初中数学教学相关论文
初中数学相关论文
各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
靠自己
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
噢噢111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
初等数论相关论文
自己想想啊!你学了嘛!只有自己的是体会最好的~~~~~~~~~~~`给我分哦ha数学 数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。” 历史 自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。 从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A N Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。 本质特征 对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。 事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。” 其它解释 另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,另一方面,如果所考虑的领域存在于数学之外,数学就起着用科学的作用,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.” 从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。 基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛性”王梓坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。 研究内容 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们和起来叫做整数。 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 数论的基本内容 数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。 初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。比如中国古代有名的“中国剩余定理”,就是初等数论中很重要的内容。 解析数论是使用数学分析作为工具来解决数论问题的分支。数学分析是以函数作为研究对象的、在极限概念的基础上建立起来的数学学科。用数学分析来解决数论问题是由欧拉奠基的,俄国数学家车比雪夫等也对它的发展做出过贡献。解析数论是解决数论中艰深问题的强有力的工具。比如,对于“质数有无限多个”这个命题,欧拉给出了解析方法的证明,其中利用了数学分析中有关无穷级数的若干知识。二十世纪三十年代,苏联数学家维诺格拉多夫创造性的提出了“三角和方法”,这个方法对于解决某些数论难题有着重要的作用。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。几何数论研究的基本对象是“空间格网”。什么是空间格网呢?在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。下面简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、圆内整点问题、完全数问题…… 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们和起来叫做整数。 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 数论的基本内容 数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。 初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。比如中国古代有名的“中国剩余定理”,就是初等数论中很重要的内容。 解析数论是使用数学分析作为工具来解决数论问题的分支。数学分析是以函数作为研究对象的、在极限概念的基础上建立起来的数学学科。用数学分析来解决数论问题是由欧拉奠基的,俄国数学家车比雪夫等也对它的发展做出过贡献。解析数论是解决数论中艰深问题的强有力的工具。比如,对于“质数有无限多个”这个命题,欧拉给出了解析方法的证明,其中利用了数学分析中有关无穷级数的若干知识。二十世纪三十年代,苏联数学家维诺格拉多夫创造性的提出了“三角和方法”,这个方法对于解决某些数论难题有着重要的作用。我国数学家陈景润在解决“哥德巴赫猜想”问题中也使用的是解析数论的方法。 代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。几何数论研究的基本对象是“空间格网”。什么是空间格网呢?在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。下面简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、圆内整点问题、完全数问题…… 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。i you
