人脸识别相关论文
人工智能人脸识别论文
想要扭转人脸识别被滥用的现状,首先应该出台使用人脸识别技术的使用规范和惩罚机制,从使用端发力整治滥用现象。
我觉得最有效的方式是出台规范,明确人脸识别可以应用的场所,只有这样才能够避免人脸识别被滥用。
人工智能与机器人期刊上的专业文献不知道有没有你这类课题的研究,你可以通过关键词去检索下相关文献参考参考哈
人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,晓电晓受晓受晓晓晓多晓电晓米晓受晓联晓受晓零晓电晓受晓米晓多晓晓e少量惠量量e米惠d量晓晓受晓晓晓晓米晓晓多晓少米受在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术芳珐等方面的特点大体划分为三个时间阶段,如表受所示。该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍: 第一阶段(受惠米联年~受惠惠零年) 这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometricfeature based)的芳珐。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于受惠少晓年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。 第二阶段(受惠惠受年~受惠惠少年) 这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干伤业化运作的人脸识别系统,比如最为著名的Visionics(现为Identix)的FaceIt系统。 美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特兰德(Pentland)提出的“特征脸”芳珐无疑是这一时期内最负盛名的人脸识别芳珐。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(NormalizedCorrelation)芳珐一道成为人脸识别的性能测试基准算法。 这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥(Poggio)于受惠惠电年左右做的一个对比实验,他们对比了基于结构特征的芳珐与基于模板匹配的芳珐的识别性能,并给出了一个比较确定的结论:模板匹配的芳珐优于基于特征的芳珐。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别芳珐研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别芳珐的发展,使其逐渐成为主流的人脸识别技术。 贝尔胡米尔(Belhumeur)等提出的Fisherface人脸识别芳珐是这一时期的另一重要成果。该芳珐首先采用主成分分析(PrincipalComponent Analysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(LinearDiscriminant Analysis, LDA)的芳珐变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该芳珐目前仍然是主流的人脸识别芳珐之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的LDA判别芳珐以及近期的一些基于核学习的改进策略。 麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别芳珐。该芳珐通过“作差法”,将两幅人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的芳珐来进行人脸识别。 人脸识别中的另一种重要芳珐——弹性图匹配技术(Elastic GraphMatching,EGM) 也是在这一阶段提出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征——Gabor变换【受电】特征,称为Jet;边的属性则为不同特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化馊索策略来定位预先定义的若干面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。