关于循环流化床锅炉论文
关于锅炉方面的论文
你好!比如时下新兴的CFB锅炉。偏向运行的话不妨从如何提高运行经济性,不妨搜集一些国内外新型锅炉发展方向和现状的资料写毕业论文用的吧,这要看你的专业方向了、减少事故等方面入手,偏向设计的话,加上自己的想法就是一篇很不错的论文如有疑问,请追问。
写毕业论文用的吧,这要看你的专业方向了,偏向设计的话,不妨搜集一些国内外新型锅炉发展方向和现状的资料,加上自己的想法就是一篇很不错的论文,比如时下新兴的CFB锅炉。偏向运行的话不妨从如何提高运行经济性、减少事故等方面入手。
锅炉温度控制策略的应用研究 摘要:针对锅炉汽温控制的特点,设计了过热汽温串级模糊控制系统,介绍了系统的构成、原理 及该系统的优越性,并利用MATLAB仿真软件进行了仿真分析。 关键词:汽温;串级模糊控制;系统仿真 0 引言 过热蒸汽温度是衡量锅炉能否正常运行的重要 指标。假如过热蒸汽温度过高,若超过了设备部件 (如过热器管、蒸气管道、阀门、汽轮机的喷嘴、叶片 等)的允许工作温度,将使钢材加速蠕变,从而降低 使用寿命。严重的超温甚至会使管子过热而爆破。 可能造成过热器、蒸汽管道和汽轮机的高压部分损 坏。过热蒸汽温度过低,会引起热耗上升,引起汽轮 机末级蒸汽湿度增加,从而降低汽轮机的内效率,加 剧对叶片的侵蚀。因此在锅炉运行中,必须保持过 热汽温稳定在规定值附近。通常允许变化范围为额 定值±5℃。目前对锅炉过热汽温调节大都采用导 前汽温的微分作为补充信号的系统。其系统原理如 图1所示。 系统针对过热汽温调节对象调节通道惯性延迟 大、被调量反馈慢的特点,从对象调节通道找出一个 比被调量反应快的中间信号θ1作为调节器的补充 信号,以改善对象调节通道的动态特性。动态时调 节器根据θ1的微分和θ2这两个信号而动作。但在 静态时(调节过程结束后)θ1不再变化,则dθ1/dt= 0,这时过热器汽温必然恢复到给定值。实际使用 中,中间信号θ1的引入在一定程度上确实改善了控 制系统的动态特性,但是,影响蒸汽温度的因素很 多,除减温水流量的扰动外,负荷的变化,工况的不 稳定,过剩空气系数等都会导致蒸汽θ2温度发生波 动。这些波动是无法预知的,无法用精确的数学模 型来描述。由于模糊控制不依赖被控对象的精确数 学模型,它主要是根据人的思维方式,总结人的操作 经验,完成控制作用,特别适合于大滞后、时变、非线 性场合,因此该文提出一种锅炉过热气温的串级模 糊控制系统。 1 控制方案的研究设计 串级调节系统是改善大惯性、纯滞后系统调节 质量的最有效方法之一,所以设计的控制方案采用 串级模糊控制,其控制系统如图2所示。 图2中F为减温水流量调节阀。P为副调节 器,采用比例调节;FC为主调节器,采用混合模糊控 制器,即一个二维模糊控制器和常规PI调节器并联 而成,除能够尽快消除副环外的扰动之外还可以校 正汽温偏差,保证汽温控制的精度。 汽温调节对象由减温器和过热器组成,减温水 流量Wj为对象调节通道的输入信号,过热器出口汽 温θ2为输出信号。为了改善调节品质,系统中采用 减温器出口处汽温θ1作为辅助调节信号(称为导前 汽温信号)。当调节机构动作(喷水量变化)后,导 前汽温信号θ1的反应显然要比被调量信号θ2早很 多。由于从调节对象中引出了θ1信号,对象调节通 道的动态特性可以看成由两部分构成:①以减温水 流量Wj作为输入信号,减温器出口处温度θ1作为 输出信号的通道,这部分调节通道称为导前区,传递 函数为G01(s);②以减温器出口处汽温θ1作为输入 信号,过热器出口汽温θ2为输出信号的通道,这部 分调节通道称为惰性区,传递函数为G02(s),显然 导前区G01(s)的延迟和惯性要比惰性区G02(s)小 很多。系统结构如图3所示。 图3中有两个闭合的调节回路:①由对象调节 通道的惰性区G02(s)、副控制器Gc2(s)、副检测变送 器Gm2(s)组成的副调节回路;②由对象调节的导前 区G01(s)、主控制器(PI+混合模糊控制器)、主检 测变送器Gm1(s)以及副调节回路组成的主回路。 引入θ1负反馈而构成的副回路起到了稳定θ1的作 用,从而使过热汽温保持基本不变,因此可以认为副 回路起着粗调过热汽温θ2的作用。而过热汽温的 给定值,主要由主控制器(PI+混合模糊控制器)来 严格保持。只要θ2不等于给定值,主控制器就会不 断改变其输出信号σ2,并通过副调节器去不断改变 减温水流量,直到θ2恢复到等于给定值为止。可 见,主调节器的输出信号σ2相当于副调节器的可变 给定值。