欢迎来到学术参考网
当前位置:论文百科> 正文

医学论文中的统计学

发布时间:2023-12-10 16:51:11

论文中的统计学分析

《统计学与应用》这本期刊上的文献,你可以去看看学习学习的

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

写论文用的统计分析,当然是通过计算得出来的。也就是说,按照数字的比例来计算出来的。

论文的统计学分析怎么统计的

《统计学与应用》这本期刊上的文献,你可以去看看学习学习的

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

一、统计学论文中的研究方法  1、大量观察法  这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上存有差异,但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。   2、统计分组法  由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显著性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。  3、综合指标法  统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。

医学统计学文献

本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是教育部面向21世纪课程教材和“十五”国家级规划教材。本书内容分绪论、研究设计、观察与抽样、数据特征与统计描述、概率分布与临床决策、正态分布与临床参考值、参数估计与可信区间、假设检验基本概念、X2检验、t检验、多个样本均数比较的方差分析、线性回归分析、线性相关分析、基于秩次的统计方法、临床测量的误差评价与诊断试验、生命统计的常用指标、生存分析、Meta分析、统计结果的表达与统计方法的综合运用、样本量估计,共20章。其中带*号的章节是七年制临床医学专业学生或医学硕士研究生的教学扩充内容,也可供学有余力的学生课外阅读。此外,书末附有各种统计用表、国家执业医师医学统计学考试模拟试题2套以及供读者进一步学习的主要参考文献等。本书主要供五年制或七年制临床医学专业学生使用,也适用于医学院校非临床医学专业的本科生和研究生,也可供临床医生作为医学统计学的参考书阅读。

这么专业的问题,去公卫人上提问,或者Chinaspss上提问吧,小生才疏学浅,左思右想一头雾水啊~在我回答的评论里,有个朋友给你提了点建议。百度说有敏感字,发布出去,他就写在我回答的评论里了。

第一章 绪论第二章 研究设计第三章 观察与抽样第四章 数据特征与统计描述第五章 概率、概率分布与临床决策第六章 正态分布与医学参考值范围第七章 参数估计第八章 假设检验的基本概念第九章 X2卡方检验第十章 t检验第十一章 多个样本均数比较的方差分析第十二章 线性回归分析第十三章 线性相关分析第十四章 基于秩次的统计方法第十五章 临床测量的误差评价与诊断试验第十六章 生命统计的常用指标第十七章 生存分析第十八章 Meta分析第十九章 统计方法的综合运用与统计结果的表达第二十章 样本量估计附表1 标准正态分布表(Q(u)值,u≤0)附表2 t界值表附表3 F界值表(方差齐性检验用,双侧界值)附表4 F界值表(方差分析用,单侧界值)附表5 q界值表(Student—Newman-Keuls法用)附表6(1)Dunnett-t检验界值表(单侧)附表6(2)Dunnett-t检验界值表(双侧)附表7 百分率的可信区间附表8 X2界值表附表9 T界值表(两样本比较的秩和检验用)附表10 成对资料秩和检验R的界值表附表11 H界值表(三样本比较的秩和检验用)附表12 随机单位组设计秩和检验的界值表附表13 相关系数r界值表附表14 Spearman秩相关系数rS界值表附表15 随机数字表附表16 样本均数与总体均数比较(或配对比较)时所需样本量附表17 两样本均数比较所需样本量附表18 V值表(多个样本均数比较时所需样本量的估计用)附表19(1) 两样本率比较时所需样本量(单侧)附表19(2) 两样本率比较时所需样本量(双侧)附表20 A界值表(多个样本率比较时所需样本量的估计用)附录 国家执业医师(卫生学)医学统计学考试模拟试题主要参考文献英汉名词对照汉英名词对照

论文的统计学分析

数据可从网上搜索,统计年鉴及各大数据库都有再通过统计软件作分析,例如相关分析和回归分析,这种论文偏理论型也可以通过设计调查问卷,可针对身边某一热点问题进行调查,如消费观,就业观,来搜集数据,再写一篇调查报告

数据可从网上搜索,统计年鉴及各大数据库都有,再通过统计软件作分析,例如相关分析和回归分析,这种论文偏理论型。推论统计学被用来将资料中的数据模型化,计算它的机率并且做出对于母体的推论。这个推论可能以对/错问题的答案所呈现(假设检定)。对于数字特征量的估计(估计),对于未来观察的预测,关联性的预测(相关性),或是将关系模型化(回归)。其他的模型化技术包括变异数分析(ANOVA),时间序列,以及数据挖掘。为了实际的理由,我们选择研究母体的子集代替研究母体的每一笔资料,这个子集称做样本。以某种经验设计实验所搜集的样本叫做资料。资料是统计分析的对象,并且被用做两种相关的用途:描述和推论。描述统计学处理有关叙述的问题:资料是否可以被有效的摘要,不论是以数学或是图片表现,以用来代表母体的性质?基础的数学描述包括了平均数和标准差。图像的摘要则包含了许多种的表和图。

缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。

统计学的应用论文

前言:统计学是一门关于用科学的法搜集、整理、汇总、描绘和剖析数据材料,并在此根底上停止推断和决策的科学。狭义的统计用来统指数据或者从数据中得到的一些数字。从统计的定义能够看出,统计的关键在于对数据的剖析与加工,而Excel强大的数据剖析功用则恰恰与统计所要处置的问题相顺应,因而从Excel产生之初便被普遍地应用于统计中,而专为统计剖析所开发的各种宏更是使得Excel成为统计剖析中一种适用而高效的工具。固然SPSS、SAS等专业统计软件在某些方面具有更为强大的统计剖析功用,但其或者需求专业的编程,或者需求昂扬的价钱,因而提高性远远不如Excel。下面以Excel2003为例,引见一下其在统计学方面的典型应用。    数据库统计函数与数据透视表  Excel作为电子表格软件,其数据构造的中心是单元格和单元格区域,因而Excel同数据库软件相同都是管理处置一批有规律的数据。基于Excel的行列构造,在工作表中依照规范的数据库标准对数据停止处置,这也被称为Excel的内部数据库技术,经过创立Excel的内部数据库,能够经过数据库函数完成对数据的统计剖析。  1数据库统计函数  在树立内部数据库的根底上,Excel中特地包含了一组对存储在数据清单或数据库中的数据停止统计运算的工作表函数,这些函数统称为数据库函数即Dfunctions。其中每个函数普通对应三个参数database、field和criteria,这些参数对应函数所运用的工作表区域,应用这些函数能够在日常统计工作中停止一些根本的统计运算。  Dfunctions具有相同的语法格式:Dfunctions(database,field,criteria)。其中:  ①Dfunctions为数据库函数的称号,在Excel中总共有12个数据库函数;  ②database为构成数据清单和数据库的单元格区域,数据库是包含一组相关数据的列表,其中包含相关信息的行为记载,而包含数据的列为字段。列表的第一行包含着每一列的标志项,为函数所运用的数据列或称作字段,数据清单中的数据列应位于第一行且具有标志项;  ③field能够为文本,即两端带引号的标志项,如“类别”、“消费商”,也能够为数据清单中数据列的位置,如“1”表示第一列,“2”表示第二列。field也可省略,省略后函数将返回数据清单中一切满足条件的值;  ④criteria为一组包含给定条件的单元格区域。能够为参数criteria指定恣意区域,只需它至少包含一个列标志和列标志下方用于设定条件的单元格。完毕语:  Execl在统计学方面百分百论文网/asp?ID=32772论文网的应用还有很多,如概率散布图、抽样散布、参数估量、假定检验、回归剖析与预测以及时间序列剖析等,其强大的统计功用能够满足经济学、医学、气候、农业等各个范畴的数据剖析,为人们的剖析决策提供牢靠的参考,且随着Excel版本的不时晋级,其功用也日趋完善,有着宽广的应用前景。

