民所有,即国家所有土地的所有权由国务院代表国家行使。任何单位人不得侵占、买卖或者以其他形式非法转让土地。土地使用权可以依法转让。国家为了公共利益的需要,可以依法对土地实行征收或者征用并给予补偿。国家依法实行国有土地有偿使用制度。但是,国家在法律规定的范围内划拨国有土地使用权的除外。
第三条 十分珍惜、合理利用土地和切实保护耕地是我国的基本国策。各级人民政府应当采取措施,全面规划,严格管理,保护、开发土地资源,制止非法占用土地的行为。
第四条 国家实行土地用途管制制度。国家编制土地利用总体规划,规定土地用途,将土地分为农用地、建设用地和未利用地。严格限制农用地转为建设用地,控制建设用地总量,对耕地实行特殊保护。
首选压块或者颗粒制作,作为燃料使用很广泛。
作为目前最大的发展中国家,中国目前面临着碳排放这一严峻的环境问题。不少专家学者提出了不少方法,但是要从根本上化解难题,只靠改善城市的生产和消费方式是远远不够的,必须切实解决农村的环境污染和生态破坏问题,积极引导农民过低碳生活。那么,如何让农民尽快走出落后的生产生活方式,过上低碳生活?一是有关部门要加强宣传引导,帮助农民切实转变落后的生产生活方式。在农村生活中,秸秆是农民烧火做饭、取暖烧水的主要原料。但秸秆作为粮食生产的副产品,在科技发达的今天,不再是只能用于燃烧的废物,而是具有多种用途的能源和原料。如可以用做建沼气池、气化站的原料;可以转化分解为无公害有机肥料等。为此,要加强宣传,电视、广播、报纸等媒体要拿出更多的内容面向农村和农民,普及科学生产生活方式。二是面对农村生产生活方式长期落后、碳排放一直居高不下的现状,各级政府要从建设社会主义新农村的高度及倡导农民过低碳生活的角度,积极为农民提供一定的资金和技术支持。对于新能源要加大财政补贴力度。对于使用无污染文秘杂烩网新能源的项目,国家要加大财政支持力度,将钱用在农村清洁能源的开发利用上。如建秸秆气化站,平均每站投资55万元,占地亩,供气半径公里,设计供气能力300户~500户。这部分资金可由政府和农户共同承担,根据地区经济发展状况,划分不同的分担比例。在保证农民利益的前提下,引导农民和企业运用新技术和新方法,加大相关技术和机械的推广力度,如秸秆发酵、秸秆还田等多样化处理方式,采用化学处理和物理处理相结合等方法,探讨循环农业模式和技术体系,向产业化方向发展,不断提升秸秆处理和资源利用的综合效益,让秸秆变废为宝。三是有关部门要加强推进与监管并举策略。秸秆的转化利用和禁止焚烧,必须以疏为主、疏堵结合。在工作中,要坚持政策引导、示范带动、措施跟上,真正让农民在开展秸秆禁烧的同时收效益、得实惠,才能得到大多数农民的理解、认可和支持,秸秆才不会成为农村过量碳排放的元凶。从我国的实际情况出发,由于存在明显的地区差异,想全面用新能源代替秸秆焚烧目前尚不太现实,因而要渐次推进。以建设社会主义新农村为契机,全面启动农村环境综合治理工程,建立健全环境管理与监测体系,不断加大环境执法力度。对擅自焚烧秸秆的农民,由当文秘杂烩网地环保部门会同农业、公安等部门予以警告,责令其立即停烧,并依法对直接责任人予以处理;对焚烧秸秆造成严重大气污染事故的,要及时依法追究有关责任人的法律责任。 “低碳”生活是什么?听起来似乎离我们很遥远,然而,随着国家家电下乡和沼气池建设补助优惠政策的贯彻落实,许多农民都实实在在地感受着幸福的低碳生活。
被称为“拯救地球最后一次希望”的联合国气候变化大会12月19日落下帷幕,标志着“低碳”生活离我们渐行渐近。随着可持续发展在国人心中不断加深,越多的人们开始将环保的生活理念融入自己的生活当中。作为新兴理念倡导者的大学生,更是将这一国家的发展蓝图带到了大学校园,与大学生的日常生活紧紧联系在一起,从而创造出丰富多彩的环保生活方式。时下流行的低碳生活,正为广大学子所推崇。“80后”的低碳时尚低碳生活作为一种生活方式,先是从国外兴起,可以理解为减低二氧化碳的排放,就是低能量、低消耗、低开支的生活方式。如今这种生活方式已经悄然走进中国,网上也开始流行计算个人排碳量的特殊计算器。更让大家关注的是“80后”的大学生们对“碳排量”这一词语也颇为敏感,他们把低碳生活作为一种时尚,被称为一种“低碳经济”。在如今的大学校园里,“碳排量”、“低碳生活”、“低碳经济”已经成为很流行的名词,甚至有些大学生还在为其做宣传,安徽大学、合肥工业大学等6所高校的百余名大学生环保志愿者通过行为艺术表演等方式,倡导广大市民参与“低碳生活”。在我省的河南大学,成立了关于可持续发展以及环境保护方面的沙龙,其间讨论了有关节能减排等问题,以及诸多与大学生生活息息相关的“环保生活”。低碳生活的新兴词语,不仅是当今社会的流行语,更是关系到人类未来的战略选择,低碳生活在“80后”中渐成时尚并不为奇。有大学生表示:“热衷于节能环保,除了感觉这是我们‘80后’应该承担的社会责任,更觉得这是一种时尚。”在中国,越来越多的“80后”大学生,开始把节能环保当做一种时尚的生活方式。有大学生这样认为:“注意节能环保,就像在公交车上让座一样成为习惯。”随着节能环保理念在“80后”逐渐深入人心,他们的消费和生活观念也发生了一些变化,一位大学生这样说:“我改变了以前认为名牌才是时尚的想法,闲暇时间看书、做手工、做运动、参加公益活动,我觉得这种健康环保的生活方式才是真正的时尚。”大学生的低碳生活笔者对郑州市部分大学生的“低碳生活”做了一个调查,发现大学生选择“低碳生活”是有一些特点的。有保护环境的目的。44%的大学生认为,环保是为了保护生物多样性,是人类与动植物保持和谐相处。他们清楚地了解到许多动植物的锐减与人类的不遵守平衡规则有关,现今生态系统已经不平衡,环保就是为了维护生态系统的平衡。38%的大学生认为环保的根本目的是改善人类现在的生存环境、满足发展的需要。对关乎人类生存与发展的问题倍加关心。48%的大学生最关心的是与水有关的问题,诸如水土流失、水资源短缺、水污染,等等,他们意识到了水资源的宝贵性。42%的大学生关心的是全球变暖问题,最近几年气温的异常升高的确值得关注。在这方面,90%的大学生关注问题都是与人类生活和生产息息相关的,这与他们注重、倡导、实行“低碳生活”是一致的。日常行为习惯注重环保。随地扔垃圾、随地吐痰、践踏草坪等这样的小事经常发生在我们的身边,这些看似很小的日常行为习惯可以说是一些人的陋习,大家对此深恶痛绝。那么,这些事情会经常发生在大学生身上吗?在接受调查的大学生中,52%的大学生从来不做这些事情,42%的大学生偶尔会发生这样的行为,只有6%的大学生经常会这样做。这表明现代大学生有很强的环保意识,并且把这种意识带到行动中,真正对保护环境起到了从自身做起的作用。低碳是一种态度一升水,两包饼干,14个小时,80公里——这是河南广播电视大学绿色风环保协会成员小王从郑州徒步到许昌的一组数字。12月初,小王带着他的队友开展了这项活动,“听起来有些疯狂,但我们坚持了下来,每个人都很享受这个过程。”在平时生活中,小王也是能徒步的绝不坐车,并热情向周围同学宣传低碳生活。“宣传之后,也许有人还在继续以前的生活方式,周围的生态环境也没有立即发生转变。这个时候,不要灰心,因为你坚持的是正确的方向。”他说。“低碳生活,关键是一种态度。”许多大学生这样告诉笔者。他们认为,全面实现低碳生活不仅应成为人们的自觉行动,更是一项社会工程。实现低碳生活更需要政府、单位、社区、学校、家庭乃至个人的共同努力。④8
可以去这里找一下再看看别人怎么说的。再看看别人怎么说的。