寒假中的一天,我和妈妈一起出去逛街。我们边走边商量,先去服装店买衣服,再去超市购物,最后回家。 街上产品琳琅满目,到处都热热闹闹,喜气洋洋。忽听一个高音喇叭广告,吸引了妈妈:清仓大处理!清仓大处理!买一送一!心动不如行动,大家快来买呀!……妈妈一听心动了,于是走进商场行动起来。这时我看见了在广告排的最后一行有几个较小的字,是这么一句话:“(注:送的衣服价格不超过买的衣服价格)”。虽然我感到很奇怪,但我还是跟着妈妈进去了,妈妈先挑中了一件黑色羽绒服给自己,需要204元,又挑了一件棉大衣给爸爸,需要169元,妈妈想也没想就付了钱,觉得挺合算,用204元就可以买到369元的东西。可我总觉得很奇怪,俗话说:“只有买亏,没有卖亏。”我边走边想:没有优惠时的总价是204+165=369元;平均每件只有369 ÷2=5元;把这个价格与羽绒服的价格对比一下:204元>5元 204-5=5元看来妈妈亏了5元这个结果还没加上成本与售价间的差距耶!看来商家永远是赚了!
你是哪个班的,我三班的。
我是数学系3班的
关于初中数学教学论文
课堂教学作为教学的一种基本形式,无论是现在,还是将来,都是学校教学的主阵地,数学教学的目标必须在课堂中完成。高效课堂要求在课堂教学中把以往的“鸦雀无声”变成“畅所欲言”,“纹丝不动”变成“自由活动”,“注入式教学”变成了“自主探索”。要求我们不但要教给孩子们知识,更要教给孩子们掌握知识的方法。这一点在我们的课堂上落实的不是很好,这里折射出一个令人深思的问题——如何提高数学课堂教学的有效性,打造适合自己的高效课堂,让数学课堂焕发生命的活力?结合自己的教学经历与实践,下面,我浅谈一下我对如何打造初中数学高效课堂的认识。 一、了解学生,做到因人而教是高效课堂的前提。了解学生个性。大多数的学生在学习中高兴得到老师的夸奖,因此,经常开展一些小型竞赛活动,可激发其学习兴趣,增强其竞争意识,让学生在竞争中共同前行。在教学中,采用各种方式的竞争手段,激发学生的学习兴趣和积极主动的参与热情,让全体学生能够共同进步。了解学生原有认知基础。任何人在学习新知识时,旧知识总是要参与其中的,用已有的知识学习新知,既提高了课堂教学的含量,也消除了课堂上的无效空间,减少了学生的学习障碍。教师应尽可能地从实际中引出问题,使学生了解数学知识来源于生活,同时又应用于生活实际,从而认识到数学知识在现实生活中的作用;同时,教师也应给学生提供更多的机会,让他们自己从日常生活中的具体事例中提炼出数学问题,用所学的数学知识去解决现实生活中的许多实际问题。 二、培养良好的倾听习惯是高效课堂的首要条件。要打造高效课堂首先要转变“发言热闹的教室”为“用心相互倾听的教室”。只有在“用心倾听的教室”里,才能通过发言让各种思考和情感相互交流,否则交流是不可能发生的。倾听学生的发言,好比是在和学生玩棒球投球练习。把学生投过来的球准确地接住,投球的学生即便不对你说什么,他的心情也是很愉快的。作为教师要擅长接学生投过来的每一个球,特别是学生投得很差的球或投偏了的球,这也是作为教师其自身的专业素质和驾驭课堂能力的最好表现。 三、充分的课前准备是高效课堂的条件。新课标针对学生不同年龄段的身心特点,对不同学段的教学目标作出了科学而具体的规定。首先,教学目标的定位要难易适中。就跟打篮球一样,篮筐太高了学生再怎么努力也投不进,自然就丧失了信心;而篮筐太低了,学生就会轻而易举地灌进篮筐,当然也就没有战胜困难的喜悦。其次,教师在制定教学目标的时候,要充分考虑到三维目标的统一。教学目标的制定也要兼顾好、中、差三个层次。根据因材施教原则,教学目标的制定也要因人而异,不同层次的学生要求达到的目标也各不相同,要避免一概而论。 四、课堂中优化教学过程是高效课堂的关键。数学课程标准指出:“有效地数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”而高效地数学学习活动应是在有效地数学学习活动基础上的更高层次追求。课前导入,出示目标。引人入胜的导入,可以唤醒学生的求知欲,激发他们的学习兴趣。因此,教师一进课堂就可以或让学生听听与课文有关的录音或音乐,或讲一个与课文有关的小故事,或展开一段与课文有关的精彩对话,或利用视频短片导入等等,以激发学生的学习兴趣和学习动机,从而提高课堂效率。设置提纲,引导自学。课前写好小黑板,课上通过小黑板让学生看,明确自学要求,即自学什么内容,用多长时间,如何检测等,并指导学生自学的方法,如看书,是独立围绕思考题看书、找答案,还是边看书、边讨论、边解决疑难问题等等。而学习目标与自学要求的提出,低年段学生以激励比赛方式最好,因为比赛可以激发小孩子的求知欲望,调动学生学习的积极性。小组讨论,合作探究。合作是一种比知识更重要的能力,它越来越成为当代人的一种重要素质,受到大家的青睐。而课堂开展小组合作学习,有利于师生间、学生间的情感沟通和信息交流,有利于鼓励学生从不同的角度去观察、思考问题,发展思维的发散性、求异性。 五、运用信息技术手段师是高效课堂的重要策略。教师在以多媒体和网络为基础的信息化环境中实施课程教学活动,对课程教学内容进行信息化处理,使之成为学习者的学习资源,并提供给学生共享。在平时的教学中经常利用多媒体进行教学,感觉对教学很有帮助。导入更吸引人。万事开头难,好的课前导入不但能营造轻松的教学气氛。因此,教师在设计导入环节时应注意在学生已有知识的基础上,根据学生的心理特点和认知规律,运用现代化技术手段将学生引入到教学情境中去。教师通过多媒体课件将学生带入教学情境中,再适时地提出问题,引导学生思考,产生学习新知识的兴趣。兴趣更易激发。兴趣是最好的老师。在数学教学中,常常出现这样的现象:老师在讲台上讲得津津有味,学生在讲台下流露出消极厌烦的情绪或自己做别的事。这种现象出现的重要原因之一,就是教师的讲解很难对未亲身经历过的学生产