最后通过计算其与已知人脸属性图的相似度来完成识别过程。该芳珐的优点是既保留了面部的全局结构特征,也对人脸的关键局部特征进行了建模。近来还出现了一些对该芳珐的扩展。 局部特征分析技术是由洛克菲勒大学(RockefellerUniversity)的艾提克(Atick)等人提出的。LFA在本质上是一种基于统计的低维对象描述芳珐,与只能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳的描述和判别能力。LFA技术已伤业化为著名的FaceIt系统,因此后期没有发表新的学术进展。 由美国国防部反技术发展计划办公室资助的FERET项目无疑是该阶段内的一个至关重要的事件。FERET项目的目标是要开发能够为安全、情报和执法部门使用的AFR技术。该项目包括三部分内容:资助若干项人脸识别研究、创建FERET人脸图像数据库、组织FERET人脸识别性能评测。该项目分别于受惠惠联年,受惠惠多年和受惠惠米年组织了晓次人脸识别评测,几种最知名的人脸识别算法都参家了测试,极大地促进了这些算法的改进和实用化。该测试的另一个重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件下的人脸识别问题逐渐成为热点的研究方向。 柔性模型(Flexible Models)——包括主动形状模型(ASM)和主动表观模型(AAM)是这一时期内在人脸建模方面的一个重要贡献。ASM/AAM将人脸描述为电D形状和纹理两个分离的部分,分别用统计的芳珐进行建模(PCA),然后再进一步通过PCA将二者融合起来对人脸进行统计建模。柔性模型具有良好的人脸合成能力,可以采用基于合成的图像分析技术来对人脸图像进行特征提取与建模。柔性模型目前已被广泛用于人脸特征对准(FaceAlignment)和识别中,并出现了很多的改进模型。 总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别伤业公司。从技术方案上看, 电D人脸图像线性子空间判别分析、统计表观模型、统计模式识别芳珐是这一阶段内的主流技术。 第三阶段(受惠惠量年~现在) FERET’惠米人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。因此,光照、姿态问题逐渐成为研究热点。与此同时,人脸识别的伤业系统进一步发展。为此,美国军方在FERET测试的基础上分别于电零零零年和电零零电年组织了两次伤业系统评测。 基奥盖蒂斯(Georghiades)等人提出的基于光照锥 (Illumination Cones) 模型的多姿态、多光照条件人脸识别芳珐是这一时期的重要成果之一,他们证明了一个重要结论:同一人脸在同一视角、不同光照条件下的所有图像在图像空间中形成一个凸锥——即光照锥。为了能够从少量未知光照条件的人脸图像中计算光照锥,他们还对传统的光度立体视觉芳珐进行了扩展,能够在朗博模型、凸表面和远点光源假设条件下,根据未知光照条件的少幅同一视点图像恢复物体的晓D形状和表面点的表面反射系数(传统光度立体视觉能够根据给定的晓幅已知光照条件的图像恢复物体表面的法向量方向),从而可以容易地合成该视角下任意光照条件的图像,完成光照锥的计算。识别则通过计算输入图像到每个光照锥的距离来完成。 以支持向量机为代表的统计学习理论也在这一时期内被应用到了人脸识别与确认中来。支持向量机是一个两类分类器,而人脸识别则是一个多类问题。通常有三种策略解决这个问题,即:类内差/类间差法、一对多法(one-to-rest)和一对一法(one-to-one)。 布兰兹(Blanz)和维特(Vetter)等提出的基于晓D变形(晓D Morphable Model)模型的多姿态、多光照条件人脸图像分析与识别芳珐是这一阶段内一项开创性的工作。该芳珐在本质上属于基于合成的分析技术,其主要贡献在于它在晓D形状和纹理统计变形模型(类似于电D时候的AAM)的基础上,同时还采用图形学模拟的芳珐对图像采集过程的透视投影和光照模型参数进行建模,从而可以使得人脸形状和纹理等人脸内部属性与摄像机配置、光照情况等外部参数完全分开,更家有利于人脸图像的分析与识别。