生物质能与中国新农村建设摘 要:本文通过新能源——生物质能的概述,初步展示其性质特点。同时,结合当下时事,论述其在新农村建设中起到的作用来证明新农村的建设离不开生物质能的应用与发展,重点讲述了秸秆在实际应用中的途径与意义。而生物质能作为一种无污染,效益高的新性能源,通过查阅相关文献了解到其发展过程中存在的主要问题进行分析研究,进而提出了几点对策。关键词:生物质能,新农村建设,秸秆应用,现状分析生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。生物质能特点1) 可再生性 生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用; 2) 低污染性 生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应; 3) 广泛分布性 缺乏煤炭的地域,可充分利用生物质能; 4) 生物质燃料总量十分丰富。生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质;海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。 生物质能应用生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。目前人类对生物质能的利用,包括直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能源。据估计,每年地球上仅通过光合作用生成的生物质总量就达1440~1800亿吨( 干重 ),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。但是尚未被人们合理利用,多半直接当薪柴使用,效率低,影响生态环境。现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭 ,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。新农村建设离不开新能源发展 中国是一个农业大国,农村人口占大多数,因此农村和农民问题是关系到国家稳定与发展的关键性问题。近年来,随着农村经济的发展,农民生活水平不断提高,广大农村对于能源的需求量也在不断上升,传统能源的大量使用造成了严重的污染问题,同时日益增大的农村能源需求量也给我国本已严峻地能源形势带来了更大的挑战。根据《2004年世界BP能源统计年鉴》提供的资料,2003年世界石油探明总储量为1567亿吨,中国石油探明总储量仅占世界的,但中国的石油年消费量却占到了世界的年中国石油对外依存度达到了35%,专家预计这一数字到2020年将达到60%。同时我国农村许多地区风能、太阳能、生物质能源丰富,蕴含着发展新能源的巨大潜力,因此,将可持续发展理念引入农村能源利用领域,大力推进新能源建设,则是解决农村能源与环境之间矛盾的有效途径。新农村建设是我国现代化进程中的重大历史任务,目的在于改善农村生态环境,提高农民生活质量。其中一项重要措施就是大力发展循环农业,开发使用新能源。过去对于农村能源有一个十六字方针,即“因地制宜,多能互补,综合利用,讲求效益”,这是在短缺经济的背景下,针对能源危机而提出来的。目前,我国农村的社会、经济及其能源供需结构形势发生了重大变化,大量商品能源进入农村市场,农村能源面临着结构升级和如何现代化的问题,原十六字方针因缺少生态观和市场观,已不符合现时和未来农村能源可持续发展的实际。因而开发利用生物质能对中国农村更具特殊意义。中国80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。尽管煤炭等商品能源在农村的使用迅速增加,但生物质能仍占有重要地位。1998年农村生活用能总量亿吨标煤,其中秸秆和薪柴为亿吨标煤,占%。因此发展生物质能技术,为农村地区提供生活和生产用能,是帮助这些地区脱贫致富,实现小康目标的一项重要任务。 1991年至1998年,农村能源消费总量从亿吨标准煤发展到亿吨标准煤,增加了%,年均增长。而同期农村使用液化石油气和电炊的农户由1578万户发展到4937万户,增加了2倍多,年增长达%,增长率是总量增长率的6倍多。可见随着农村经济发展和农民生活水平的提高,农村对于优质燃料的需求日益迫切。传统能源利用方式已经难以满足农村现代化需求,生物质能优质化转换利用势在必行。 生物质能在新农村建设中的应用意义生物质能是绿色植物通过叶绿素将太阳能转化为化学能储存在生物质内部的能量。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,它通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能。以秸秆产能技术为例,秸秆产能是生物质能里面具有代表性的一种。秸秆属可再生能源,年复一年可保证能源的永续利用。有资料介绍,植物在燃烧过程中放出二氧化碳,但它在生长过程中要吸收二氧化碳,这放出和吸收是基本平衡的,所以对环境保护有利。同时从秸秆的化学成分和热值看亦有它的优势,将它燃烧产生的灰分不小于10%,而且灰分还是一种好的农作物所需的肥料,是发展循环经济的好项目。农作物的成熟期主要集中在春季和秋季,由于它们的生长期和成熟期与气候密切相关,因地区不同也有一些差异。我国秸秆的产生量主要集中在春末或春夏交替期、夏末或夏秋交替期及秋季。由于中国土地辽阔,秸秆的收获时间也存在一定的差异,但趋势是一致的。这里所谈季节性主要针对农作物成熟时产生的秸秆,至于农作物收获后,经过加工过程产生的生物质资源如稻壳等不在此列,它根据粮食的市场需求加工产生。以上秸秆产生的特点将对开发利用秸秆的管理和技术方面带来重大影响。当然对于一些具体情况,应该具体问题具体分析处理。从实际应用来说,秸秆作为能源原材料可用于制作秸秆煤或者用于秸秆发电。秸秆煤比起普通煤炭,秸秆煤不仅投入小、生产安全,还具有易燃耐燃、热效率高、残渣少等特点,在新农村建设中推广秸秆煤,不仅能使农村的生态环境得到保护,而且能使生产秸秆煤的农民家庭带来丰厚的利润回报。目前利用秸秆发电的途径有两种:一是秸秆气化发电,二是秸秆直接燃烧发电,用得最广泛的是秸秆直接燃烧发电。秸秆发电与常规的火力发电的不同之处主要是燃料不同引起燃烧系统的变化,重点是燃烧设备的变化,而热力系统的其余部分和电气系统与常规一般火电厂类同。秸秆燃烧的另一途径是利用已经运行电厂中的锅炉进行掺烧,这既可节约煤,又可增加秸秆利用的途径。各地电厂所配炉型不同,可以由秸秆的各种成型来满足不同炉型锅炉燃烧要求。有一种在煤粉炉中掺烧秸秆的思路是炉膛中下部稍加改造增加一块炉排烧秸秆,称之为联合燃烧。还有对将按要求被关闭的小型火力发电厂,可以对其锅炉改造或重新建设锅炉装置,改造成为生物质能电厂,这也是有利的途径。在新农村建设中使用秸秆发电,能够有利于减轻农民的负担,同时可以有利于保护环境。 生物质能在新农村建设的现状与发展对策我国政府历来重视生物质能的开发利用,将其作为能源领域的一个重要方面,纳入了国家能源发展的基本政策之中,先后签署了《里约宣言》、《气候变化框架公约》等国际公约,颁布了《中国21 世纪议程》和《中国环境与发展十大对策》,在十届全国人大第四次会议通过了《国民经济和社会发展第十一个五年规划纲要》,确定了可再生能源的发展目标,并提出要实行优惠的财税、投资政策和强制性市场份额政策,鼓励生产与消费可再生能源,提高可再生能源在一次能源消费中的比重,出台了一些支持可再生能源技术发展的政策性文件,这些都有力地推动着可再生能源(包括生物质能)的发展。十一届全国人大常委会第十次会议对可再生能源法修正案(草案)进行了初次审议。在审议中,常委会组成人员建议———大量消费煤炭造成环境污染, 农作物秸秆等发电利国利民。但现实却是,我国可作为能源使用的农作物秸秆、林业剩余物等却大量被废弃。