初中数学论文一们:春天来了!春天真的来了,在池塘里,在田野上,在天空中,到处都焕发着勃勃生机大自然的景色也变得丰富多彩起来晴天里,暖洋洋的阳光照在身上,软绵绵的春风拂在脸上,
初中数学教学论文1: 初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化所学内容的关键环节。重视并认真完成这个阶段的教学任务,不仅有利于升学学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且有利于就业学生的实际运用。同时是对学习基础较差学生达到查缺补漏,掌握教材内容的再学习。因此有计划、有步骤地安排实施总复习教学是初中数学教师的基本功之一。 一、紧扣大纲,精心编制复习计划 初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划。计划的编写必须切合学生实际。可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。然后按测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定计划的重点。复习计划制定后,要做好复习课例题的选择、练习题配套作业筛眩教师制定的复习计划要交给学生,并要求学生再按自己的学习实际制定具体复习规划,确定自己的奋进目标。 二、追本求源,系统掌握基础知识总 复习开始的第一阶段,首先必须强调学生系统掌握课本上的基础知识和基本技能,过好课本关。对学生提出明确的要求:①对基本概念、法则、公式、定理不仅要正确叙述,而且要灵活应用;②对课本后练习题必须逐题过关;③每章后的复习题带有综合性,要求多数学生必须独立完成,少数困难学生可在老师的指导下完成。 三、系统整理,提高复习效率 总复习的第二阶段,要特别体现教师的主导作用。对初中数学知识加以系统整理,依据基础知识的相互联系及相互转化关系,梳理归类,分块整理,重新组织,变为系统的条理化的知识点。例如,初三代数可分为函数的定义、正反比例函数、一次函数;一元二次方程、二次函数、二次不等式;统计初步三大部分。几何分为4块13线:第一块为以解直角三角形为主体的1条线。第二块相似形分为3条线:(1)成比例线段;(2)相似三角形的判定与性质。(3)相似多边形的判定与性质;第三块圆,包含7条线:(4)圆的性质;(5)直线与圆;(6)圆与圆;(7)角与圆;(8)三角形与圆;(9)四边形与圆;(10)多边形与圆。第四块是作图题,有2条线:(11)作圆及作圆的内外公切线等;(12)点的轨迹。这种归纳总结对程度差别不大、素质较好的班级可在教师的指导下师生共同去作,即由学生“画龙”,教师“点睛”。中等及其以下班级由教师归类,对比讲解,分块练习与综合练习交叉进行,使学生真正掌握初中数学教材内容。 四、集中练习,争取最佳效果 梳理分块,把握教材内容之后,即开始第三阶段的综合复习。这个阶段,除了重视课本中的重点章节之外,主要以反复练习为主,充分发挥学生的主体作用。通常以章节综合习题和系统知识为骨干的综合练习题为主,适当加大模拟题的份量。对教师来说,这时主要任务是精选习题,精心批改学生完成的练习题,及时讲评,从中查漏补缺,巩固复习成效,达到自我完善的目的。精选综合练习题要注意两个问题:第一,选择的习题要有目的性、典型性和规律性。如,函数的取值范围可选择如下一组例题: (2)y=13-2x (3)y=3x+2x-1 (4)y=1x+1-1 (5)y=x+2x-2第二,习题要有启发性、灵活性和综合性。如,角平分线定理的证明及应用,圆的证明题中圆周角、圆心角、弦心角、圆幂定理、射影定理等的应用都是综合性强且是重点应掌握的题目,都要抓住不放,抓出成效 2: 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域 给你个网站不满意可以上去找下 麻烦采纳,谢谢!
一代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算法则抽象化和公式化。初中一年级刚接触代数时,学生要经历由算术到代数的过渡,这里的主要标志是由数过渡到字母表示数,这是在小学的数的概念的基础上更高一个层次上的抽象。字母是代表数的,但它不代表某个具体的数,这种一般与特殊的关系正是初一学生学习的困难所在。为了克服初一新生对这一转化而引发的学习障碍,教学中要特别重视“代数初步知识”这一章的教学。它是承小学知识之前,启初中知识之后,开宗明义,搞好中小学数学衔接的重要环节。数学中要把握全章主体内容的深度,从小学学过的用字母表示数的知识入手,尽量用一些字母表示数的实例,自然而然地引出代数式的概念。再讲述如何列代数式表示常见的数量关系,以及代数式的一些初步应用知识。