从统计学的发展趋势谈统计教育的改革 摘要:要培养出新型的21世纪的人才,统计教育必须高瞻远瞩。本文从统计学的发展趋势谈了统计教育急需改革的几个方面。 关键词: 统计学; 发展趋势; 统计教育改革 随着国家创新体系的建立,统计创新工程已经提上议事日程,统计创新包括两个方面,一是统计实践的创新;二是统计教育的创新。创新的基础在于教育,没有统计教育的创新,就谈不上统计实践的创新。准确把握统计学的发展方向与发展形势,培养适应新世纪社会经济发展需要的人才,是统计教育工作者必须面对的问题,本文从统计学的基本发展趋势谈一谈统计教育急需改革的几个方面。 一、统计学的基本发展趋势 纵观统计学的发展状况,与整个科学的发展趋势相似,统计学也在走与其他科学结合交融的发展道路。归纳起来,有两个基本结合趋势。 (一)统计学与实质性学科结合的趋势 统计学是一门通用方法论的科学,是一种定量认识问题的工具。但作为一种工具,它必须有其用武之地。否则,统计方法就成为无源之水,无用之器。统计方法只有与具体的实质性学科相结合,才能够发挥出其强大的数量分析功效。并且,从统计方法的形成历史看,现代统计方法基本上来自于一些实质性学科的研究活动,例如,最小平方法与正态分布理论源于天文观察误差分析,相关与回归源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究。抽样调查方法源于政府统计调查资料的搜集。历史上一些著名的统计学家同时也是生物学家或经济学家等。同时,有不少生物学家、天文学家、经济学家、社会学家、人口学家、教育学家等都在从事统计理论与方法的研究。他们在应用过程中对统计方法进行创新与改进。另外,从学科体系看,统计学与实质性学科之间的关系绝对不是并列的,而是相交的,如果将实质性学科看作是纵向的学科,那么统计学就是一门横向的学科,统计方法与相应的实质性学科相结合,才产生了相应的统计学分支,如统计学与经济学相结合产生了经济统计,与教育学相结合产生了教育统计,与生物学相结合产生了生物统计等,而这些分支学科都具有"双重"属性:一方面是统计学的分支,另一方面也是相应实质性学科的分支,所以经济统计学、经济计量学不仅属于统计学,同时属于经济学,生物统计学不仅是统计学的分支,也是生物学的分支等。这些分支学科的存在主要不是为了发展统计方法,而是为了解决实质性学科研究中的有关定量分析问题,统计方法是在这一应用过程中得以完善与发展的。因此,统计学与各门实质性学科的紧密结合,不仅是历史的传统更是统计学发展的必然模式。实质性学科为统计学的应用提供了基地,为统计学的发展提供了契机。21世纪的统计学依然会采取这种发展模式,且更加注重应用研究。 这个趋势说明:统计方法的学习必须与具体的实质性学科知识学习相结合。必须以实质性学科为依据,因此,财经类统计专业的学生必须学好有关经济类与管理类的课程,只有这样,所学的统计方法才有用武之地。统计的工具属性才能够得以充分体现。 (二)统计学与计算机科学结合的趋势 纵观统计数据处理手段发展历史,经历了手工、机械、机电、电子等数个阶段,数据处理手段的每一次飞跃,都给统计实践带来革命性的发展。上个世纪40年代第一台电子计算机的诞生,给统计学方法的广泛应用创造了条件。20年代发展起来的多元统计方法虽然对于处理多变量的种类数据问题具有很大的优越性,但由于计算工作量大,使得这些有效的统计分析方法一开始并没有能够在实践中很好推广开来。而电子计算机技术的诞生与发展,使得复杂的数据处理工作变得非常容易,那些计算繁杂的统计方法的推广与应用,由于相应统计软件的开发与商品化而变得更加方便与迅速,非统计专业的理论工作者可以直接凭借商品化统计分析软件来处理各类现实问题的多变量数据分析,而无需对有关统计方法的复杂理论背景进行研究。计算机运行能力的提高,使得大规模统计调查数据的处理更加准确、充分与快捷。目前企业经营管理中建立的决策支持系统(DSS)更加离不开统计模型。最近国外兴起的数据挖掘(Datamining,又译"数据掏金")技术更是计算机专家与统计学家共同关注的领域。随着计算机应用的越来越广泛,每年都要积累大量的数据,大量信息在给人们带来方便的同时也带来了一系列问题:信息过量,难以消化;信息真假,难以辨识;信息安全,难以保证;信息形式不一致,难以统一处理;于是人们开始提出一个新的口号"要学会抛弃信息"。人们考虑"如何才能不被信息淹没,而是从中及时发现有用的知识,提高信息利用率?"面对这一挑战,数据挖掘和知识发现(DMKD)技术应运而生,并显示出强大的生命力。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘是一门交叉学科,它把人们对数据的应用从低层的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、统计、可视化技术、并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。虽然统计学家与计算机专家关心Datamining的视角不完全相同,但可以说,Datamining与DSS一样,使得统计方法与计算机技术的结合达到了一个更高的层次。 因此,统计学越来越离不开计算机技术,而计算机技术应用的深入,也同样离不开统计方法的发展与完善。这个趋势说明:充分利用现代计算技术,通过计算机软件将统计方法中复杂难懂的计算过程屏障起来,让用户直接看到统计输出结果与有关解释,从而使统计方法的普及变得非常容易。所以,对于财经类统计专业的学生来说,一方面要学好统计方法,但另一方面更加要学会利用商品化统计软件包解决实践中的统计数量分析问题,学好计算机信息系统开发的基本思想与基本程序设计,能够将具体单位的统计模型通过编程来实现,以建立起统计决策支持系统。 所以统计与实质性学科相结合,与计算机、与信息相结合,这是发展的趋势。了解这一点,再来看我们目前教育中的问题就更加明显了,所以一些课程要改革,教学方式也要改革。以下谈一谈统计教育需要改革的几个方面。采纳哦