资料显示,每年全国可作为能源使用的农作物秸秆资源量约为1.5亿吨标准煤,林业剩余物资源量约2亿吨标准煤,小桐子(麻疯树)、油菜籽、蓖麻、漆树、黄连木和甜高粱等油料植物和能源作物潜在种植面积,理论上可满足年产5000万吨生物液体燃料的原料需求。工业有机废水和畜禽养殖场废水资源量,理论上可以生产沼气近800亿立方米,相当于5700万吨标准煤。但到2008年底,全国生物质发电装机容仅315万千瓦,其中蔗渣发电170万千瓦,碾米厂稻壳发电5万千瓦,城市垃圾焚烧发电40万千瓦,秸秆、林木废弃物发电55万千瓦。生物质能源技术同其他新能源技术一样,在其发展的进程中面临着众多的问题。概括而言,这些问题主要有两类:一类是共同性的问题,即绝大多数生物质能源都面临的问题;另一类是特殊性问题,即生物质能各个领域中某些技术所面临的特殊问题,一般来说,由于生物质能源技术多种多样,其工艺特征不同、发展阶段不同、市场的取向不同,因此在发展过程中所面临的问题也有所不同。从共性上分析,主要存在以下几个主要问题。分别是:思想认识不到位,技术研发。创新能力弱,政府配套政策不健全,资金缺口大。投融资体系单一,市场体系建设不完善。针对这些存在的问题,为了生物质能的发展应需要做到:提高认识、理清思路、加大宣传,加强人才能力建设、加大科研投入,搞好试验示范,开展资源评价、调整种植业结构、发展能源作物。完善相关的法律法规,吸收外国的成功经验等等。在呼唤环保建设的今天,无污染的生物质能将会成为热门的能源,为新农村建设带来经济性和环保性的双效收益。总而言之,生物质能是可再生能源,它的应用对于新农村建设有重大的意义,有利于环保工作的进行,而且产能的原材料数量多,分布广,有部分原材料还起到了变废为宝,回收利用等,加大应用生物质能的力度,能够促进调整能源结构,保障能源安全。当然,生物质能也不是没有缺点的,热值及热效率低,体积大而不易运输。直接燃烧生物质的热效率仅为10%一30%。这些缺点都需要技术的革新和政策的相应变动来进行改善,从而为新农村建设发展指向一条明亮的,无污染的发展道路。 生物质能与中国新农村建设084386 汉语言文学 兰艳丽摘 要:本文通过新能源——生物质能的概述,初步展示其性质特点。同时,结合当下时事,论述其在新农村建设中起到的作用来证明新农村的建设离不开生物质能的应用与发展,重点讲述了秸秆在实际应用中的途径与意义。而生物质能作为一种无污染,效益高的新性能源,通过查阅相关文献了解到其发展过程中存在的主要问题进行分析研究,进而提出了几点对策。关键词:生物质能,新农村建设,秸秆应用,现状分析生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。生物质能特点1) 可再生性 生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用; 2) 低污染性 生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应; 3) 广泛分布性 缺乏煤炭的地域,可充分利用生物质能; 4) 生物质燃料总量十分丰富。生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质;海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。 生物质能应用生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。目前人类对生物质能的利用,包括直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能源。据估计,每年地球上仅通过光合作用生成的生物质总量就达1440~1800亿吨( 干重 ),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。但是尚未被人们合理利用,多半直接当薪柴使用,效率低,影响生态环境。现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭 ,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。新农村建设离不开新能源发展 中国是一个农业大国,农村人口占大多数,因此农村和农民问题是关系到国家稳定与发展的关键性问题。近年来,随着农村经济的发展,农民生活水平不断提高,广大农村对于能源的需求量也在不断上升,传统能源的大量使用造成了严重的污染问题,同时日益增大的农村能源需求量也给我国本已严峻地能源形势带来了更大的挑战。根据《2004年世界BP能源统计年鉴》提供的资料,2003年世界石油探明总储量为1567亿吨,中国石油探明总储量仅占世界的,但中国的石油年消费量却占到了世界的年中国石油对外依存度达到了35%,专家预计这一数字到2020年将达到60%。同时我国农村许多地区风能、太阳能、生物质能源丰富,蕴含着发展新能源的巨大潜力,因此,将可持续发展理念引入农村能源利用领域,大力推进新能源建设,则是解决农村能源与环境之间矛盾的有效途径。新农村建设是我国现代化进程中的重大历史任务,目的在于改善农村生态环境,提高农民生活质量。其中一项重要措施就是大力发展循环农业,开发使用新能源。过去对于农村能源有一个十六字方针,即“因地制宜,多能互补,综合利用,讲求效益”,这是在短缺经济的背景下,针对能源危机而提出来的。目前,我国农村的社会、经济及其能源供需结构形势发生了重大变化,大量商品能源进入农村市场,农村能源面临着结构升级和如何现代化的问题,原十六字方针因缺少生态观和市场观,已不符合现时和未来农村能源可持续发展的实际。因而开发利用生物质能对中国农村更具特殊意义。中国80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。尽管煤炭等商品能源在农村的使用迅速增加,但生物质能仍占有重要地位。1998年农村生活用能总量亿吨标煤,其中秸秆和薪柴为亿吨标煤,占%。因此发展生物质能技术,为农村地区提供生活和生产用能,是帮助这些地区脱贫致富,实现小康目标的一项重要任务。 1991年至1998年,农村能源消费总量从亿吨标准煤发展到亿吨标准煤,增加了%,年均增长。而同期农村使用液化石油气和电炊的农户由1578万户发展到4937万户,增加了2倍多,年增长达%,增长率是总量增长率的6倍多。可见随着农村经济发展和农民生活水平的提高,农村对于优质燃料的需求日益迫切。传统能源利用方式已经难以满足农村现代化需求,生物质能优质化转换利用势在必行。 生物质能在新农村建设中的应用意义生物质能是绿色植物通过叶绿素将太阳能转化为化学能储存在生物质内部的能量。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,它通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能。以秸秆产能技术为例,秸秆产能是生物质能里面具有代表性的一种。秸秆属可再生能源,年复一年可保证能源的永续利用。有资料介绍,植物在燃烧过程中放出二氧化碳,但它在生长过程中要吸收二氧化碳,这放出和吸收是基本平衡的,所以对环境保护有利。同时从秸秆的化学成分和热值看亦有它的优势,将它燃烧产生的灰分不小于10%,而且灰分还是一种好的农作物所需的肥料,是发展循环经济的好项目。农作物的成熟期主要集中在春季和秋季,由于它们的生长期和成熟期与气候密切相关,因地区不同也有一些差异。我国秸秆的产生量主要集中在春末或春夏交替期、夏末或夏秋交替期及秋季。由于中国土地辽阔,秸秆的收获时间也存在一定的差异,但趋势是一致的。