要注意始终以小学所接触过的代数知识(小学没有用“代数”的提法)为基础,对其进行较为系统的归纳与复习,并适当加强提高。使学生感到升入初一就像在小学升级那样自然,从而减小升学感觉的负效应。初一代数的第一堂课,一般不讲课本知识,而是对学生初学代数给予一定的描述、指导。目的是在总体上给学生一个认识,使其粗略了解中学数学的一些情况。如介绍:(1)数学的特点。(2)初中数学学习的特点。(3)初中数学学习展望。(4)中学数学各环节的学习方法,包括预习、听讲、复习、作业和考核等。(5)注意观察、记忆、想象、思维等智力因素与数学学习的关系。(6)动机、意志、性格、兴趣、情感等非智力因素与数学学习的联系。二学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指正分数)。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数———负数,与学生日常生活上的联系表面上看不很密切。他们习惯于“升高”、“下降”的这种说法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。我们在正式引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发新数集的扩展。即自然数集添进数0→扩大自然数集(非负整数集)添进正分数→算术数集(非负有理数集)添进负整数、负分数→有理数集……。这样就为数系的再一次扩充作好准备。正式引入负数概念时,可以这样处理,例:在小学对运进60吨与运出40吨,增产300千克与减产100千克的意义已很明确了,怎样用一个简单的数把它们的意义全面表示出来呢?从而激发学生的求知欲。再让学生自己举例说明这种相反意义的量在生活中是经常地接触到的,而这种量除了要用小学学过的算术数表示外,还要用一个语句来说明它们的相反的意义。如果取一个量为基准即“0”,并规定其中一种意义的量为“正”的量,与之相反意义的量就为“负”的量。用“+”表示正,用“-”表示负。这样,逐步引进正、负数的概念,将会有助于学生体会引进新数的必要性。从而在心理产生认同,进而顺利地把数的范畴从小学的算术数扩展到初一的有理数,使学生不至产生巨大的跳跃感。三初一的四则运算是源于小学数学的非负有理数运算而发展到有理数的运算,不仅要计算绝对值,还要首先确定运算符号,这一点学生开始很不适应。在负数的“参算”下往往出现计算上的错误,有理数的混合运算结果的准确率较低,所以,特别需要加强练习。另外,对于运算结果来说,计算的结果也不再像小学那样唯一了。如|a|,其结果就应分三种情况讨论。这一变化,对于初一学生来说是比较难接受的,代数式的运算对他们而言是个全新的问题,要正确解决这一难点,必须非常注重,要使学生在正确理解有理数概念的基础上,掌握有理数的运算法则。对运算法则理解越深,运算才能掌握得越好。但是,初一学生的数学基础尚不能透彻理解这些运算法则,所以在处理上要注意设置适当的梯度,逐步加深。有理数的四则运算最终要归结为非负数的运算,因此“绝对值”概念应该是我们教学中必须抓住的关键点。而定义绝对值又要用到“互为相反数”的概念,“数轴”又是讲授这两个概念的基础,一定要注意数形结合,加强直观性,不能急于求成。学生正确掌握、熟练运用绝对值这一概念,是要有一个过程的。在结合实例利用数轴来说明绝对值概念后,还得在练习中逐步加深认识、进行巩固。学生在小学做习题,满足于只是进行计算。而到初一,为了使其能正确理解运算法则,尽量避免计算中的错误,就不能只是满足于得出一个正确答案,应该要求学生每做一步都要想想根据什么,要灵活运用所学知识,以求达到良好的教学效果。这样,不但可以培养学生的运算思维能力,也可使学生逐步养成良好的学习习惯。四进入初中的学生年龄大都是11至12岁,这个年龄段学生的思维正由形象思维向抽象思维过渡。思维的不稳定性以及思维模式的尚未形成,决定了列方程解应用题的学习将是初一学生面临的一个难度非常大的坎。列方程解应用题的教学往往是费力不小,效果不佳。因为学生解题时只习惯小学的思维套用公式,属定势思维,不善于分析、转化和作进一步的深入思考,思路狭窄、呆滞,题目稍有变化就束手无策。初一学生在解应用题时,主要存在三个方面的困难:(1)抓不住相等关系;(2)找出相等关系后不会列方程;(3)习惯用算术解法,对用代数方法分析应用题不适应,不知道要抓相等关系。这头一个方面是主要的,解决了它,另两个方面就都好解决了。所以,小学数学第八册列方程解应用题教学时,一要使学生掌握算术法和代数法的异同点,并讲清列方程解应用题的思路;二要有针对性地让学生加强把实际中的数量关系改写成代数式的训练,这样对小学生逆向思维有好处,使较复杂的应用题化难为易。初一讲授列方程解应用题教学时,要重视知识发生过程。因为数学本身就是一种思维活动,教学中要使学生尽可能参与进去,从而形成和发展具有思维特点的智力结构。要让学生始终参加审题、分析题意、列方程、解方程等活动,了解列方程解应用题的实际意义和解题方法及优越性,这其中审题应是最为关键的一环。要想法弄清题意,找出能够表示应用题全部含义的一个相等关系。找不出相等关系,方程就列不出来,而找出这样的等量关系后,将其中涉及的待求的某个数设为未知数,其余的量用已知数或含有已知数与未知数的代数式表示出来,方程就列出来了。要教会学生通过阅读题目、理解题意、进而找出等量关系、列出方程解决问题的方法,使之形成“观察———分析———归纳”的良好习惯,这对于整个数学的学习都是至关重要的。另外,在教学中还要告诉学生,有些问题用算术法解决是不方便的,只有用代数解法。对于某些典型题目在帮助学生用代数方法解出后,同时与算术解法作比较,使学生有个更清晰的认识,从而逐渐摒弃用算术解法做应用题的思维习惯。总之,学生在小学数学中接触的都是较为直观、简单的基础知识,而升入初一后,要学的知识在抽象性、严密性上都有一个飞跃,作为初一数学教师,认真分析研究有关问题,对搞好中小学数学课堂教学的衔接和提高教学质量有很大的现实意义