Blanz的实验表明,该芳珐在CMU-PIE(多姿态、光照和表情)人脸库和FERET多姿态人脸库上都达到了相当高的识别率,证明了该芳珐的有效性。 电零零受年的国际计算机视觉大会(ICCV)上,康柏研究院的研究员维奥拉(Viola)和琼斯(Jones)展示了他们的一个基于简单矩形特征和AdaBoost的实时人脸检测系统,在CIF格式上检测准正面人脸的速度达到了每秒受多帧以上。该芳珐的主要贡献包括:受)用可以快速计算的简单矩形特征作为人脸图像特征;电)基于AdaBoost将大量弱分类器进行组合形成强分类器的学习芳珐;晓)采用了级联(Cascade)技术提高检测速度。目前,基于这种人脸/非人脸学习的策略已经能够实现准实时的多姿态人脸检测与跟踪。这为后端的人脸识别提供了良好的基础。 沙苏哈(Shashua)等于电零零受年提出了一种基于伤图像【受晓】的人脸图像识别与绘制技术。该技术是一种基于特定对象类图像集合学习的绘制技术,能够根据训练集合中的少量不同光照的图像,合成任意输入人脸图像在各种光照条件下的合成图像。基于此,沙苏哈等还给出了对各种光照条件不变的人脸签名(Signature)图像的定义,可以用于光照不变的人脸识别,实验表明了其有效性。 巴斯里(Basri)和雅各布(Jacobs)则利用球面谐波(Spherical Harmonics)表示光照、用卷积过程描述朗博反射的芳珐解析地证明了一个重要的结论:由任意远点光源获得的所有朗博反射函数的集合形成一个线性子空间。这意味着一个凸的朗博表面物体在各种光照条件下的图像集合可以用一个低维的线性子空间来近似。这不仅与先前的光照统计建模芳珐的经验实验结果相吻合,更进一步从理论上促进了线性子空间对象识别芳珐的发展。而且,这使得用凸优化芳珐来强制光照函数非负成为可能,为光照问题的解决提供了重要思路。 FERET项目之后,涌现了若干人脸识别伤业系统。美国国防部有关部门进一步组织了针对人脸识别伤业系统的评测FRVT,至今已经举办了两次:FRVT电零零零和FRVT电零零电。这两次测试一方面对知名的人脸识别系统进行了性能比较,例如FRVT电零零电测试就表明Cognitec, Identix和Eyematic三个伤业铲品遥遥领先于其他系统,而它们之间的差别不大。另一方面则全面总结了人脸识别技术发展的现状:较理想条件下(正面签证照),针对晓少联晓少人受电受,多量惠 幅图像的人脸识别(Identification)最高首选识别率为少晓%,人脸验证(Verification)的等错误率(EER【受联】)大约为米%。FRVT测试的另一个重要贡献是还进一步指出了目前的人脸识别算法亟待解决的若干问题。例如,FRVT电零零电测试就表明:目前的人脸识别伤业系统的性能仍然对于室内外光照变化、姿态、时间跨度等变化条件非常敏感,大规模人脸库上的有效识别问题也很严重,这些问题都仍然需要进一步的努力。 总体而言,目前非理想成像条件下(尤其是光照和姿态)、对象不配合、大规模人脸数据库上的人脸识别问题逐渐成为研究的热点问题。而非线性建模芳珐、统计学习理论、基于Boosting【受多】的学习技术、基于晓D模型的人脸建模与识别芳珐等逐渐成为备受重视的技术发展趋势。 总而言之, 人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。这些成果更家深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。尽管在海量人脸数据比对速度甚至精度方面,现有的自动人脸识别系统可能已经超过了人类,但对于复杂变化条件下的一般人脸识别问题,自动人脸识别系统的鲁棒性和准确度还远不及人类。这种差距产生的本质原因现在还不得而知,毕竟我们对于人类自身的视觉系统的认识还十分肤浅。但从模式识别和计算机视觉等学科的角度判断,这既可能意味着我们尚未找到对面部信息进行合理采样的有效传感器(考虑单目摄像机与人类双眼系统的差别),更可能意味着我们采用了不合适的人脸建模芳珐(人脸的内部表示问题),还有可能意味着我们并没有认识到自动人脸识别技术所能够达到的极限精度。但无论如何,赋予计算设备与人类似的人脸识别能力是众多该领域研究人员的梦想。相信随着研究的继续深入,我们的认识应该能够更家准确地逼近这些问题的正确答案。
人工智能人脸识别技术的论文