这里所谈季节性主要针对农作物成熟时产生的秸秆,至于农作物收获后,经过加工过程产生的生物质资源如稻壳等不在此列,它根据粮食的市场需求加工产生。以上秸秆产生的特点将对开发利用秸秆的管理和技术方面带来重大影响。当然对于一些具体情况,应该具体问题具体分析处理。从实际应用来说,秸秆作为能源原材料可用于制作秸秆煤或者用于秸秆发电。秸秆煤比起普通煤炭,秸秆煤不仅投入小、生产安全,还具有易燃耐燃、热效率高、残渣少等特点,在新农村建设中推广秸秆煤,不仅能使农村的生态环境得到保护,而且能使生产秸秆煤的农民家庭带来丰厚的利润回报。目前利用秸秆发电的途径有两种:一是秸秆气化发电,二是秸秆直接燃烧发电,用得最广泛的是秸秆直接燃烧发电。秸秆发电与常规的火力发电的不同之处主要是燃料不同引起燃烧系统的变化,重点是燃烧设备的变化,而热力系统的其余部分和电气系统与常规一般火电厂类同。秸秆燃烧的另一途径是利用已经运行电厂中的锅炉进行掺烧,这既可节约煤,又可增加秸秆利用的途径。各地电厂所配炉型不同,可以由秸秆的各种成型来满足不同炉型锅炉燃烧要求。有一种在煤粉炉中掺烧秸秆的思路是炉膛中下部稍加改造增加一块炉排烧秸秆,称之为联合燃烧。还有对将按要求被关闭的小型火力发电厂,可以对其锅炉改造或重新建设锅炉装置,改造成为生物质能电厂,这也是有利的途径。在新农村建设中使用秸秆发电,能够有利于减轻农民的负担,同时可以有利于保护环境。 生物质能在新农村建设的现状与发展对策我国政府历来重视生物质能的开发利用,将其作为能源领域的一个重要方面,纳入了国家能源发展的基本政策之中,先后签署了《里约宣言》、《气候变化框架公约》等国际公约,颁布了《中国21 世纪议程》和《中国环境与发展十大对策》,在十届全国人大第四次会议通过了《国民经济和社会发展第十一个五年规划纲要》,确定了可再生能源的发展目标,并提出要实行优惠的财税、投资政策和强制性市场份额政策,鼓励生产与消费可再生能源,提高可再生能源在一次能源消费中的比重,出台了一些支持可再生能源技术发展的政策性文件,这些都有力地推动着可再生能源(包括生物质能)的发展。十一届全国人大常委会第十次会议对可再生能源法修正案(草案)进行了初次审议。在审议中,常委会组成人员建议———大量消费煤炭造成环境污染, 农作物秸秆等发电利国利民。但现实却是,我国可作为能源使用的农作物秸秆、林业剩余物等却大量被废弃。资料显示,每年全国可作为能源使用的农作物秸秆资源量约为1.5亿吨标准煤,林业剩余物资源量约2亿吨标准煤,小桐子(麻疯树)、油菜籽、蓖麻、漆树、黄连木和甜高粱等油料植物和能源作物潜在种植面积,理论上可满足年产5000万吨生物液体燃料的原料需求。工业有机废水和畜禽养殖场废水资源量,理论上可以生产沼气近800亿立方米,相当于5700万吨标准煤。但到2008年底,全国生物质发电装机容仅315万千瓦,其中蔗渣发电170万千瓦,碾米厂稻壳发电5万千瓦,城市垃圾焚烧发电40万千瓦,秸秆、林木废弃物发电55万千瓦。生物质能源技术同其他新能源技术一样,在其发展的进程中面临着众多的问题。概括而言,这些问题主要有两类:一类是共同性的问题,即绝大多数生物质能源都面临的问题;另一类是特殊性问题,即生物质能各个领域中某些技术所面临的特殊问题,一般来说,由于生物质能源技术多种多样,其工艺特征不同、发展阶段不同、市场的取向不同,因此在发展过程中所面临的问题也有所不同。从共性上分析,主要存在以下几个主要问题。分别是:思想认识不到位,技术研发。创新能力弱,政府配套政策不健全,资金缺口大。投融资体系单一,市场体系建设不完善。针对这些存在的问题,为了生物质能的发展应需要做到:提高认识、理清思路、加大宣传,加强人才能力建设、加大科研投入,搞好试验示范,开展资源评价、调整种植业结构、发展能源作物。完善相关的法律法规,吸收外国的成功经验等等。在呼唤环保建设的今天,无污染的生物质能将会成为热门的能源,为新农村建设带来经济性和环保性的双效收益。总而言之,生物质能是可再生能源,它的应用对于新农村建设有重大的意义,有利于环保工作的进行,而且产能的原材料数量多,分布广,有部分原材料还起到了变废为宝,回收利用等,加大应用生物质能的力度,能够促进调整能源结构,保障能源安全。当然,生物质能也不是没有缺点的,热值及热效率低,体积大而不易运输。直接燃烧生物质的热效率仅为10%一30%。这些缺点都需要技术的革新和政策的相应变动来进行改善,从而为新农村建设发展指向一条明亮的,无污染的发展道路。 【1】 秦大东曹军.浅论我国生物质能发展现状及对策.安徽通报,Anhui (1):133-135.【2】 闫廷满.生物质能: 秸秆; 发电的思考.东方电气评论第21卷,第1期,2007:1-4【3】 田永淑. 新型秸秆气化炉及净化工艺. 河北唐山,可再生能源 【4】 法忠勇.推进我国农村新能源推广应采取的措施, 甘肃农业2007 年第9 期【5】 陈亚中 生物质能源应用前景分析 2008【6】 百度百科
作用就是能够将这些玉米秸秆进行粉碎,然后也能够提高效率,可以缩短时间。使用玉米秸秆粉碎机的话,可以提高农活的效率,但是一定要正确的使用,千万不要出现故障。
集约化养猪场废水处理技术及应用养猪场废水是养殖业废弃物中最典型的一类污染物,主要包括猪尿、部分猪粪和猪舍冲洗水,属高浓度有机废水。由于养猪业属传统产业,用于废水处理的资金有限,所以养猪场废水处理各项指标要完全达标难度很大。迄今为止,国内外对养猪场废水处理已进行了大量研究和工程应用实践。文章分析总结了近3年来集约化养猪场废水处理的工艺研究和工程应用等方面的情况,现报道如下。1 猪场废水处理工艺目前,养猪场废水处理研究的工艺方法有物化处理、自然生态处理、好氧处理、厌氧处理等,实际工程应用中常常是这些处理技术的组合工艺。猪场废水悬浮物质浓度很高,悬浮物质是COD的主要来源之一,过高的悬浮物质将会影响后续生化处理的效果,所以在养猪场废水进入生化处理系统之前进行固液分离处理是必要的。固液分离机有振动筛、回转筛、水力筛和挤压式分离机等,其中挤压式分离机可以连续运行,效率较高。德国研制的FAN -SEPATOR的挤压式离心分离机,具有很好的分离效果,在我国的应用表明,悬浮物的去除效率较高,分离出来的泥渣含水率为80%左右。猪场废水氮磷含量很高, 采用磷酸镁铵(MgNH4 PO4 ·6H2O,俗称鸟粪石)化学沉淀法处理,使得废水中的氨氮转化为缓释肥中的营养元素,解决了氮的回收和氨的污染两大问题,同时达到较好的预处理效果,为后续的生化处理创造了条件。但该方法必须考虑废水中N、P、Mg的平衡问题,所以廉价的添加剂是化学沉淀法能否实际应用的关键。Lee S I等人利用海水或制盐工业中的废盐卤作为Mg2 + 添加剂,沉淀速度快,与添加MgCl2 作镁源对磷有等同的去除效果,是一种处理成本低廉的方法,但去除氨的效果不如添加MgCl2。自然生态法是运用生态学原理与工程学方法相结合的技术,应用较多的是稳定塘工艺和人工湿地系统。PoachM E[ 1 ]为了研究有机负荷和去除效果的关系,设计了6个并联的湿地- 池塘- 湿地处理系统,通过分别进水控制各处理单元的有机负荷,试验研究表明,最佳TSS、COD、TN、TP去除率分别为35% ~51%、30% ~50%、37% ~51%、13% ~26%,夏季处理效果明显优于冬季,处理效果受温度和降雨的影响较大。自然生态法处理建设费用较低,运行成本低廉,但受自然条件的影响较大,适宜于土地资源丰富的地区,具有良好的应用前景。好氧生化法主要有活性污泥法和生物接触氧化法。成文[2]采用接触氧化水解(酸化) -两段接触氧化-混凝工艺处理猪场废水,水解对CODcr有较高的去除率,稳定在60%~70%;接触氧化对COD的去除效果在50%左右。