有关初中数学教学的论文
一代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算法则抽象化和公式化。初中一年级刚接触代数时,学生要经历由算术到代数的过渡,这里的主要标志是由数过渡到字母表示数,这是在小学的数的概念的基础上更高一个层次上的抽象。字母是代表数的,但它不代表某个具体的数,这种一般与特殊的关系正是初一学生学习的困难所在。为了克服初一新生对这一转化而引发的学习障碍,教学中要特别重视“代数初步知识”这一章的教学。它是承小学知识之前,启初中知识之后,开宗明义,搞好中小学数学衔接的重要环节。数学中要把握全章主体内容的深度,从小学学过的用字母表示数的知识入手,尽量用一些字母表示数的实例,自然而然地引出代数式的概念。再讲述如何列代数式表示常见的数量关系,以及代数式的一些初步应用知识。要注意始终以小学所接触过的代数知识(小学没有用“代数”的提法)为基础,对其进行较为系统的归纳与复习,并适当加强提高。使学生感到升入初一就像在小学升级那样自然,从而减小升学感觉的负效应。初一代数的第一堂课,一般不讲课本知识,而是对学生初学代数给予一定的描述、指导。目的是在总体上给学生一个认识,使其粗略了解中学数学的一些情况。如介绍:(1)数学的特点。(2)初中数学学习的特点。(3)初中数学学习展望。(4)中学数学各环节的学习方法,包括预习、听讲、复习、作业和考核等。(5)注意观察、记忆、想象、思维等智力因素与数学学习的关系。(6)动机、意志、性格、兴趣、情感等非智力因素与数学学习的联系。二学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指正分数)。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数———负数,与学生日常生活上的联系表面上看不很密切。他们习惯于“升高”、“下降”的这种说法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。我们在正式引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发新数集的扩展。即自然数集添进数0→扩大自然数集(非负整数集)添进正分数→算术数集(非负有理数集)添进负整数、负分数→有理数集……。这样就为数系的再一次扩充作好准备。正式引入负数概念时,可以这样处理,例:在小学对运进60吨与运出40吨,增产300千克与减产100千克的意义已很明确了,怎样用一个简单的数把它们的意义全面表示出来呢?从而激发学生的求知欲。再让学生自己举例说明这种相反意义的量在生活中是经常地接触到的,而这种量除了要用小学学过的算术数表示外,还要用一个语句来说明它们的相反的意义。如果取一个量为基准即“0”,并规定其中一种意义的量为“正”的量,与之相反意义的量就为“负”的量。用“+”表示正,用“-”表示负。这样,逐步引进正、负数的概念,将会有助于学生体会引进新数的必要性。从而在心理产生认同,进而顺利地把数的范畴从小学的算术数扩展到初一的有理数,使学生不至产生巨大的跳跃感。三初一的四则运算是源于小学数学的非负有理数运算而发展到有理数的运算,不仅要计算绝对值,还要首先确定运算符号,这一点学生开始很不适应。在负数的“参算”下往往出现计算上的错误,有理数的混合运算结果的准确率较低,所以,特别需要加强练习。另外,对于运算结果来说,计算的结果也不再像小学那样唯一了。如|a|,其结果就应分三种情况讨论。这一变化,对于初一学生来说是比较难接受的,代数式的运算对他们而言是个全新的问题,要正确解决这一难点,必须非常注重,要使学生在正确理解有理数概念的基础上,掌握有理数的运算法则。对运算法则理解越深,运算才能掌握得越好。但是,初一学生的数学基础尚不能透彻理解这些运算法则,所以在处理上要注意设置适当的梯度,逐步加深。有理数的四则运算最终要归结为非负数的运算,因此“绝对值”概念应该是我们教学中必须抓住的关键点。而定义绝对值又要用到“互为相反数”的概念,“数轴”又是讲授这两个概念的基础,一定要注意数形结合,加强直观性,不能急于求成。学生正确掌握、熟练运用绝对值这一概念,是要有一个过程的。在结合实例利用数轴来说明绝对值概念后,还得在练习中逐步加深认识、进行巩固。学生在小学做习题,满足于只是进行计算。而到初一,为了使其能正确理解运算法则,尽量避免计算中的错误,就不能只是满足于得出一个正确答案,应该要求学生每做一步都要想想根据什么,要灵活运用所学知识,以求达到良好的教学效果。这样,不但可以培养学生的运算思维能力,也可使学生逐步养成良好的学习习惯。四进入初中的学生年龄大都是11至12岁,这个年龄段学生的思维正由形象思维向抽象思维过渡。思维的不稳定性以及思维模式的尚未形成,决定了列方程解应用题的学习将是初一学生面临的一个难度非常大的坎。列方程解应用题的教学往往是费力不小,效果不佳。