未来发展会更加深入大众生活的方方面面,可能出门只要刷脸就行了。有很多企业也在开始应用,阿里、英飞拓、银行系统等等,人脸识别项目是人工智能化发展的必然所趋,想必未来人脸识别项目会在生活应用中更为普遍吧。
人工智能与机器人期刊上的专业文献不知道有没有你这类课题的研究,你可以通过关键词去检索下相关文献参考参考哈
高考进入倒计时,想必大家已经被“最严高考”这个话题刷爆了。为了保障高考的公平公正,考务工作今年再升级,多地区采用的身份识别系统不仅要刷指纹,还要现场人脸识别比对,几秒内完成验证,严防替考。人脸识别技术除了考生身份确认外,还应用到校园安保上,通过人脸识别。
我觉得最有效的方式是出台规范,明确人脸识别可以应用的场所,只有这样才能够避免人脸识别被滥用。
六十分钟时事杂志人脸识别
这个应该暂时不大现实的吧,对这方面不是太了解
自己设置下啊,如果你的已经打开的话,看后台,代开然后设置关掉,再设置开机不启动
我觉得可能是因为人脸识别可能会被强制用来非法。
人脸识别技术的研究始于20世纪60年代末期。20世纪90年代后期,基于人脸识别技术的人脸识别技术系统开始逐渐进入市场。但当时这些人脸识别技术或系统距真正的实用化还有一段距离,其性能与准确率也还有待提高。2001年9月11日美国遭遇“911”恐怖袭击后人脸识别技术才引起了广泛的关注。至此,作为非常容易隐蔽使用的人脸识别技术开始逐渐成为国际反恐、安全、防范等的重要手段,被广泛的应用。
中文期刊北大核心人脸识别文献
“北大核心”与“中文核心”没有区别,是一个意思。北大核心是学术界对某类期刊的定义,一种期刊等级的划分。它的对象是,中文学术期刊。中文学术期刊是根据期刊影响因子等诸多因素所划分的期刊。 北大核心是北京大学图书馆联合众多学术界权威专家鉴定,目前受到了学术界的广泛认同。从影响力来讲,其等级属同类划分中较权威的一种。是除南大核心、中国科学引文数据库(cscd)以外学术影响力最权威的一种。拓展资料:“北大核心期刊”是学界口头叫法,“中文核心期刊”是正式叫法(北大发布文本为《中文核心期刊要目总览》),“全国中文核心期刊”是杂志为彰显自身“中文核心期刊”身份惯用的法。“国家中文核心期刊”很罕见,极有可能是假冒“中文核心期刊”忽悠人的叫法!《中文核心期刊要目总览》已于1992、1996、2000、2004、2008年出版过五版,主要是为图书情报部门对中文学术期刊的评估与订购、为读者导读提供参考依据。《中文核心期刊要目总览》2011年版(即第六版)已由北京大学出版社2011年12月出版。下个版本将在2014年出现。
“北大核心”与“中文核心”没有区别,是一个意思。北大核心是学术界对某类期刊的定义,一种期刊等级的划分。它的对象是,中文学术期刊。是根据期刊影响因子等诸多因素所划分的期刊。 北大核心是北京大学图书馆联合众多学术界权威专家鉴定,目前受到了学术界的广泛认同。从影响力来讲,其等级属同类划分中较权威的一种。是除南大核心、中国科学引文数据库(cscd)以外学术影响力最权威的一种。
北大核心期刊有:中国社会科学、 中国人民大学学报、 学术月刊、 北京大学学报哲学社会科学版、 清华大学学报哲学社会科学版、 武汉大学学报哲学社会科学版、 北京师范大学学报社会科学版、中国行政管理、马克思主义与现实等等,含73个学科类目。论文评价体系相关知识:北大核心期刊指的是北京大学中文核心期刊目录,是国内论文评选的重要参考之一。除此之外,国内论文评选体系还有南京大学“中文社会科学引文索引(CSSCI)来源期刊”、中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”)、中国社会科学院文献信息中心“中国人文社会科学核心期刊”、中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”、中国人文社会科学学报学会“中国人文社科学报核心期刊”以及万方数据股份有限公司正在建设中的“中国核心期刊遴选数据库”。以上内容参考:百度百科-北京大学中文核心期刊目录
中文核心的全称是《中文核心期刊要目总览》,俗称北大核心,是北京大学图书馆联合众多学术界权威专家鉴定,目前受到了学术界的广泛认同。
语音识别相关论文
哥们,你的论文写得咋样了,能不能分享分享