整个工艺对氨氮去除效果较好,出水氨氮在13~15 mg/L, CODcr在200~250 mg/L,经过聚合氯化铝混凝沉淀后,最终出水CODcr稳定在100 mg/L 以下,出水达到污水综合排放一级标准(GB8978 - 88) 。但该工艺程序复杂,占地面积大,对氨氮的去除效果还有待进一步研究。邓良伟[ 3 ]研究水解- SBR处理猪场废水,大大简化了处理工艺, 水解去除了大部分的COD, TP去除率达到55% ,但对氨氮去除效果不好;SBR对氨氮有较好的去除效果, TN的去除率为 ,氨氮的去除率在97%以上,但最终出水的COD残留量较大。猪场废水的高氨氮常常导致生化处理过程中碳源不够、C /N过低,从而影响总氮的去除效果,如果采用外加碳源则会增加处理成本。Ju -Hyun Kim等人利用序批式反应器( SBR) 实时控制工艺,采取补充源水作外加碳源的方式处理猪场废水,通过ORP以及pH值实时控制缺氧段、好氧段,TOC和总氮的去除率分别在94%和96%以上,能够有效除去TOC和TN,但对TP的去除效果不佳。猪场废水氨氮浓度高,对直接进行生化处理可能会产生影响,因此在生化处理前进行化学脱氮以减轻后续生化处理的难度,是目前猪场废水处理的一个新途径,于金莲等人提出了加石灰乳混凝沉淀- 脱氨- 好氧生化的联合处理工艺,在生化处理前进行混凝沉淀和脱氨预处理,一方面去除了大部分悬浮物和部分难降解有机物;另一方面提高pH值,脱除大部分氨氮,使后续生化处理降低能耗、容易达标。自然生态法和好氧处理都有各自的不足,自然生态法处理需要大面积的处理场地;好氧处理能耗大,去除污染物不完全。对于高浓度有机废水的处理,厌氧技术是必然选择之一。目前较常用也比较有效的处理方法是厌氧或厌氧+好氧后续处理工艺,研制高效厌氧反应器是猪场废水处理的关键。邓良伟等人利用内循环厌氧反应器( IC)处理猪场废水,水力停留时间0. 8~2. 0 d,COD 负荷3~7 kg / (m3 ·d) ,经过半年的运行,结果表明, COD 平均去除率为80. 3% ,耐冲击负荷好,BOD5 平均去除率为95. 8% , SS去除率为78. 5%。厌氧反应器中,部分有机氮转化为氨态氮,使得出水氨氮浓度比进水高2. 82% ,反应器对总氮、总磷的去除还需进一步的试验研究。一般而言,单纯使用厌氧工艺,出水有机污染物还很高,必须采用后续处理才能达到排放标准。考虑到SBR 对氨氮有较好的去除,杨朝晖等人提出沉淀- UASB - SBR工艺处理猪场废水,经厌氧消化可除去大部分的有机质,在SBR工艺中的曝气过程分为2个阶段,中间添置闲置阶段,既防止产生过多泡沫,又增强反消化作用。经过稳定运行, UASB 反应器COD 有机负荷稳定在8~10 kg/ (m3 ·d) , COD去除率达到70%左右,BOD5去除率80%左右,经SBR 处理可去除氨氮95% ~98% ,最终出水CODcr为186 ~412 mg/L, BOD5 为78~146 mg/L,氨氮为20 ~60 mg/L,出水仍残留部分生化处理难以去除的难降解有机物,这是因为厌氧消化较完全,消化液COD较低,而氨氮很高,导致后续生化处理碳源不足,影响了后续的处理效果。杨朝晖等人又研究水解酸化+好氧处理猪场废水工艺,采用水解酸化反应器(ASBR)进行厌氧处理,保持厌氧消化处理控制在水解、酸化阶段,使出水C /N 较高,保证了后续SBR的生化效果。经过最终混凝处理,COD去除率为99. 6% , BOD5 去除率为99. 8%, TN为88. 3% ,氨氮为99. 8% ,出水达到污水综合排放二级标准(GB8978 - 96) 。但水解酸化反应器COD 的容积负荷较低仅为2. 3 kg/ (m3 ·d) ,还需进一步研究提高其负荷。猪场废水中还存在大量细菌,如不经处理可能将大肠杆菌带入地表水和地下水,危害人类健康, JamesA Entry等人提出用水溶性的阴离子聚丙烯酰胺( PAM ) 处理猪场废水, 基建投资低、应用快捷。PAM、PAM与CaO复配和PAM与Al2 ( SO4 ) 4 复配能够使总的大肠杆菌和排泄物大肠杆菌减少30% ~50%,降低源水中的总磷、正磷酸根以及氨氮。正确的应用PAM及其复配物可以减少进入地表水和地下水中的污染物数量,保护水质。2 猪场废水处理技术应用情况目前,应用到实际工程上的猪场废水处理工艺有自然生态法处理、好氧处理、厌氧+好氧处理等。潘涌璋等人利用高级综合稳定塘处理猪场废水,经过稳定运行, 出水达到畜禽养殖业污染物排放标准(GB18596 - 2001)的要求,氨氮在60 mg/L 左右,总氮没有考虑,总停留时间在20 d以上,占地面积大,适合于土地资源较丰富的亚热带山区。由于凤眼莲对水体中的污染物质和营养物质有较好的吸收,]考虑用凤眼莲处理猪场废水,工艺流程如下:该凤眼莲生化处理系统对COD 的______去除率为43%~69% ,对总氮的去除率为55% ~72% ,对氮元素的吸收量很大,同时对总磷、挥发酚等污染物都有较好的去除效果。该处理系统的停留时间为30 d,日设计流量为600 m3 ,但需要较大的处理场地,且受气候条件影响很大,这都限制了该工艺的应用。目前,厌氧+好氧处理工艺应用较为广泛。胡海良等人将环形生活污水高效净化沼气装置应用到猪场废水的处理上,废水经过高效净化沼气装置后进入接触氧化池,进行自然曝气去除CODcr和BOD5 , 该工艺对COD、BOD的去除率达到90%以上,但出水氨氮为100~200 mg/L,去除效果不好。邓良伟等人进行了厌氧- 加源水- 间隙曝气(Anarwia)的研究,此工艺是厌氧+ SBR工艺的改良,因为厌氧消化较完全,导致好氧处理中C /N较低,影响后续消化效果,如果添加外源碳源或外源有机物提高C /N,运行成本随之增高,故提出了部分猪场废水进入厌氧池进行厌氧处理,另一部分进入沉淀配水池与厌氧出水混合后再采用间歇曝气的序批式反应器( SBR)处理,经过一年的生产性试验,该改良工艺对COD、氨氮、TN的去除率分别为93. 1% ~97. 4%、98. 2% ~99. 5%、93. 1% ,但最终剩余难降解的有机质还需要进一步物化处理才能达到排放标准。3 其他相关处理技术猪场废水处理还有其他的相关处理技术,如从养猪场生产过程的环境管理上考虑,在源头改进工艺减少排污,减轻污染。采用干清粪工艺取代水冲式清粪就是一种较好的方法,干清粪工艺是将粪便单独清出,不与尿、污水混合排出,这种工艺固态粪便含水量低,粪中营养成分损失小,肥料价值高,便于堆肥和其他方式处理,还可以节约用水,减少废水和污染物排放量,易于净化处理,是目前理想的清粪工艺。以万头规模化养猪场为例,将现有的水冲粪工艺改为干清粪工艺,每年可减少污水排放5. 5万吨,既节约了用水,又减少了污染。王德刚等人提出“零污染”干式法养猪,即在栏舍内铺上敷料,将猪的粪尿吸附混合,生物处理后进行二次发酵,并经工艺处理合成生态有机肥,对周围环境达到“零污染”的排放效果,同时降低猪群疾病发生率,加快生长速度,提高饲养效益以达到较好的经济效益、环境效益。目前很多学者提出了不少猪场废水处理的新方法,但都只停留在试验室小试阶段,真正应用到生产中还需要进一步的研究试验。邓良伟等人利用秸秆作为载体进行堆肥,在堆肥发酵过程中,产生的生物热蒸发浓缩“猪场废水”,达到处理猪场废水和生产有机肥的目的。以秸秆为载体用猪粪水及其厌氧消化液进行堆肥处理,其吸水比可达1∶5. 94~1∶6. 65,堆肥含水率基本在70%以上,超过一般堆肥过程含水率( 50% ~60% ) ,且能保持较长的高温期,说明以秸秆为载体吸收猪粪水在高温条件下进行堆肥的工艺路线是可行的。在堆肥过程中,氮、磷、钾是一个累加的过程,所获得的堆肥是一种肥效较高的有机肥,但该工艺消耗猪场生产废水有限,仅限于小规模的污水处理,对于大规模的猪场废水处理还需研究探讨。