因为学生解题时只习惯小学的思维套用公式,属定势思维,不善于分析、转化和作进一步的深入思考,思路狭窄、呆滞,题目稍有变化就束手无策。初一学生在解应用题时,主要存在三个方面的困难:(1)抓不住相等关系;(2)找出相等关系后不会列方程;(3)习惯用算术解法,对用代数方法分析应用题不适应,不知道要抓相等关系。这头一个方面是主要的,解决了它,另两个方面就都好解决了。所以,小学数学第八册列方程解应用题教学时,一要使学生掌握算术法和代数法的异同点,并讲清列方程解应用题的思路;二要有针对性地让学生加强把实际中的数量关系改写成代数式的训练,这样对小学生逆向思维有好处,使较复杂的应用题化难为易。初一讲授列方程解应用题教学时,要重视知识发生过程。因为数学本身就是一种思维活动,教学中要使学生尽可能参与进去,从而形成和发展具有思维特点的智力结构。要让学生始终参加审题、分析题意、列方程、解方程等活动,了解列方程解应用题的实际意义和解题方法及优越性,这其中审题应是最为关键的一环。要想法弄清题意,找出能够表示应用题全部含义的一个相等关系。找不出相等关系,方程就列不出来,而找出这样的等量关系后,将其中涉及的待求的某个数设为未知数,其余的量用已知数或含有已知数与未知数的代数式表示出来,方程就列出来了。要教会学生通过阅读题目、理解题意、进而找出等量关系、列出方程解决问题的方法,使之形成“观察———分析———归纳”的良好习惯,这对于整个数学的学习都是至关重要的。另外,在教学中还要告诉学生,有些问题用算术法解决是不方便的,只有用代数解法。对于某些典型题目在帮助学生用代数方法解出后,同时与算术解法作比较,使学生有个更清晰的认识,从而逐渐摒弃用算术解法做应用题的思维习惯。总之,学生在小学数学中接触的都是较为直观、简单的基础知识,而升入初一后,要学的知识在抽象性、严密性上都有一个飞跃,作为初一数学教师,认真分析研究有关问题,对搞好中小学数学课堂教学的衔接和提高教学质量有很大的现实意义
生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域
基本信息 动。 初中数学的教学设计的总体思路必须遵循数学课程标准,充分体现课程标准。教学的最根本的出发点必须要放在学生的发展上 ——“为了学生的发展而教”。突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得以不同的发展”。因此,新课程教学总体思路设计:一要把学生“学”数学放在教师“教”之前,“导”学是教学之重点。二要把组织学生自主数学学习活动作为老师的主要任务之一,并要担任起活动的指导者。三要着力培养学生科学的数学思想,训练学生的逻辑思维能力。四是数学基础知识的学习和基本数学能力的训练不能放松。五要实施差异教学,使人人都获得必需的数学,在数学上得到不同的发展。 具体教学内容和教学环节的设计思路要围绕具体教学目标,立足于学生实际情况,结合具体的教学环境等多种因素来进行。要充分发挥教师的主导作用,突破传统教学思路之束缚,大胆创新。 如教学“有理数的意义”,我的设计思路是:(1)从自然数的减法入手,提出问题:大家的掌握的数不够用了!(2)提供一两个实例,指出负数的实际存在及意义,引导学生寻找生活中负数并探究其表示的实际意义。(3)体验有理数。如果设定向南为正,一步长为单位1,先根据动作说出有理数,再根据有理数做出动作。(4)比较“向南5步”与“向北5步”之异同,我们可以用数学的方式表达吗? 思路(1)在于激起学生求知之欲。思路(2)在于引导学生理解负数应用的实际意义,引导学生发现生活中的数学。思路(3)、(4)可以让学生进一步感受有理数的意义,体验数学表达方式简洁、明确之特征;理解相反数、绝对值的实际意义;使学生体会学数学可以提高我们的细致的分析问题、解决问题的能力。 教学目标是评价教学活动的标准,因此,教学目标的设计科学性,客观性和可操作性对教学活动程序设计有重要的指导作
数学教育相关论文
一下的这些的选题你看下,你自己参考下,一极值的讨论及其应用课程改革中未来初中数学教师角色的扮演(xx部分)新旧教材的对比与研究师范生高等数学课程内容设置的探讨浅谈高等数学的类比迁移法让生活走进数学,将数学应用于生活初中数学新课程教学设计的策略数学分析的直观与严密二小教大专数学的课程设置和教材建设的建议新课改对小学数学教师的能力与素质要求小学数学教学中现代化教学手段的使用如何评价新形式下的师范学生数学学习与创新能力的培养三农村小学教师的现状的调查农村小学教学的现状的评估留守儿童的学习状况我对师范现行课程设置的几点思考班级管理的探讨小学数学课教学的探讨在师范学习的几点回顾走上“三尺讲台”的体会对某个“差生”的转变历程的思考四营造积极参与氛围,为自主探索创造条件浅谈小学数学作业的批改让作业批改“活”起来注重数学过程教学,提高学生综合素质浅谈中学数学课堂语言的艺术性活”用教材,实现数学教育目标浅谈数学课的几种导入方法初探分类思想在初中数学教学中的渗透优化复习教学,提高复习效率合理运用教具,提高数学课堂教学效率在数学教学中,培养学生的创新意识