稳态时,过热汽温等于给定值,而导前汽温 θ1则不一定等于主调节器输出值σ2。 当扰动发生在副回路内,例如当减温水流量发 生自发性波动(可能是减温水压力或蒸汽压力改 变),由于有副回路的存在,而且导前区的惯性又很 小,副调节器将能及时动作,快速消除其自发性波 动,从而使过热汽温基本不变。当扰动发生在副回 路以外,引起过热汽温偏离给定值时,串级系统首先 由主调节器(PI+混合模糊控制器)迅速改变其输 出校正信号σ2,通过副调节回路去改变减温水流 量,使过热汽温恢复到给定值。由于主调节器(PI+ 混合模糊控制器)的惯性迟延小,故反应迅速。 因此在串级模糊蒸汽温度控制系统中,副回路 的任务是尽快消除减温水流量的自发性扰动和其他 进入副回路的各种扰动,对过热汽温的稳定起粗调 作用。主调节器的任务是保持过热汽温等于给定 值。系统在主控制器的设计上将模糊控制与常规的 PI调节器相结合,使控制系统既具有模糊控制响应 快、适应性强的优点,又具有PI控制精度高的特点。 2 模糊控制器的设计 模糊控制是一种基于规则的控制,在设计中不 需要建立被控对象的精确的数学模型。 1 模糊控制器的结构设计 该系统以过热蒸汽的实际温度T与设定值Td 之间的误差E=Td-T和误差变化DE作为输入语 言变量,系统控制值U为输出语言变量,构成一个 二维模糊控制器。其结构如图4所示。 Ku为模糊控制器比例因子,Ke,Kec为量化因子。 Ke:在输入量化等级确定之后,算法中改变误差 输入论域大小即改变了Ke的值,Ke增大,相当于缩 小误差的基本论域,起增大误差变量的控制作用。 若Ke选择较大,则上升时间变短,但会使系统产生 较大超调,从而过渡过程变长;Ke很小,则系统上升 较慢,快速性差。同时它还直接影响模糊控制系统 的稳态品质。 Kec:Kec选择较大时,超调量减小,但系统的响应 速度变慢,Kec对超调的抑制作用十分明显。但在 Ke,Kec和Ku中,系统对Kec的变化最不敏感,一般Kec 可调整范围较宽,其鲁棒性较好,给实际调试带来很 大方便。 Ku:比例因子Ku实质上是模糊控制器总的增益, 它的大小对系统输出的影响较大。Ku增大,系统超 调量随之增大,动态过程加快;反之,Ku减小,系统超 调量减小,动态过程变慢;Ku选择过大将会导致系统 震荡。由于Ku的敏感性,故可调范围较小。 模糊控制器可调参数Ke,Kec和Ku对系统性能 的影响各不相同,改变这3个参数可使控制器适用 于不同系统的性能要求。 2 模糊概念的确定及模糊化过程 对输入变量E进行模糊化,选择语言集为{负 大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择如下 [-n,-n-1,…,-1,0,1,…, n-1, n],E的实际 变化范围为[-x,x],则量化因子为Ke=n /x。对偏 差变化率DE进行模糊化,选择合适的模糊论域和 偏差变化率范围,同理可以计算出相应的模糊量化 因子Kec,在这里为了方便起见,选择偏差e、偏差变 化率DE具有相同模糊论域。 对于输出量U,调节范围为[-R,R],语言集为 {负大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择为[- m,-m-1,…,-1,0,1,…,m-1,m ],输出比例 因子为Ku=R /m。 在设计过程中,选取各变量的模糊论域,E= {-3,-2,-1,0,1,2,3};DE={-3,-2,-1,0,1, 2,3};U={-3,-2,-1,0,1,2,3},输入量E,DE 及输出量U模糊集的隶属函数选择为三角形,如图 5所示。 3 模糊规则的确定 模糊决策一般都采用“选择从属度大”的规则, 在过热蒸汽温度调节过程中,当系统的偏差较大时, 系统的快速性为主要矛盾,系统的稳定性控制精度 却是次要的,这时应使系统快速减小偏差;而当系统 偏差较小时,则要求以保证系统的稳定性及控制精 度为主。因而模糊控制规律应遵循:过热汽温上升 速度快,汽温偏高,则汽温的控制量应向下浮动;过 热汽温下降速度快,汽温偏低,则汽温的控制量应向 上浮动。因此采用的模糊控制器的模糊控制规则具 有以下的形式: if {E=AiandDE=Bi}thenU=Ci, i=1, 2,,n 其中Ai, Bi以及Ci分别为E, EC、和U的模糊子 集。控制规则的多少可视输入输出物理量数目及所 需的控制精度而定。由于模糊控制器采用两个输入 E, EC,每个输入分为7级共有49条规则。 按模糊数学推理法则选则表1所示控制规则。 