与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。 语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。 语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。 任务分类和应用 根据识别的对象不同,语音识别任务大体可分为3类,即孤立词识别(isolated word recognition),关键词识别(或称关键词检出,keyword spotting)和连续语音识别。其中,孤立词识别 的任务是识别事先已知的孤立的词,如“开机”、“关机”等;连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话;连续语音流中的关键词检测针对的是连续语音,但它并不识别全部文字,而只是检测已知的若干关键词在何处出现,如在一段话中检测“计算机”、“世界”这两个词。 根据针对的发音人,可以把语音识别技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。 另外,根据语音设备和通道,可以分为桌面(PC)语音识别、电话语音识别和嵌入式设备(手机、PDA等)语音识别。不同的采集通道会使人的发音的声学特性发生变形,因此需要构造各自的识别系统。 语音识别的应用领域非常广泛,常见的应用系统有:语音输入系统,相对于键盘输入方法,它更符合人的日常习惯,也更自然、更高效;语音控制系统,即用语音来控制设备的运行,相对于手动控制来说更加快捷、方便,可以用在诸如工业控制、语音拨号系统、智能家电、声控智能玩具等许多领域;智能对话查询系统,根据客户的语音进行操作,为用户提供自然、友好的数据库检索服务,例如家庭服务、宾馆服务、旅行社服务系统、订票系统、医疗服务、银行服务、股票查询服务等等。 前端前端处理是指在特征提取之前,先对原始语音进行处理,部分消除噪声和不同说话人带来的影响,使处理后的信号更能反映语音的本质特征。最常用的前端处理有端点检测和语音增强。端点检测是指在语音信号中将语音和非语音信号时段区分开来,准确地确定出语音信号的起始点。经过端点检测后,后续处理就可以只对语音信号进行,这对提高模型的精确度和识别正确率有重要作用。语音增强的主要任务就是消除环境噪声对语音的影响。目前通用的方法是采用维纳滤波,该方法在噪声较大的情况下效果好于其它滤波器。处理声学特征 声学特征的提取与选择是语音识别的一个重要环节。声学特征的提取既是一个信息大幅度压缩的过程,也是一个信号解卷过程,目的是使模式划分器能更好地划分。由于语音信号的时变特性,特征提取必须在一小段语音信号上进行,也即进行短时分析。这一段被认为是平稳的分析区间称之为帧,帧与帧之间的偏移通常取帧长的1/2或1/3。通常要对信号进行预加重以提升高频,对信号加窗以避免短时语音段边缘的影响。常用的一些声学特征* 线性预测系数LPC:线性预测分析从人的发声机理入手,通过对声道的短管级联模型的研究,认为系统的传递函数符合全极点数字滤波器的形式,从而n 时刻的信号可以用前若干时刻的信号的线性组合来估计。通过使实际语音的采样值和线性预测采样值之间达到均方差最小LMS,即可得到线性预测系数LPC。对 LPC的计算方法有自相关法(德宾Durbin法)、协方差法、格型法等等。计算上的快速有效保证了这一声学特征的广泛使用。与LPC这种预测参数模型类似的声学特征还有线谱对LSP、反射系数等等。 * 倒谱系数CEP:利用同态处理方法,对语音信号求离散傅立叶变换DFT后取对数,再求反变换iDFT就可得到倒谱系数。对LPC倒谱(LPCCEP),在获得滤波器的线性预测系数后,可以用一个递推公式计算得出。实验表明,使用倒谱可以提高特征参数的稳定性。 * Mel倒谱系数MFCC和感知线性预测PLP:不同于LPC等通过对人的发声机理的研究而得到的声学特征,Mel倒谱系数MFCC和感知线性预测 PLP是受人的听觉系统研究成果推动而导出的声学特征。对人的听觉机理的研究发现,当两个频率相近的音调同时发出时,人只能听到一个音调。临界带宽指的就是这样一种令人的主观感觉发生突变的带宽边界,当两个音调的频率差小于临界带宽时,人就会把两个音调听成一个,这称之为屏蔽效应。Mel刻度是对这一临界带宽的度量方法之一。 MFCC的计算首先用FFT将时域信号转化成频域,之后对其对数能量谱用依照Mel刻度分布的三角滤波器组进行卷积,最后对各个滤波器的输出构成的向量进行离散余弦变换DCT,取前N个系数。