如何在小学数学教学中对学生进行学习兴趣的培养 [关键词]:小学数学教学 学生 学习兴趣在现代教育教学过程中,如何培养学生,使他们成为品学兼优、志存高远的学生,是一个在相当长的时间内都必须存在的话题。而在数学教育教学过程中,对低年级的学生进行学习兴趣的培养,就显得特别敏感和重要。该怎么做?仁者见仁,智者见智。作为一名数学教师,根据多年的教育教学经验,我认为要切实做到:一、在教学过程中,教师要联系实际,引发学生的学习兴趣众所周之,小学生的思维能力受年龄特点、思维特点等所限制,认识感知实际知识需要一个过程。因而,培养其兴趣,就显得尤其重要,特别是抽象的数学问题,更是如此。那么,如何就其特点,结合实际,引发兴趣,为他们搭建认知的桥梁,就显得极其重要了。二、积极营造良好的学习环境,培养学生的学习兴趣在学生成长和发展的过程中,学习环境的直接或间接影响力是不可忽视的,为他们营造一个良好的学习环境是无可非议的。营造一个良好的学习环境,首先,应从教师的自身做起,教师要主动参与其中;其次,要做好学生的思想工作,正确引导他们认识学习的重要性,领悟到自己不仅是学习的主人,更是终身学习的主人;最后,可以通过自办班级学习报、定期办好黑板报、组织学生写好数学日记、开展好数学兴趣小组的活动、实施“超市式”数学作业、定期开展优秀作业展、组织学生参加各类数学竞赛、做好培优补差工作等形式,为学生创建一个平等、和谐、民主、愉快的学习氛围,使学生产生浓厚的学习兴趣。三、主动创设操作性情境,调动学生的学习兴趣根据小学生好动、好奇的心理特点,在小学数学课堂教学中,教师可以组织一些以学生活动为主,对一些实际问题通过让学生自己动手测量、演示或操作,使学生通过动手动脑获得学习成效,既能巩固和灵活运用所学知识,又能提高操作能力,培养创新精神,调动学生的主动参与能力和兴趣。四、合理创设游戏性情境,提高学生的学习兴趣根据数学学科特点和小学生年龄特点,设置游戏性情境,把新知识寓于游戏活动之中,通过游戏使学生产生对新知识的求知欲望,让学生的注意力处于高度集中状态,在游戏中得到知识,发展能力,提高学习兴趣。例如,在课堂训练时,组织60秒抢答游戏。教师准备若干组数学口答题,把全班学生分为几组,每组选3名学生作代表。然后由教师提出问题,让每组参赛的学生抢答,以积分多为优胜,或每答对一题奖励一面小红星,多得者为优胜。学生就能在游戏中,精神高度集中,在不知不觉中学到不少有用的知识,体验成功的快乐,有力地提高了学生的学习兴趣。五、获取成功喜悦,让学生体验学习兴趣任何人都渴望成功。成功会给学生在学数学时心理求知的厚动力,在数学教学中,要给每个学生创造出更多的表现的机会,充分利用“低、小、全、快”的方法,阶段型的开放学生的梯级思维。由浅显的问题入手,引导学生对习题作出正确的解答。学生经过对问题的独到见解或创造性的思维取得一次次的好成绩,并为获取的成功渐进式地感到高兴和骄傲,让他们感受到成功的喜悦。最终让学生明白只要开启心智就有希望,就能成功。如果失败了,就会加倍努力,直到成功为止。因此,教师在设计提问、板书、作业时要因人而异,分层次地提出切合不同学生的不同要求,使每个学生都有成功的希望,从而获得成功的体验,提高他们学习动机和学习兴趣。综上所述,通过“引发—培养—调动—提高”学生的学习兴趣,一次或多次的成功体验,会成为学生学习动机和激发兴趣的“激活剂”。
结合教学实际 撰写教学论文 提高自身素质撰写中学数学教育教学论文是教师探讨中学数学教学问题,总结教学教研实践经验、获得理论支撑的有效途径,是教师提高自身素质、促进专业发展的必由之路在平时的教育教学研究活动中,如果你对某一类或某一个问题所采用的教育教学方法比原有的教育教学方法有新的改进,甚至是对某一段教材、内容提出新的处理意见,这种意见有改革创新之意,把这些“突破”、“创新”写出来,这就是教育教学论文数学教育教学论文的格式标题:用词要确切、恰当、鲜明、简洁,便于读记、摘录作者姓名和单位:署名一般置于标题下方,同时附有作者工作单位名称和邮政编码摘要:是对论文内容准确概括而不加注释和评论的简短陈述它一般包括课题研究的意义、目的、方法、成果和结论等摘要应具有独立性,简明扼要、引人入胜,一般不超过300字关键词:指论文中的关键词语,通常是从论文的标题、摘要和正文中抽取出来的,是对表述论文主题内容具有实际意义的词汇,一般以3—8个为宜前言:一般包括研究课题的背景和起点、研究方法、过程及成果的价值正文:这是论文的主体和核心,论文的论点、论据和论证都在这里阐述,它体现论文的质量和学术水平的高低正文应做到概念清晰、论点明确、论证严密、论据充分、数据准确、层次分明应具备科学性和严谨性,同时要条理清楚,文字通俗、简明、流畅结束语:它是在理论分析和实验论证的基础上,概述课题的研究成果和价值,对成果的局限性和尚未解决的问题也应交待参考文献:一般指已发表在正式出版物上的文献或公开出版的书籍,是为撰写和编辑论著而引用的有关图书资料作者介绍:作者简历和主要学术著作教育教学论文写作的基本要求1.科学性:所讲知识、方法、道理要正确 ;2.真实性:自己亲身经历和思考过的;3.针对性:切中当前主要问题和迫切问题 ;4.严谨性:有条理,思维缜密,前后呼应;5.创新性:有创新意义,不落俗套一、立足学生,研究学法,逐步提高写作水平在论文写作的初级阶段,应学会从学生的角度出发,开展解题教学的研究工作,重视对一题多解、一题多变、一题多用的研究,注意对学生中典型错误的分析、归纳、提炼,研究对学生学习方法的指导,突出对解题规律的总结,再从这些方面寻找、积累素材,进行论文写作,这样起点低,难度小,有利于写作水平的提高1.从解题研究中寻找题材如何对题目进行多解多变,发挥每一道题目的最大功能,通过一道题去解决一类问题,得到一种方法,提升多种能力,通过这样的研究,自己的教学能力就会很快得到提高,将这些研究的内容整理出来,就是很好题材2.