4 逆模糊化过程 文中采用的模糊推理方式是常用的Mamdani 的Min-Max-COA法,即前项取小,多规则取大合 成结论,然后取重心得出非模糊化结论的算法。在 上述规则中,Ai,Bi, Ci分别为论域E,DE,U的模糊 子集,根据上述规则可推出模糊关系Ri=ExDE,这 里采用的最小运算规则,在按最大—最小合成(max -min composition)推理算法求得控制器输出的模糊 子集为U=(ExDE)·Ri,其中“·”为合成运算,非 模糊化后的结论即为输出U的修正值。逆模糊化 方法采用重心平均法(centroid of area)。 3 系统仿真 为了说明串级模糊控制系统在锅炉过热蒸汽温 度的控制上有更好的调节效果,分别搭建具有导前 微分信号控制系统和串级模糊控制系统的仿真框 图。在保持相同输入信号条件下设置两系统被控对 象为相同的参数,以利于比较。 考虑到在实际应用中,各种随机扰动的影响及 过程的复杂性,被控对象有着大惯性、纯滞后的特 性,设系统的主副被控对象的数学模型分别为: 两系统仿真方框图搭建分别如图6、图7所示; 过热汽温响应曲线分别如图8、图9所示。 从仿真曲线可以很清楚的看到:串级模糊控制 系统应用在锅炉过热蒸汽温度控制上能够获得比具 有导前微分信号控制系统更好的调节效果。具有导 前微分信号的控制系统仿真曲线有振荡,有超调,动 态过渡时间长,误差大。而串级模糊控制系统仿真 曲线基本无振荡,无超调,动态过渡时间短,误差小, 有较好的控制品质。 根据现场锅炉运行情况,为了能 更好地说明问题,在保持两个系统中 各调节器、控制器参数不变的情况下, 同时改变两个系统的被控对象的参 数。 W02=e-5s12s+1 观察仿真曲线,如图10、图11所 示。 由于被控对象在电厂中各种设备复杂的运行环 境下,一直处于波动状态,改变主被控对象参数后而 其他参数保持不变时,具有导前微分信号的控制系
你可以写很多东西啊。 比如,,先写一下为什么叫锅炉啊。。锅是什么。。炉又是什么。、 反反复复的写他个200字。然后写,锅炉是什么。。。反反复复的又是200字。 写完了锅炉是什么以后别急 ,你可以写写锅炉干什么。。 是烧水的呀,还是煮菜的。。来来去去200字。 。。600字结束了以后你就可以写写锅炉是什么做的啊。。 铁做的吗。。200字,为什么用铁做啊。。200字。。 铝做的吗?。。200字。。等等等等、、、 最后要结束的时候你就写。。锅炉好啊锅炉妙。。。 锅炉为什么好啊。。 400字,,锅炉妙在哪里啊。。。400字,,锅炉除了洪和妙还有什么啊。。400字。。论文不久好了吗。。
关于锅炉运行的论文
锅炉温度控制策略的应用研究 摘要:针对锅炉汽温控制的特点,设计了过热汽温串级模糊控制系统,介绍了系统的构成、原理 及该系统的优越性,并利用MATLAB仿真软件进行了仿真分析。 关键词:汽温;串级模糊控制;系统仿真 0 引言 过热蒸汽温度是衡量锅炉能否正常运行的重要 指标。假如过热蒸汽温度过高,若超过了设备部件 (如过热器管、蒸气管道、阀门、汽轮机的喷嘴、叶片 等)的允许工作温度,将使钢材加速蠕变,从而降低 使用寿命。严重的超温甚至会使管子过热而爆破。 可能造成过热器、蒸汽管道和汽轮机的高压部分损 坏。过热蒸汽温度过低,会引起热耗上升,引起汽轮 机末级蒸汽湿度增加,从而降低汽轮机的内效率,加 剧对叶片的侵蚀。因此在锅炉运行中,必须保持过 热汽温稳定在规定值附近。通常允许变化范围为额 定值±5℃。目前对锅炉过热汽温调节大都采用导 前汽温的微分作为补充信号的系统。其系统原理如 图1所示。 系统针对过热汽温调节对象调节通道惯性延迟 大、被调量反馈慢的特点,从对象调节通道找出一个 比被调量反应快的中间信号θ1作为调节器的补充 信号,以改善对象调节通道的动态特性。动态时调 节器根据θ1的微分和θ2这两个信号而动作。但在 静态时(调节过程结束后)θ1不再变化,则dθ1/dt= 0,这时过热器汽温必然恢复到给定值。实际使用 中,中间信号θ1的引入在一定程度上确实改善了控 制系统的动态特性,但是,影响蒸汽温度的因素很 多,除减温水流量的扰动外,负荷的变化,工况的不 稳定,过剩空气系数等都会导致蒸汽θ2温度发生波 动。这些波动是无法预知的,无法用精确的数学模 型来描述。由于模糊控制不依赖被控对象的精确数 学模型,它主要是根据人的思维方式,总结人的操作 经验,完成控制作用,特别适合于大滞后、时变、非线 性场合,因此该文提出一种锅炉过热气温的串级模 糊控制系统。 