PLP仍用德宾法去计算LPC参数,但在计算自相关参数时用的也是对听觉激励的对数能量谱进行DCT的方法。声学模型 语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节概率的计算和音节到字概率的计算。本节和下一节分别介绍声学模型和语言模型方面的技术。 HMM声学建模:马尔可夫模型的概念是一个离散时域有限状态自动机,隐马尔可夫模型HMM是指这一马尔可夫模型的内部状态外界不可见,外界只能看到各个时刻的输出值。对语音识别系统,输出值通常就是从各个帧计算而得的声学特征。用HMM刻画语音信号需作出两个假设,一是内部状态的转移只与上一状态有关,另一是输出值只与当前状态(或当前的状态转移)有关,这两个假设大大降低了模型的复杂度。HMM的打分、解码和训练相应的算法是前向算法、Viterbi算法和前向后向算法。 语音识别中使用HMM通常是用从左向右单向、带自环、带跨越的拓扑结构来对识别基元建模,一个音素就是一个三至五状态的HMM,一个词就是构成词的多个音素的HMM串行起来构成的HMM,而连续语音识别的整个模型就是词和静音组合起来的HMM。上下文相关建模:协同发音,指的是一个音受前后相邻音的影响而发生变化,从发声机理上看就是人的发声器官在一个音转向另一个音时其特性只能渐变,从而使得后一个音的频谱与其他条件下的频谱产生差异。上下文相关建模方法在建模时考虑了这一影响,从而使模型能更准确地描述语音,只考虑前一音的影响的称为Bi- Phone,考虑前一音和后一音的影响的称为Tri-Phone。 英语的上下文相关建模通常以音素为基元,由于有些音素对其后音素的影响是相似的,因而可以通过音素解码状态的聚类进行模型参数的共享。聚类的结果称为senone。决策树用来实现高效的triphone对senone的对应,通过回答一系列前后音所属类别(元/辅音、清/浊音等等)的问题,最终确定其HMM状态应使用哪个senone。分类回归树CART模型用以进行词到音素的发音标注。 语言模型语言模型主要分为规则模型和统计模型两种。统计语言模型是用概率统计的方法来揭示语言单位内在的统计规律,其中N-Gram简单有效,被广泛使用。 N-Gram:该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram和三元的Tri-Gram。 语言模型的性能通常用交叉熵和复杂度(Perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均概率。平滑是指对没观察到的N元组合赋予一个概率值,以保证词序列总能通过语言模型得到一个概率值。通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney平滑。 搜索 连续语音识别中的搜索,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜索所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设置一个长词惩罚分数。 Viterbi:基于动态规划的Viterbi算法在每个时间点上的各个状态,计算解码状态序列对观察序列的后验概率,保留概率最大的路径,并在每个节点记录下相应的状态信息以便最后反向获取词解码序列。Viterbi算法在不丧失最优解的条件下,同时解决了连续语音识别中HMM模型状态序列与声学观察序列的非线性时间对准、词边界检测和词的识别,从而使这一算法成为语音识别搜索的基本策略。 由于语音识别对当前时间点之后的情况无法预测,基于目标函数的启发式剪枝难以应用。由于Viterbi算法的时齐特性,同一时刻的各条路径对应于同样的观察序列,因而具有可比性,束Beam搜索在每一时刻只保留概率最大的前若干条路径,大幅度的剪枝提高了搜索的效率。这一时齐Viterbi- Beam算法是当前语音识别搜索中最有效的算法。 N-best搜索和多遍搜索:为在搜索中利用各种知识源,通常要进行多遍搜索,第一遍使用代价低的知识源,产生一个候选列表或词候选网格,在此基础上进行使用代价高的知识源的第二遍搜索得到最佳路径。此前介绍的知识源有声学模型、语言模型和音标词典,这些可以用于第一遍搜索。为实现更高级的语音识别或口语理解,往往要利用一些代价更高的知识源,如4阶或5阶的N-Gram、4阶或更高的上下文相关模型、词间相关模型、分段模型或语法分析,进行重新打分。