4 结论与展望根据以上分析,解决猪场废弃物污染问题,首先应当加强猪场环境管理,从源头污水减量化考虑,采用“零污染”干式养猪,减少用水量,基本实现零污染物排放;或采用干清的方式代替水冲,既不会流失营养物质,又可以大大减少废水的排放。养猪业属于传统产业,猪场废水处理必须寻求经济可行、处理效果好的方法。开发经济有效的处理工艺是目前猪场废水处理的重点。高效厌氧反应器的研制、氮磷污染物的去除、沼气发电技术及无害化资源能源的回收是今后猪场废水处理的重要研究方向。参考文献:[ 1 ] POACH M E. SwineWastewater treatment bymarsh - pond - marshconstructed wetlands under varying nitrogen loads [ J ]. EcologicalEngineering, 2004 (23) : 165 - 175.[ 2 ] 成文. 养猪场废水处理工艺研究[ J ]. 环境污染与防治, 2000, 22(1) : 24 - 27.[ 3 ] 邓良伟. 水解- SBR工艺处理规模化猪场粪污研究[ J ]. 中国给水排水, 2001, 17 (3) : 8 - 11.[ 4 ] 余远松. 凤眼莲水生生态系统处理大型养猪场废水的应用研究[ J ]. 农业环境保护, 2000, 19 (5) : 301 - 303.畜禽粪便用于生产饲料的方法随着我国畜牧业的蓬勃发展,生产规模化、集约化趋势越来越明显,在给人类提供丰富的畜禽产品同时,由于规模化养殖场的畜禽粪便和污水多不处理直接用作肥料,某些地区甚至直接排入江河,造成严重的环境污染。其实,畜禽粪便并非完全是不可利用的废物,粪便中有一部分营养物质能被动物直接再吸收,还有一部分物质可通过处理再被动物吸收。现在被各国所接受和使用的主要处理方法有以下几种。1 干燥法一般只适用于营养物质含量较高的鸡粪。1. 1 自然干燥将新鲜粪便单独或掺入一定比例糠麸拌匀后,摊在水泥地面或塑料布上,随时翻动,自然风干、晒干,然后粉碎,掺到其他饲料中饲喂。此法成本较低,操作简单,但受天气影响大,晒干时造成的环境污染大。1. 2 加温干燥干燥快速,可达到灭菌、灭杂草籽和去臭的目的,但是经处理后的粪便养分损失较大,成本较高。1. 2. 1 低温干燥 将畜禽粪便运到装有机械搅拌和气体蒸发的干燥车间或干燥机、隧道窖中,在70 ~500 ℃的温度下烘干,使畜禽粪便含水量降到13%以下,再储藏和利用。1. 2. 2 高温快速干燥 将含水量为70% ~75%的畜禽粪便通过高温快速干燥机,在不停旋转的干燥机中,畜禽粪便通过间接加热( 500 ~700 ℃) , 12 s左右,含水量即可降至13%以下。1. 3 微波处理干燥
是将玉米杆进行粉碎,然后作为一些产品,对一些牛羊都会有着一定的好处,而且也能够更好的饲养可以提高农活的效率,在生活当中也会解决一些事情。
通过查询可知,玉米秸秆粉碎机的设计的理论意义是将玉米秸秆粉碎并铺撒在田里,这样既环保又达到了很好的增肥效果。它是一种在玉米联合收割时,同步达到粉碎的一种新方法。
整细致点 别写这么概括的介绍就有的写了 多找综述看看 印象中这方面的综述很多啊
根据地区不同 成本差别很大比如就原材料玉米秸秆的成本来说东北地区相比北京就有很大优势所以成本要根据当地具体情况而定
洁净新能源有绿色能源之称,它的最大特点是燃烧或使用后不造成环境污染,有利于维持生态平衡。发展洁净新能源是未来能源业建设的发展方向。这里着重介绍生物技术特别是微生物技术在开发洁净新能源方面的应用研究所取得的成果。一、发展新型燃料电池燃料电池使用气体燃料(如氢、甲烷等)与氧气直接反应产生电能,其效率高、污染低,是一种很有前途的能源利用方式。传统燃料电池使用氢为燃料,而氢气不易制取又难以储存,致使燃料电池成本居高不下,美国宾夕法尼亚大学研究人员设计出以甲烷等碳氢化合物为燃料的新型电池,其成本大大低于以氢为燃料的传统燃料电池。研究人员曾尝试用便宜的有关碳氢化合物为燃料,但化学反应的“残渣”很容易积聚在镍制的电池正极上导致断路,而使用铜和陶瓷的混合物制造电池正极,解决了“残渣”积聚问题。新研制的燃料电池可用甲烷、乙烷、甲苯、丁烯、丁烷等5种碳氢化合物做燃料源,可以通过微生物发酵途径生产甲烷等碳氢化合物,成为研制新型燃料电池较为丰富而广泛的原料来源。目前这种新型燃料电池的能量转换效率还较低,有待进一步研究改进提高。二、开发军民两用的生物能源不论军用的兵器如机动装备大部分,或是民用的汽车等交通工具均以汽油、柴油为燃料、若用氢气作燃料更为理想,其特点:(1)洁净,不污染环境;(2)热效率高,约是汽油的3倍;(3)生物制取氢气有潜力。正因为如此,充分利用生物技术生产氢气将大有可为。如用一种红假单胞菌(Rhodopseudomonassp)为生产菌,以淀粉为原料生产氢气取得良好效果,每消耗1克淀粉可产氢气1毫升。用氢和其他少量燃料混合可替代汽油、柴油。乙醇也是一种洁净生物燃料,用途广泛,可用来替代汽油和柴油。日本、加拿大等国家用基因技术建构的“工程酵母”以其高产酶的活力,酶解纤维素制取乙醇;也有建构的“工程大肠杆菌”能将葡萄糖有效地转化成乙醇;这类乙醇均可替代汽油或柴油使用,随时为机动装备提供大量生物燃料。其实,产氢、产乙醇的生物不仅有细菌或“工程菌”,而且某些藻类或其他微生物均有生产氢或乙醇的能力。美国加州大学等研究人员发现一种叫莱因哈德衣藻(Chlamydomonasreinhadtii)的绿藻(真核生物)具有持续大量产氢能力。关键在于控制其生长环境,从生长营养液中去除硫素,在此情况下藻体停止了光合作用、不产氧;在无氧条件下藻体必须以其它途径产生腺茸三磷酸酯维所需要的能量,利用所贮存的能源以实现其最终产氢的目的。一般说,这种天然藻产氢量很低,为此,一方面控制其生长所必需的或障碍生长的关键因素;另一方面,采用分子遗传技术改造藻的特性,以提高其产氢能力。由此可见,充分利用各种生物开发军民两用的洁净生物能源是有潜力的。三、微型绿藻是索取氢能的最廉价途径上面已提到绿藻和微生物产氢途径,这里强调微型绿藻制取氢气的前景,科学家预测,当石油和天然气耗尽时,氢气也许是一种较为理想的能源。关键在于找到一种廉价产氢的方法。有专家认为,利用普通池塘绿藻的产氢能力或许是个最实际的选择---经济实用,分布广。绿藻这种微型低等植物繁殖快,全世界到处都有它的分布,它在有水、阳光的条件下具有制造氢气的能力。在人工控制下可迫使绿藻按要求生产氢气,有实验研究报告指出,一升绿藻培养液每小时可产氢3毫升,还需进一步提高产氢效率。注意两点:(1)运用基因工程技术改进这种产氢系统,有可能使氢气产量增加10倍或更高些;(2)细胞固定化技术的应用,有可能提高微型绿藻持续产氢能力。在德国、加拿大、日本等国家为实现“洁净氢能源”的开发计划,积极建立“产氢藻类农场”,为实现氢能源规模生产做出巨大努力。加拿大已建成每天生产液态氢10吨的工厂;日本把产氢藻和光合细菌的高效产氢列为研究重点,将研制用于火箭发动机使用的冰糕状“脂膏氢”,以提高火箭发射推力。美国期望到2030年把氢能源作为美国一种主要能源。看来,微型绿藻和光合微生物生产氢能源将大有开发之势。四、充分利用有机垃圾或有机废水为原料生产氢能源日本北里大学研究人员用生活垃圾制取氢气取得良好效果,产率颇高,可将氢气不仅直接作洁净能源使用,而且为燃料电池的开发提供优质原料,更为经济实用,具有潜在的开发优势。研究人员选用一种厌氧性细菌即一种“梭菌”AM21B菌株,与加水研碎的剩菜、鱼骨等生活垃圾混合在一起,于37℃下发酵生产氢气,所得实验结果表明,每1公斤生活垃圾可获49升氢气;制氢后所余下的生活垃圾呈糊状,无臭味,可进一步实现资源化,使之成为农田有机肥料如堆肥。