1 控制方案的研究设计 串级调节系统是改善大惯性、纯滞后系统调节 质量的最有效方法之一,所以设计的控制方案采用 串级模糊控制,其控制系统如图2所示。 图2中F为减温水流量调节阀。P为副调节 器,采用比例调节;FC为主调节器,采用混合模糊控 制器,即一个二维模糊控制器和常规PI调节器并联 而成,除能够尽快消除副环外的扰动之外还可以校 正汽温偏差,保证汽温控制的精度。 汽温调节对象由减温器和过热器组成,减温水 流量Wj为对象调节通道的输入信号,过热器出口汽 温θ2为输出信号。为了改善调节品质,系统中采用 减温器出口处汽温θ1作为辅助调节信号(称为导前 汽温信号)。当调节机构动作(喷水量变化)后,导 前汽温信号θ1的反应显然要比被调量信号θ2早很 多。由于从调节对象中引出了θ1信号,对象调节通 道的动态特性可以看成由两部分构成:①以减温水 流量Wj作为输入信号,减温器出口处温度θ1作为 输出信号的通道,这部分调节通道称为导前区,传递 函数为G01(s);②以减温器出口处汽温θ1作为输入 信号,过热器出口汽温θ2为输出信号的通道,这部 分调节通道称为惰性区,传递函数为G02(s),显然 导前区G01(s)的延迟和惯性要比惰性区G02(s)小 很多。系统结构如图3所示。 图3中有两个闭合的调节回路:①由对象调节 通道的惰性区G02(s)、副控制器Gc2(s)、副检测变送 器Gm2(s)组成的副调节回路;②由对象调节的导前 区G01(s)、主控制器(PI+混合模糊控制器)、主检 测变送器Gm1(s)以及副调节回路组成的主回路。 引入θ1负反馈而构成的副回路起到了稳定θ1的作 用,从而使过热汽温保持基本不变,因此可以认为副 回路起着粗调过热汽温θ2的作用。而过热汽温的 给定值,主要由主控制器(PI+混合模糊控制器)来 严格保持。只要θ2不等于给定值,主控制器就会不 断改变其输出信号σ2,并通过副调节器去不断改变 减温水流量,直到θ2恢复到等于给定值为止。可 见,主调节器的输出信号σ2相当于副调节器的可变 给定值。稳态时,过热汽温等于给定值,而导前汽温 θ1则不一定等于主调节器输出值σ2。 当扰动发生在副回路内,例如当减温水流量发 生自发性波动(可能是减温水压力或蒸汽压力改 变),由于有副回路的存在,而且导前区的惯性又很 小,副调节器将能及时动作,快速消除其自发性波 动,从而使过热汽温基本不变。当扰动发生在副回 路以外,引起过热汽温偏离给定值时,串级系统首先 由主调节器(PI+混合模糊控制器)迅速改变其输 出校正信号σ2,通过副调节回路去改变减温水流 量,使过热汽温恢复到给定值。由于主调节器(PI+ 混合模糊控制器)的惯性迟延小,故反应迅速。 因此在串级模糊蒸汽温度控制系统中,副回路 的任务是尽快消除减温水流量的自发性扰动和其他 进入副回路的各种扰动,对过热汽温的稳定起粗调 作用。主调节器的任务是保持过热汽温等于给定 值。系统在主控制器的设计上将模糊控制与常规的 PI调节器相结合,使控制系统既具有模糊控制响应 快、适应性强的优点,又具有PI控制精度高的特点。 2 模糊控制器的设计 模糊控制是一种基于规则的控制,在设计中不 需要建立被控对象的精确的数学模型。 1 模糊控制器的结构设计 该系统以过热蒸汽的实际温度T与设定值Td 之间的误差E=Td-T和误差变化DE作为输入语 言变量,系统控制值U为输出语言变量,构成一个 二维模糊控制器。其结构如图4所示。 Ku为模糊控制器比例因子,Ke,Kec为量化因子。 Ke:在输入量化等级确定之后,算法中改变误差 输入论域大小即改变了Ke的值,Ke增大,相当于缩 小误差的基本论域,起增大误差变量的控制作用。 若Ke选择较大,则上升时间变短,但会使系统产生 较大超调,从而过渡过程变长;Ke很小,则系统上升 较慢,快速性差。同时它还直接影响模糊控制系统 的稳态品质。 Kec:Kec选择较大时,超调量减小,但系统的响应 速度变慢,Kec对超调的抑制作用十分明显。但在 Ke,Kec和Ku中,系统对Kec的变化最不敏感,一般Kec 可调整范围较宽,其鲁棒性较好,给实际调试带来很 大方便。 Ku:比例因子Ku实质上是模糊控制器总的增益, 它的大小对系统输出的影响较大。Ku增大,系统超 调量随之增大,动态过程加快;反之,Ku减小,系统超 调量减小,动态过程变慢;Ku选择过大将会导致系统 震荡。由于Ku的敏感性,故可调范围较小。 模糊控制器可调参数Ke,Kec和Ku对系统性能 的影响各不相同,改变这3个参数可使控制器适用 于不同系统的性能要求。 