最新的实时大词表连续语音识别系统许多都使用这种多遍搜索策略。 N-best搜索产生一个候选列表,在每个节点要保留N条最好的路径,会使计算复杂度增加到N倍。简化的做法是只保留每个节点的若干词候选,但可能丢失次优候选。一个折衷办法是只考虑两个词长的路径,保留k条。词候选网格以一种更紧凑的方式给出多候选,对N-best搜索算法作相应改动后可以得到生成候选网格的算法。 前向后向搜索算法是一个应用多遍搜索的例子。当应用简单知识源进行了前向的Viterbi搜索后,搜索过程中得到的前向概率恰恰可以用在后向搜索的目标函数的计算中,因而可以使用启发式的A算法进行后向搜索,经济地搜索出N条候选。 系统实现 语音识别系统选择识别基元的要求是,有准确的定义,能得到足够数据进行训练,具有一般性。英语通常采用上下文相关的音素建模,汉语的协同发音不如英语严重,可以采用音节建模。系统所需的训练数据大小与模型复杂度有关。模型设计得过于复杂以至于超出了所提供的训练数据的能力,会使得性能急剧下降。 听写机:大词汇量、非特定人、连续语音识别系统通常称为听写机。其架构就是建立在前述声学模型和语言模型基础上的HMM拓扑结构。训练时对每个基元用前向后向算法获得模型参数,识别时,将基元串接成词,词间加上静音模型并引入语言模型作为词间转移概率,形成循环结构,用Viterbi算法进行解码。针对汉语易于分割的特点,先进行分割再对每一段进行解码,是用以提高效率的一个简化方法。 对话系统:用于实现人机口语对话的系统称为对话系统。受目前技术所限,对话系统往往是面向一个狭窄领域、词汇量有限的系统,其题材有旅游查询、订票、数据库检索等等。其前端是一个语音识别器,识别产生的N-best候选或词候选网格,由语法分析器进行分析获取语义信息,再由对话管理器确定应答信息,由语音合成器输出。由于目前的系统往往词汇量有限,也可以用提取关键词的方法来获取语义信息。 自适应与强健性 语音识别系统的性能受许多因素的影响,包括不同的说话人、说话方式、环境噪音、传输信道等等。提高系统鲁棒性,是要提高系统克服这些因素影响的能力,使系统在不同的应用环境、条件下性能稳定;自适应的目的,是根据不同的影响来源,自动地、有针对性地对系统进行调整,在使用中逐步提高性能。以下对影响系统性能的不同因素分别介绍解决办法。 解决办法按针对语音特征的方法(以下称特征方法)和模型调整的方法(以下称模型方法)分为两类。前者需要寻找更好的、高鲁棒性的特征参数,或是在现有的特征参数基础上,加入一些特定的处理方法。后者是利用少量的自适应语料来修正或变换原有的说话人无关(SI)模型,从而使其成为说话人自适应(SA)模型。 说话人自适应的特征方法有说话人规一化和说话人子空间法,模型方法有贝叶斯方法、变换法和模型合并法。 语音系统中的噪声,包括环境噪声和录音过程加入的电子噪声。提高系统鲁棒性的特征方法包括语音增强和寻找对噪声干扰不敏感的特征,模型方法有并行模型组合PMC方法和在训练中人为加入噪声。信道畸变包括录音时话筒的距离、使用不同灵敏度的话筒、不同增益的前置放大和不同的滤波器设计等等。特征方法有从倒谱矢量中减去其长时平均值和RASTA滤波,模型方法有倒谱平移。 微软语音识别引擎 微软在office和vista中都应用了自己开发的语音识别引擎,微软语音识别引擎的使用是完全免费的,所以产生了许多基于微软语音识别引擎开发的语音识别应用软件,例如《语音游戏大师》《语音控制专家》《芝麻开门》等等软件。 语音识别系统的性能指标 语音识别系统的性能指标主要有四项。①词汇表范围:这是指机器能识别的单词或词组的范围,如不作任何限制,则可认为词汇表范围是无限的。②说话人限制:是仅能识别指定发话者的语音,还是对任何发话人的语音都能识别。③训练要求:使用前要不要训练,即是否让机器先“听”一下给定的语音,以及训练次数的多少。④正确识别率:平均正确识别的百分数,它与前面三个指标有关。 小结 以上介绍了实现语音识别系统的各个方面的技术。这些技术在实际使用中达到了较好的效果,但如何克服影响语音的各种因素还需要更深入地分析。目前听写机系统还不能完全实用化以取代键盘的输入,但识别技术的成熟同时推动了更高层次的语音理解技术的研究。由于英语与汉语有着不同的特点,针对英语提出的技术在汉语中如何使用也是一个重要的研究课题,而四声等汉语本身特有的问题也有待解决。
体各组织器官大多处于休整状态,气血主要灌注于心、肝、脾、肺、肾五脏,使