据称,日本研究人员为制取氢气的生活垃圾可循环利用,还研制新型“发酵设备”更有利于提高生活垃圾制氢效力。我国哈尔滨建筑大学研究人员已建立以厌气活性污泥为原料的有机废水经微生物发酵法生产氢的技术。有几个特点:(1)发酵法未采用纯菌种;(2)未用细胞固定化技术可持续产氢;(3)制氢系统工艺运行稳定;(4)所获氢的纯度高;(5)制取氢的产率比国外同类小试验高几十倍。目前已进入中试规模的连续产氢,其量可达每立方米产氢立方米,纯度达到99%。有望进入工业化生产,为氢能源的开发提供一条可行的生物途径。五、以CO2废气为原料开发新能源来源广泛的CO2既是重要温室气体之一,也是化工原料,当CO2的释放与吸收未达到动态平衡时必然给生态环境产生不良后果。为此,CO2作为一类废气如何进一步转化,实现资源化的研究有着重要意义。其中将其实现能源化是值得注意的研究课题。至少可采用化学方法和生物方法使CO2转化能源。(一)、化学方法利用催化剂:用高效催化剂沸石,约99%的活性铝颗粒表面吸附铑、锰,按CO2与氧的比例为1∶4,300℃、1个大气压条件下,至少90%的CO2可转化为甲烷,若10个大气压时,其转化率可达100%。当然也有一个降低氢、铑的成本问题。所获得的甲烷不仅提供能源和化工原料,同时包括CO2在内减轻温室效应发生带来好处。(二)、生物方法利用藻类:前面已提到藻类特别是那些微型单胞藻不论是原核的或是真核的,它们是吸收CO2进行光合作用生产绿色新能源最有效途径。大量微型藻增殖过程中充分利用CO2,在光照条件下合成有机物将太阳能储存起来,其藻体生物量称得上是个巨大的“储能库”,因此,将其制作固体燃料或者说干燥燃料是可行的,英国将它用于发电;也可用各类藻体包括海藻在内的生物量为原料,通过发酵途径制取甲烷及其它能源;微型藻细胞固定化连续产氢能也是可取的。正因为各种藻类所表现特定功能,既是“储能库”,又是“供能库”,从中可获取所需要的洁净能源。因此有专家预计,利用CO2制造生物能源特别是氢能将是本世纪大有希望而较为理想的能源供应。六、微生物发酵生产乙醇大有可为乙醇俗称酒精,既用于医药、化工,又是未来要发展的一类无污染的洁净能源,也是重要再生能源之一,具有燃料完全、效率高、无污染等特点。用它稀释汽油所配制成“乙醇汽油”,替代含铅汽油,功效可提高15%左右。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,大大减少大气污染。既然乙醇用于汽车燃料显示其优越性,那么如何采用最佳途径来生产乙醇呢?其中采用最经济而实用的办法制取乙醇有两方面值得认真考虑:一是利用废弃的农业秸秆为原料生产燃料乙醇;二是培植绿藻生产乙醇。就前者而言,秸秆在全球是一类量大面广的作物废弃物,我国每年有亿吨秸秆的产出,直接燃烧污染环境,如果利用这些秸秆哪怕是一部分生产燃料乙醇的话,那是一件利国利民的事,有利于保护生态环境。如果利用乙醇作为汽油添加剂来代替现用的含铅汽油添加剂---甲基叔丁基醚(MTBE)的话,那么不论是改造汽油提高效率或是保护生态环境是非常有益的,很有商业潜力。2年前在美国燃料用乙醇达413万--586万吨,约占美国乙醇消费量的83%-87%;目前我国燃料乙醇生产及市场都是空白。然而,乙醇作为一种有效的汽油含氧添加成分是有其优越性的,在美国,有8%的含氧物汽油中所添加的含氧物是乙醇,而现在MTBE的替代物只有乙醇。有报道指出,美国加州至少有1万处地下水受到渗漏的MTBE污染,全美国则有14%的饮水井被污染,而MTBE是动物的致癌物,对人体健康也有潜在的危害。政府一方面禁止汽油中使用MTBE添加剂;另一方面积极发展乙醇作为其替代物的生产。美国加州一个州今后2年每天需要乙醇达万桶(注:美制1桶=31.5加仑),5年后需求量将为万桶。为此,美国的乙醇生产商已在扩大乙醇的生产能力;无疑,MTBE的禁用给乙醇工业带来无限商机。从此也可以看出,把握开发燃料乙醇的商机正是发展绿色新能源的必需。在我国,有条件,有能力,也有技术充分利用废弃的各类秸秆实现资源化或能源化是完全可能的。每年只要从亿吨秸秆中利用1亿吨来生产燃料乙醇的话,那么乙醇产量可达2000万吨。据有关专家对其经济评估,认为以秸秆为原料生产乙醇的成本低于用粮食发酵生产乙醇的成本;而高于炼油厂生产汽油的成本,但与汽油添加剂MTBE相比更显示其竞争力。尽管秸秆生产燃料乙醇有它一定特色和优越性,但对其生产工艺和效力尚需作进一步探究。至于绿藻制取乙醇与传统微生物发醇途径生产乙醇是大不相同的。绿藻是一类自养型真核生物,其中如单细胞小球藻用来开发新能源很有潜力。日本一家公司的研究小组从表层海水中获得一种叫Tit-1的海藻新品种,类似小球藻(直径约10μm),白天它与普通植物一样在光照条件下将CO2转化为淀粉贮藏起来,还能在弱光或厌氧条件下将淀粉转化为乙醇,有其特点:不会造成环境污染,能吸收大气中CO2,大大减轻温室效应,并获得乙醇产品。这种自养型与异养型的有机结合生产乙醇是个典型实例,具有独特的优越性。总之,上面提到的六个方面不论以何种形式获得各种不同的燃料或能源,作为一类不污染环境的一代洁净生物燃料或生物能源均有“绿色能源”之称,是未来能源建设的发展方向。现代文明进步,人类的生存与发展,迫切需要洁净新能源和无污染的生态环境,它们彼此之间是紧紧联系在一起的。可以预料,21世纪随着各项建设的需要和科技进步,绿色能源必将得到进一步发展。
秸秆微贮即农作物秸秆微生物发酵贮存技术,是农作物秸秆提高其营养价值的秸秆处理方法。近年来,秸秆氨化、碱化、青贮等秸秆处理技术的推广应用,为合理开发饲料资源,充分解决饲草、饲料问题作出了积极的贡献,并取得了巨大的经济效益和社会效益。但是,青贮对秸秆的要求较高,季节性较强:而氨化的液氨和氨水运输又很不方便,而且还有一定的不安全性。 秸秆微贮技术通过加入木质素纤维素发酵剂秸秆微贮宝,在密闭的厌氧条件下,促进秸秆纤维素,半纤维素和木质素的分解,改善秸秆的适口性,提高其消化率,并增加营养。秸秆微贮宝处理农作物秸秆,具有产量高、成本低、增重快,无毒害等特点,可以作为一种处理秸秆的新技术,生产的饲料广泛应用于草食家畜的饲养。这一技术的成功应用,为我国农区作物秸秆的有效利用和发展农区畜牧业,又开辟了一条新的途径。[编辑本段]特点 微贮秸秆有如下一些特点: 1.适口性好。秸秆经微生物发酵后,质地变得柔软,并具有酸香酒气味,适口性明显提高,增强了家畜的食欲。与未经过处理的秸秆相比,一般采食速度可提高43%,采食量可增加20%以上。 2.营养价值和消化率高。在微贮过程中,经秸秆微贮宝作用后,秸秆中的纤维素和木质素部分被降解,同时纤维素木质素的复合结构被打破。这样,瘤胃微生物能够与秸秆纤维充分接触,促进了瘤胃微生物的活动,从而增加了瘤胃微生物蛋白和挥发性脂肪酸的合成量,提高了秸秆的营养价值和消化率,使秸秆变成了牛、羊的优质饲料,促进牛、羊增重。生产实践表明,3公斤微贮秸秆相当于l公斤玉米的营养价值。通过微贮,麦秸的消化率可提高55.6%,水稻秸秆的消化率可提高57.9%,玉米秸秆的消化率可提高61.2%。用微贮秸秆饲喂牛、羊和未处理秸秆相比,可使其日增重提高30%以上。 3.成本低廉。只需50克或50毫升秸秆微贮宝,就可以处理1000公斤秸秆,而氨化同样多的秸秆则需用尿素40—50公斤,两者的处理效果基本相同。但微贮秸秆可比尿素氨化降低成本80%左右,其使用安全性能也比氨化法高。 4.操作简便。秸秆微贮与青贮、氨化相比,商更简单易学。只要把秸秆微贮宝活化后,放到1%的盐水中,然后均匀地喷洒在秸秆上,在一定的温度和湿度下,压实封严,在密闭厌氧条件下,就可以制作优质微贮秸秆饲料。微贮饲料安全可靠,微贮饲料菌种均对人畜无害,不论饲料中有无微生物存在,均不会对动物产生毒害作用,可以长期饲喂,用微贮秸秆饲料作牛、羊的基础饲料可随取随喂,不需晾晒,也不需加水,很方便。 