2 模糊概念的确定及模糊化过程 对输入变量E进行模糊化,选择语言集为{负 大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择如下 [-n,-n-1,…,-1,0,1,…, n-1, n],E的实际 变化范围为[-x,x],则量化因子为Ke=n /x。对偏 差变化率DE进行模糊化,选择合适的模糊论域和 偏差变化率范围,同理可以计算出相应的模糊量化 因子Kec,在这里为了方便起见,选择偏差e、偏差变 化率DE具有相同模糊论域。 对于输出量U,调节范围为[-R,R],语言集为 {负大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择为[- m,-m-1,…,-1,0,1,…,m-1,m ],输出比例 因子为Ku=R /m。 在设计过程中,选取各变量的模糊论域,E= {-3,-2,-1,0,1,2,3};DE={-3,-2,-1,0,1, 2,3};U={-3,-2,-1,0,1,2,3},输入量E,DE 及输出量U模糊集的隶属函数选择为三角形,如图 5所示。 3 模糊规则的确定 模糊决策一般都采用“选择从属度大”的规则, 在过热蒸汽温度调节过程中,当系统的偏差较大时, 系统的快速性为主要矛盾,系统的稳定性控制精度 却是次要的,这时应使系统快速减小偏差;而当系统 偏差较小时,则要求以保证系统的稳定性及控制精 度为主。因而模糊控制规律应遵循:过热汽温上升 速度快,汽温偏高,则汽温的控制量应向下浮动;过 热汽温下降速度快,汽温偏低,则汽温的控制量应向 上浮动。因此采用的模糊控制器的模糊控制规则具 有以下的形式: if {E=AiandDE=Bi}thenU=Ci, i=1, 2,,n 其中Ai, Bi以及Ci分别为E, EC、和U的模糊子 集。控制规则的多少可视输入输出物理量数目及所 需的控制精度而定。由于模糊控制器采用两个输入 E, EC,每个输入分为7级共有49条规则。 按模糊数学推理法则选则表1所示控制规则。 4 逆模糊化过程 文中采用的模糊推理方式是常用的Mamdani 的Min-Max-COA法,即前项取小,多规则取大合 成结论,然后取重心得出非模糊化结论的算法。在 上述规则中,Ai,Bi, Ci分别为论域E,DE,U的模糊 子集,根据上述规则可推出模糊关系Ri=ExDE,这 里采用的最小运算规则,在按最大—最小合成(max -min composition)推理算法求得控制器输出的模糊 子集为U=(ExDE)·Ri,其中“·”为合成运算,非 模糊化后的结论即为输出U的修正值。逆模糊化 方法采用重心平均法(centroid of area)。 3 系统仿真 为了说明串级模糊控制系统在锅炉过热蒸汽温 度的控制上有更好的调节效果,分别搭建具有导前 微分信号控制系统和串级模糊控制系统的仿真框 图。在保持相同输入信号条件下设置两系统被控对 象为相同的参数,以利于比较。 考虑到在实际应用中,各种随机扰动的影响及 过程的复杂性,被控对象有着大惯性、纯滞后的特 性,设系统的主副被控对象的数学模型分别为: 两系统仿真方框图搭建分别如图6、图7所示; 过热汽温响应曲线分别如图8、图9所示。 从仿真曲线可以很清楚的看到:串级模糊控制 系统应用在锅炉过热蒸汽温度控制上能够获得比具 有导前微分信号控制系统更好的调节效果。具有导 前微分信号的控制系统仿真曲线有振荡,有超调,动 态过渡时间长,误差大。而串级模糊控制系统仿真 曲线基本无振荡,无超调,动态过渡时间短,误差小, 有较好的控制品质。 根据现场锅炉运行情况,为了能 更好地说明问题,在保持两个系统中 各调节器、控制器参数不变的情况下, 同时改变两个系统的被控对象的参 数。 W02=e-5s12s+1 观察仿真曲线,如图10、图11所 示。 由于被控对象在电厂中各种设备复杂的运行环 境下,一直处于波动状态,改变主被控对象参数后而 其他参数保持不变时,具有导前微分信号的控制系
写毕业论文用的吧,这要看你的专业方向了,偏向设计的话,不妨搜集一些国内外新型锅炉发展方向和现状的资料,加上自己的想法就是一篇很不错的论文,比如时下新兴的CFB锅炉。偏向运行的话不妨从如何提高运行经济性、减少事故等方面入手。
温州龙湾燃机发电厂STAG209E燃气-蒸汽联合循环装有两套美国GE制造的PG9171E燃气轮发电机组,并配有两套比利时CMI制造的余热锅炉和一套GE制造的汽轮发电机组,电站总装机容量为330 MW。 余热锅炉为立式、强制循环、双压、无补燃锅炉;额定蒸发量为175 t/h,两台锅炉给水除氧系统为公用母管制,公用一台除氧器,3台100%锅炉最大蒸发量的电动给水泵。自投运以来,多次出现给水系统故障现象。本文通过分析事故原因,并介绍改造方案,供同行参考。 1设备和故障概况1.1给水泵基本参数 型号:MN508A 叶轮级数:8级 额定流量:237.9 m3/h 扬程:847 m 转速:2 970 r/min 吸收功率:645 k W 再循环阀:压力式(与逆止阀整体结构) 制造厂:比利时ENSIVAL1.2故障概况自余热锅炉投产以来,就多次出现给水泵壳体级间漏水,给水泵暖泵管路法兰垫损坏,给水泵平衡盘后压力偏高,平衡盘磨损、咬死等不正常现象;此外还发生给水旁路电动阀阀芯断裂,给水调节阀内漏,一台炉运行时备用炉汽包水位上升等事故。因此,给水系统的可靠性成为联合循环机组安全运行的严重隐患。2故障原因分析2.1给水泵流量裕度过大按照《火力发电厂设计技术规程》(SDJ1-84)要求,汽包炉配套的给水泵容量应为锅炉最大连续蒸发量的110%。但由于余热锅炉设计带100%容量的主蒸汽旁路系统,故联合循环水泵流量与余热锅炉额定蒸发量相比有25%的裕度,流量裕度的增大导致给水系统压力裕度同时增大,虽然给水泵的流量-压力特性曲线相对比较平缓,但是由于调峰的联合循环电厂的负荷率低,机组长时间在低负荷运行,给水系统压力偏高。2.2给水泵控制方式不合理锅炉制造厂提供的给水控制系统逻辑设置为一台余热锅炉烟气挡板开启受热前必须投运一台给水泵,如果第2台余热锅炉投运,则必须事先投运两台给水泵。因此,当两台炉在启动过程中甚至余热锅炉出力等于50%额定工况时,给水泵一直远远偏离设计工况。该给水泵再循环阀与给水泵出口逆止阀为整体式,由逆止阀阀杆带动控制再循环的动作。按厂家资料介绍,给水流量低于65 m3/h,再循环阀自动开启,给水流量高于65 m3/h,再循环阀自动开启。但从实际运行工况分析,很难保证再循环流量。在余热锅炉冷态启动过程中,大约有半个小时给水流量几乎为零,给水泵仅依靠再循环管路散热,给水泵在小负荷下效率低,动力传递损失转变成给水的热量,长时间环流使给水温度升高,平衡盘泄漏水通过间隙过程引起部分汽化,产生压力波动,引起高频汽蚀诱振,从而发生平衡盘的磨损。2.3给水泵启动频繁对于平衡盘来说,定速给水泵启动瞬间是最恶劣的运行工况之一,而作为调峰的联合循环机组的给水泵启停十分频繁,这是平衡盘损坏的一个致命原因。2.4给水泵平衡盘结构不合理该给水泵自投产以来,平衡盘后压力与给水泵进口压力之差就高达0.2~0.3 MPa。从水泵解体现场测绘分析,平衡盘与平衡座的径向间隙、尤其轴向间隙严重超标,引起平衡盘前后压差减少;在给水泵变工况过程中,容易造成低频窜轴,引起平衡盘磨损;如此恶性循环,导致平衡力不足以平衡轴向推力,最终造成平衡盘和平衡座咬死。此外,该给水泵缺少必要的监测、保护手段(如轴向位移测点),运行中无法判断给水泵的健康状况,给事故的发展带来隐患。2.5给水管路阀门前后压差大由于联合循环电厂余热锅炉-汽轮机采用滑压运行,在负荷降低时,汽包压力降低,而给水泵出口压力上升,给水调节阀前后压差恶性变化,加速了对给水调节阀阀芯的冲刷,破坏了调节阀的流量特性,并使泄漏量增大。 当一台余热锅炉运行,而另一台余热锅炉处于冷态时,备用炉给水电动阀前后在10 MPa的压差作用下,导致给水旁路电动阀阀芯断裂。3给水系统的设备改造3.1改变给水泵运行方式“母管制”给水系统的优势是在不同的负荷工况下,控制给水泵的运行台数,可以尽可能地降低给水系统压力,并可以获得较好的节能效果。因此对给水泵控制系统作如下改动:(1)取消仅一台给水泵运行,第2台余热锅炉启动闭锁保护的逻辑。(2)增加2台余热锅炉给水流量之和大于200t/h时(考虑减温水流量),且仅一台给水泵运行,联动第2台给水泵的逻辑。 2台余热锅炉给水流量之和小于180t/h,且两台给水泵运行,发出报警信号,供运行人员确认,根据负荷情况是否停运一台给水泵。2台余热锅炉给水流量之和小于160t/h,且两台给水泵运行,自动停运一台给水泵。 这样能减少给水泵低流量、高压运行的时间,降低了给水系统承受的压力,减少给水泵平衡盘的损坏,提高安全性;而且泵在设计工况附近的高效区运行,不仅能提高系统变工况运行的经济性,又
燃烧的调整过热器、再热器温度控制结焦的分析和预防四管泄露的研究锅炉水位的调整控制
关于锅炉方面的论文影响锅炉蒸发量的因素
1、水冷壁结垢2、出口管道堵塞3、热管损坏4、热管积灰5、烟气温度下降6、风速下降等很多方面