5.贮存期长。秸秆微贮宝发酵处理秸秆的温度为10—40℃且无论青的或干的秸秆都能发酵。因此,我国南方部分地区全年都可以制作秸秆微贮饲料。华巨秸秆微贮宝高效生物发酵剂,可利用秸秆中的碳水化合物迅速发酵,繁殖快,成酸作用强,具有很好的抗腐败防霉能力。秸秆经微贮发酵后,能够形成大量的有机酸,这些有机酸具有很强的杀菌抑菌能力,故发酵的微贮秸秆饲料不易发生霉变,可以长期保存。[编辑本段]基本原理 秸秆中加入华巨秸秆微贮宝高活性发酵菌种后,使秸秆中分解纤维素的菌数大幅度提高。在适宜温度、湿度和密闭的厌氧条件下,秸秆中的纤维素、半纤维素和木质素大量降解,产生糖类,继而又被转化成乳酸和挥发性脂肪酸,使pH值下降到4.5—5.0,抑制有害菌和腐败菌的繁殖。经微贮后,秸秆转化成优质粗饲料,不但提高了饲用价值,而且不容易发生腐败,可以长期贮存饲喂。微贮的作用主要表现在以下几个方面: 1.在微生物的作用下,秸秆中的纤维素、半纤维素和木质素被酶解,使秸秆变得膨松和柔软,提高了秸秆的适口性,增加了动物采食量。 2.由于微生物发酵的作用,使变得柔软和膨胀的秸秆能够充分地与反刍动物瘤胃微生物相接触,从而使粗纤维类物质能够更充分地被瘤胃微生物所分解,提高了秸秆的消化率。 3.微贮时,秸秆中的纤维素、半纤维素被微生物部分地分解,并转化为糖类和脂肪类,从而提高了秸秆的碳水化合物和脂肪酸的含量,提高了秸秆的营养价值。秸秆经微贮后,其代谢能和有机酸含量显著提高,而纤维素、半纤维素和木质素的含量则明显下降。 4.秸秆微贮是在密闭的厌氧条件下进行的,由于秸秆微贮宝微生物菌群可以秸秆中的纤维素为底物,将其酶解为木聚糖,进而降解成木聚寡糖、木三糖和木二糖等,最后降解成木糖。然后再经无氧发酵,将其转化成有机酸类。随着有机酸含氨蹭加,封闭的秸秆微贮容器内氢离子浓度赶齐越高,从而导致秸秆饲料的pH值逐步下降,当pH值下降到4.5—5.0时,酸性抑制了各种微生物的活动,从而使各种有害菌热不能繁殖,使微贮秸秆饲料可以长期保存。[编辑本段]微贮发酵过程有氧发酵过程 微贮是在于无氧条件下利用微生物发酵的秸秆处理技术。但在秸秆的封闭过程中,秸秆原料中或多或少地存在着氧气,这就使得在发酵的最初几天里好氧性微生物得以生长和繁殖。通过这些好氧性微生物的活动可将秸秆中的少量糖分和氧气转化成二氧化碳和水,最后氧气越来越少,直至氧气的含量下降为零。这时好氧性微生物就不能生存,最后全部死亡。秸秆的酶解过程 由于微生物的活动,产生了各种酶类,这些酶类市破坏秸秆中的纤维素、半纤维素和木质素的结构,使它们逐级降解,形成各种糖类物质。秸秆的酶解过程是比较缓慢的,随着微牛物繁殖量的增加和微生物活性的提高,秸奸被逐步酶解为糖类物质。在整个酶解过校中,半纤维素最易被降解,而形成较大数量的木糖、阿拉伯胶、葡萄糖、甘露糖和半乳糖。当这些糖类达到一定浓度时,微生物就可以利用这些糖分作为底物产酸发酵。产酸发酵过程 微生物利用秸秆饲料中的糖类作为底物,并将它们转化为有机酸类的过程。秸秆经有氧发酵后,氧气被消耗尽,需氧微生物不能存活。这时厌氧性微生物开始活动。它们在厌氧条件下,不能将糖类底物彻底转化成水和二氧化碳,只能分解为各种有机酸类,包括已酸、丙酸、乳酸、丁酸等。这些有机酸在秸秆饲料中发生电离,形成大量的氢离子,使秸秆饲料酸化,pH值下降。当pH值下降到4.5—5.0时,酸性又抑制了各种微生物的活动,从而使微生物活动减慢,而形成良好的秸秆微贮饲料。[编辑本段]秸秆微贮成功的条件 ①.秸秆微贮必须在密闭的无氧条件下进行。秸秆中氧气含量越少,有氧发酵时间越短,好氧性腐败微生物作用的时间越短,秸秆越不易发生腐败霉烂,微贮越容易成功。所以在填装微贮料时,一定要装紧压实,尽可能多地排除空气、封严,以防漏气。 ②.微贮时一定要保证适宜的湿度。水分过多或过少,微贮均不易成功。一般微贮要求秸秆饲料的水分为60%—70%。 ③.温度要适宜。一般温度在10—40℃的范围内,微贮最易成功。 ④.微贮时要添加秸秆微贮宝高效活性菌种,若不添加菌种,杂菌发酵较为激烈,微贮则不会成功。[编辑本段]原料配比概述 秸秆微贮饲料的原料配比是:每1000公斤作物秸秆(含水量在15%以下)加入约1000公斤水,加入50克秸秆微贮宝。将原料混合均匀,装入微贮窖中,封闭好,在10—40℃的温度条件下,进行发酵。其流程图如下: 选取秸秆→切短→装窖→压实→密封→出窖→饲喂→秸秆微贮宝→活化→喷洒准备微贮设施 制作微贮秸秆大多利用微贮窖进行。微贮窖可以是地下式或半地下式的,应选在土质坚硬,排水良好,地下水位低,距畜舍近,取用方便的地点。微贮窖最好用砖和水泥砌成口大底小的梯形窖,斜度一般以6—8度为宜。准备秸秆 选取新鲜无霉变的秸秆,微贮前必须切短,以便压实,保证微贮饲料的质量,一般玉米秸切成2—3厘米长,麦秸和水稻秸可切成5—6厘米长。准备菌液 (1).菌种活化。将每袋50克或50毫升的秸秆微贮宝倒入2000毫升低于40℃、1%的白糖溶液中,经充分溶解后,在常温下放置1—2小时备用。活化的菌种的用量,应根据当天能处理秸秆的数量来确定。 (2).菌液配制。把已经活化好的菌液加入到含盐—1%的水溶液中,以备喷洒。各种配料用量见表如下: 种类 重(千克) 微贮宝量 食盐量(千克) 水量(千克) 贮料含水量 玉米秸 1000 50克/毫升 7.5 750 60%-65% 稻秸 1000 50克/毫升 8.5 850 60%一65% 麦秸 1000 50克/毫升 800 60%一65%装署 将切短的秸秆装入微贮窖中,每装20—30厘米厚,喷洒一遍菌液,要求喷洒均匀,使菌液与秸秆充分接触。用脚踩实或用机械压实。然后继续装入秸秆,装20—30厘米厚后,再进行喷洒和踩压,如此反复装料,直至装到高出窖面30—35厘米为止。封窖 秸秆装好后,一般可在最上层按每平方250克均匀地撒上一层盐。然后用较厚的塑料薄膜盖好,塑料薄膜应比窖口要稍大,以便保持窖内密封。盖好后排除窖内的空气,然后封严,再在塑料布上加盖一层干草,以便保温。然后用泥土封闭压实。 封窖后要及时进行检查,防止踩压,防止深陷,如出现裂缝或漏洞,应及时封堵以防漏水漏气。在微贮过程中,更应防止漏水,一旦漏水,秸秆易腐烂变质。发酵时间的长短因气温的不同而有一定的变化。一般10—40℃的气温条件下,经10—15天就可完成微贮发酵。开窖利用 微贮发酵好后,即可开窖取用。开窖时,应从窖的一端开始,揭开塑料薄膜,由上至下逐段垂直取用。用完后用塑料薄膜封盖好,切忌全部揭开塑料薄膜,否则,会有大量的空气进入窖内,容易引起二次发酵,使秸秆发生腐烂变质。 (1).微贮秸秆的质量检查。开窖后,应检查秸秆发酵是否成功。微贮秸秆饲料质量的好坏,可用如下方法检查:①看。主要看秸秆的颜色和结构。发酵好的秸秆一般呈黄褐色,鲜亮而有光泽;结构完整,无霉烂、结块现象。②嗅。主要是闻秸秆的气味。好的秸秆微贮料具有浓郁的水果香味和醇香味,并有一定的酸味。如果有刺鼻的酸臭味或霉败味,则说明微贮发酵失败。③摸。主要是用手去感觉秸秆饲料的质地。好的秸秆微贮料手感柔软松散,质地湿润,不粘不滑。若发粘,则说明质量不佳;若干燥粗硬,则说明还没有发酵完全。 (2).微贮秸秆的饲喂效果。微贮秸秆是粗饲料,主要用来喂牛、羊等反刍动物和马、驴等草食家畜。微贮秸秆具有酸香气味,松软可口,能够增进家畜的食欲。据试验,牛、羊等动物采食微贮秸秆的速度与未处理秸秆相比,可提高30%—43%,采食量可增加20%—30%:用微贮秸秆饲喂生长肉牛,每天添加2.5公斤精料的情况下,其平均日增重可超过1.5公斤;用于饲喂奶牛,每日可多产奶1.5—3公斤。同时,用微贮秸秆喂畜还可防治畜禽肠胃疾病★★★★★★★请看参考资料中的视频教程★★★★★★★★★★★★★★★