锅炉给水流量应大于锅炉蒸发量,比方锅炉需要给水时,因给水流量不足,自然影响锅炉蒸发量,也是你说的给水流量波动的情况吧,是不是锅炉给水泵的工作不正常出现的给水波动呢?。
1影响锅炉效率的因素分析 为提高机组效率,就锅炉而言,一方面应通过调整运行方式尽量减少各种损失;另一方面则应提高蒸汽参数,减少减温水量和排污量。在所有损失中,排烟热损失和机械未完全燃烧热损失占主要,因此有效地减少这些损失,才能提高锅炉效率。 1.1影响排烟热损失的主要因素 影响排烟热损失的主要因素是排烟温度和排烟量。一般来说,排烟温度每上升10℃,则排烟热损失增加0.6%~1%。排烟量主要由过剩空气系数和燃料中的水分来决定,而燃料中的水分则由入炉煤成分来决定。下面分析影响排烟温度和排烟量的主要因素。 1.1.1漏风 漏风是指炉膛漏风、制粉系统漏风和烟道漏风等。漏风直接导致排烟热损失增加,实践证明,炉膛漏风系数每增加0.1,排烟温度将随之增加3~8℃,排烟热损失将增加0.2%~0.4%。 (a)炉膛漏风。在所有漏风中,尤以炉底漏风影响最大,当炉底水封失去或者炉膛掉大焦砸破炉底时,将使大量冷风从炉底漏入,严重影响锅炉的经济性和安全运行。炉膛漏风的另一个常见地方是看火孔和入孔门,尤其是看火孔,当没有将其关严或关闭后未扣紧,在吹灰时容易将孔盖吹开,导致冷风漏入。 (b)制粉系统漏风。制粉系统漏风主要是从煤粉管道漏入。在运行中,通常有1~2台制粉系统关闭,入口风量显示为零,实际上仍有冷风漏入。这主要是由于调整门未完全关严所致。 (c)烟道漏风。在氧量不变时,烟道漏风也将排挤一、二次风量,使排烟温度上升。而烟道漏风的另一危害还在于烟道内漏入的冷风没参与燃烧,由于氧量计安装在空预器烟气入口处,后烟道漏风会使氧量显示值比实际值大,有可能使实际运行中的燃烧风量不足,造成炉膛缺氧燃烧。 1.1.2 受热面积灰和结渣 受热面积灰和结渣主要包括空预器堵灰、炉膛和烟道积灰等。空预器堵灰严重影响传热效果,使排烟温度大幅上升。炉膛和烟道积灰将使蒸汽从高温烟气中所吸热量减少,从而使空预器入口烟温提高,空预器传热温差加大,排烟温度升高。 1.1.3 外界因素 影响排烟温度的外界因素主要是环境温度(即空预器入口温度)和入炉煤的成分。环境温度的变化将使空预器传热温差跟随变化,从而使排烟温度也随着季节变化 1.2 影响未完全燃烧热损失的主要因素 1.2.1 煤质 燃料中挥发分含量较高时,煤粉着火容易,同时燃烧过程稳定,未完全燃烧热损失也较小。如果燃料中灰分含量较高时,则燃烧稳定性差,而且由于灰分的隔绝作用,煤的燃尽性能较差。水分对燃烧的影响主要是使燃烧着火困难,并降低燃烧区的温度,使煤粉燃尽变得困难。 1.2.2 煤粉细度 煤粉越细,表面积越大,越容易着火,同时所需燃烧时间越短,燃烧越完全。但煤粉过细会使制粉电耗增加,降低锅炉效率。 1.2.3 风量 炉膛过剩空气系数过小,会使燃料燃烧不完全,而且由于烟气中未完全燃烧产物的存在,给锅炉运行带来二次燃烧的威胁;炉膛过剩空气系数过大,则排烟热损失也大,达不到经济运行的效果。 1.2.4 氧量 锅炉运行氧量直接影响锅炉的经济性。从表1可以看出:在不同的运行负荷下,氧量过大,导致排烟热损失和风机电耗增加;反之,虽然使得风机电耗下降,但飞灰可燃物增加,未完全燃烧热损失增加。 2 锅炉运行方式的优化调节 1水位的调节 水位调节的目的是保证汽水平衡,即主汽量与给水量相等,防止水位波动过大。水位过低,则可能会导致下降管带汽,使循环水的流动压头减小,自然水循环的安全性降低,如果给水中断而锅炉的连续运行时,则可能在几十秒内就出现"干锅"。水位过高,汽水分离空间高度减小将造成蒸汽带水,蒸汽的品质恶化(蒸汽的机械携带会造成含盐量的增加),严重时还会出现汽泡满水,造成蒸汽大量带水,含盐量过高的蒸汽使过热器严重结垢,导致管壁超温爆管,还会造成主蒸汽管道和汽轮机的水冲击,影响设备的安全经济运行。此外,还要保持水量与蒸发量的平衡,防止出现缺水(或满水)事故。 运行中根据负荷的变化情况及时调节给水流量,不间断地通过水位表监督锅内的水位。锅炉水位应经常保持在正常水位线处,并允许在正常水位线上下50~之内波动。为了使水位保持正常,要根据锅炉的负荷调节水位。锅炉在低负荷运行时,水位应稍高于正常水位,以防负荷增加时水位降得过低;锅炉在高负荷运行时,水位应稍低于正常水位,以免负荷降低时水位升得过高。在锅炉运行中应做到补水平稳、均匀,因为水位的变化会使蒸汽压力、蒸汽温度发生波动。给水的时间和方法要适当。给水的时间间隔过大,一次给水量过多,则汽压很难稳定;不要在燃烧减弱时给水,这会引起汽压下降。 2 汽压调整 作为锅炉运行监控的主要参数之一的蒸汽压力,是指过热器的出口压力。它的高低直接影响汽轮机设备的安全和经济,一般规定其数值与额定值的偏差范围不超过±05-1MPa。 汽压变化受外部和内部两个因素的影响。外部因素主要指外界负荷的正常增减及事故情况的大幅度甩负荷。蒸汽压力的变化实际上是锅炉蒸发量与外界负荷之间的平衡关系被破坏的结果。负荷变化对于锅炉是客观存在的,因此蒸汽压力就是调节锅炉蒸发量的调节。由于蒸发量的大小主要取决于燃烧工况,所以蒸汽压力调节实际上就是燃料量与风量的调节。无论何种扰动使蒸汽压力变化,都应改变燃煤量及风量,同时兼顾汽泡水位及蒸汽温度的调节。 当负荷减少时,汽压升高。如果此时水位高,就应先减少燃料量和送风量,减弱燃烧,再适当减少给水量或暂停给水,使汽压和水位稳定在额定范围内,然后再按正常情况调整燃烧和给水量;如果此时水位低,应先加大给水量,待水位正常后,再根据汽压和负荷情况,适当调整燃烧和给水量。 当负荷增加时,汽压下降。如果此时水位高,就应先减少给水量或暂停给水,并增加燃料量和送风量,加强燃烧,提高蒸发量,满足负荷需要,使汽压和水位稳定在额定范围内,然后再按正常情况调节燃烧和给水量;如果水位低时,应先增加燃料量和送风量,在强化燃烧的同时,逐渐增加给水量,保持汽压和水位正常。 3燃烧的调节 燃烧调节主要是保证适当的燃料量,以适应外界负荷的需要,同时保证燃烧的稳定、经济。 燃烧调整主要包括燃料量的调整和风量的调整,即风煤比的调整。一次风的调整时由专业人员进行的,调好后一般不动,主要根据煤中挥发分的含量进行调整。挥发分高的煤,可用较高的一次风率和一次风速,对经济性有利;挥发分低的煤,应采用较低的一次风率和一次风速,首先保证着火时间。燃料量与空气量要保持合理配比,且充分混合;炉膛要尽量保持高温,要防止冷空气进入炉膛,减少热损失。监视排烟温度、CO2和O2的含量,及时调整燃烧状态;要保持炉排运转平稳,防止出现不均匀燃烧要保持炉膛负压操作,防止燃烧气体外泄而降低热效率。 结语 在锅炉运行中必须对锅炉运行水位、汽压、蒸汽温度、燃烧进行调节,还应进行锅炉的排污和吹灰,以保证锅炉正常运行,为正常发电提供保障。
有关锅炉的论文
、锅炉水处理的传统概念 水是工业的血液。锅炉是工业的心脏,锅炉水处理则是为心脏提供合格血液、保证锅炉安全经济运行的必不可少的手段。锅炉水处理的发展战略被概括为安全和节能也是容易理解的。锅炉是在低压、中压、高压乃至亚临界、超临界压力下运行的设备,水处理一旦发生失误,就可能造成不可挽回的安全事故,轻则造成巨大经济损失,重则引起对身体伤害。锅炉又是耗能大户,工业发达国家的锅炉用燃料量一般占第一位,远高于其它产业,水处理不当则会造成燃料的浪费。因此,各工业国对锅炉水处理技术的研究开发十分重视,投入了大量的人力、物力和财力。目前,世界水处理一[业的市场营业总额已达300亿美元(包括设备、离子交换别和化学药品等),其中以锅炉水处理消费额最大。中国是世界上拥有锅炉台数最多的国家之一。因此,中国锅炉水处理的任务十分艰巨。 2、锅炉水处理的传统安全战略 锅炉水处理与锅炉安全直接相关。水处理不当给锅炉所造成的后果可概括为结垢、腐蚀和汽水共腾。结垢直接影响传热和汽水正常循环。轻则造成结垢腐蚀、燃料浪费和缩短锅炉寿命,重则引发胀管、变形或爆管事故。腐蚀直接影响材料强度,轻则缩短锅炉寿命,重则造成裂纹、泄漏甚至爆炸事故。
写毕业论文用的吧,这要看你的专业方向了,偏向设计的话,不妨搜集一些国内外新型锅炉发展方向和现状的资料,加上自己的想法就是一篇很不错的论文,比如时下新兴的CFB锅炉。偏向运行的话不妨从如何提高运行经济性、减少事故等方面入手。
燃烧的调整过热器、再热器温度控制结焦的分析和预防四管泄露的研究锅炉水位的调整控制
关于锅炉方面的论文总结
大哥,去百度上收,哪有人会打这么多字吗!大家都在赚分了吗!
如需帮助敬请垂询空间内联系方式
写毕业论文用的吧,这要看你的专业方向了,偏向设计的话,不妨搜集一些国内外新型锅炉发展方向和现状的资料,加上自己的想法就是一篇很不错的论文,比如时下新兴的CFB锅炉。偏向运行的话不妨从如何提高运行经济性、减少事故等方面入手。
你好!比如时下新兴的CFB锅炉。偏向运行的话不妨从如何提高运行经济性,不妨搜集一些国内外新型锅炉发展方向和现状的资料写毕业论文用的吧,这要看你的专业方向了、减少事故等方面入手,偏向设计的话,加上自己的想法就是一篇很不错的论文如有疑问,请追问。