从错解归纳中寻找题材在学生的解题中,发生错误是常见的,也是正常的,造成错误的原因很多,既有知识方面的错误,更有非知识性的错误,所以,我们在教学中不仅要注意知识方面的查漏补缺,正本清源,而且要注意对非知识方面出现的问题进行反思,找出产生问题的根源,杜绝这类问题的再次发生,从而有效地提高学生的解题能力和思维水平对考生解题(特别是中考题)中的常见错误进行罗列、分析、归纳,剖析产生的根源,指出相应的对策,就可以写出许多论文来3.从学法指导中寻找题材许多学生对数学学习感到困难,在解决有关问题时难以找到切入点,只有经过别人点破才能使问题迎刃而解.为此,我们要通过对典型问题的评析,结合问题的引申,帮助学生总结学习数学的方法,寓学习方法的传授于问题的研究之中,有效地体现数学教学的育人功能4.从总结规律中寻找题材在平时的教学过程中,我们要注意帮助学生积累解题经验,总结解题规律,这样学生在遇到新的问题时就会由已知条件联想到已有的解题经验以及常用的规律,解题能力就会大大提高,同时也为我们撰写文章提供了很多的素材二、立足教法,强化学习,不断增强研写内功数学教育教学论文的撰写过程,是数学教育教学研究的继续,通常要求上升到理论的高度进行分析和研究因此,我们必须强化学习,关注热点,重视反思,增强内功1.从教改热点中寻找题材2.从教材研读中选择题材课标是新教材编写、课堂教学和中考命题的依据,是教师进行教学设计和论文写作的指导性文件因此,我们一定要加强与新课标之间进行高质量的对话教材是对话的文本,是学生学习活动所凭借的话题与依据,是教师进行教研和论文写作的主要依据——吃透教材,只有吃透教材,才有能力驾驭教材(1)要从宏观上理清教材的编写思路:教材是如何根据不同学生的认知能力和心理发展规律,按照“螺旋上升”方式来编写的,做到高瞻远瞩、放眼全局,不在细枝末节上做文章,真正从整体上把握教材;(2)要从微观上推敲教材的细节:思考教材中编写了什么?知识点有哪些?是在怎样的基础上发展起来的?又怎样为后面的知识学习作准备的?这节课的教学重点是什么?哪里是学生难以理解的?教学的难点是什么?等等准确地把握教材的知识点、生长点、重难点,教学才能对症下药、有的放矢——利用教材教材虽然规定了要教什么,但至于怎样教,运用哪些素材、事例、例题去教,则是教师自己的事情对于同一内容,不同版本的教材都有其不同的呈现方式,究竟哪种呈现方式好,哪种呈现方式与学生接受知识的动态过程更吻合,需要教师再选择、再加工、再创造——超越教材教材是教学线索,是教学话题,是教学案例,教师可根据教学实际对其进行加工组合:教材创设的情境对帮助学生学习有什么好处?视角是否独特?可不可以用更好地情境替代?教材提供的学习线索是什么?知识的形成过程为什么要这样设计?是否合理?有没有更合理的方案?每道例题、练习题的功能是什么?是否符合本班学生的实际?是不是有更合适的例习题来更换?等等3.从教学实践中选择题材以教育教学实践中的问题作为论文的选题,对我们这些处于一线的教师来说,不但可行,而且非常有必要因为对教育教学工作中碰到的各种问题,我们教师必须进行思考并作出自己的回答一个教师要教好书,就必须善于总结教育教学实践中的经验,把教育教学实践中体会到的、发现的、领悟到的点点滴滴,及时记录并加以研究和总结,这样才能不断提高自己,才能进一步地教好书,而研究和总结的东西如果形成了文字材料那就可能是一篇好的教研论文例如,如何搞好初中数学总复习工作是每个人都要考虑的问题,而且随着中考命题的改革,总复习也必须与时俱进,针对这个问题,不断进行教学研究,及时总结研究的体会,撰写教学论文再如对数学思想方法的渗透,数学思想方法是数学基础知识的重要组成部分,教材中没有专门的章节介绍它,而是伴随着基础知识的学习而展开的因此,我们在教学中一定要重视对常用数学思想方法的总结与提炼,它们是数学的精髓,是解题的指导思想,更能使人受益终身初中阶段常用的数学思想方法可分两类:一类是某些重要的数学思想方法,如方程思想、数形结合思想、分类思想、整体思想、函数思想、转化思想、样本估计总体思想、归纳思想、类比思想、换元法、配方法、待定系数法、图象法、面积法、添辅助线、估算法等;另一类是某些重要知识的运用,如非负数、奇偶数、比例性质、根的判别式、根与系数的关系、勾股定理等.它们贯穿在整个初中数学之中,可用专题的形式加以总结归纳,让学生弄清其来龙去脉,了解它的发展变化,掌握它们的适用范围和解题步骤要通过典型问题的分析、思考、总结,帮助学生弄清什么样的问题用什么样的方法来解决,并内化为经验,能自觉地应用,从而强化思想方法指导思维活动.学生掌握了这些思想方法,解题能力就能提高.又如,如何将竞赛辅导与常规教学相结合,可进行认真研究,在实践的基础上,撰写论文4.从教学反思中选择题材加强教学反思是任何学科都在强调的,是促进自身专业发展、提高自身素质的重要途径作为教师,我们只有通过对教育教学实践的反思,才能不断地调整前进的方向、不断地扫除成长中的障碍,从而不断地实现自我超越当然,教学反思可以是对自己亲身实践的反思,也可以是对他人教学实践的剖析可以说每一次对自己或他人的教育教学实践得失的反思、利弊的剖析,都可以寻找到我们要撰写教研文章的题目教学反思的一种常见而有效的形式是听课、评课,我们可以从这种交流中寻找题材教研论文往往是始于问题,也是自己对某个问题长时间思考的结果因此,我们在进行听课和评课时,要注意从交流中收集自己平常关注较多、有所思考的素材,从中获得能写的题目和内容一旦选定了某个问题后,就要对这一问题进行持续性的关注,不断加以思考,直到对这个问题有了比较完整的看法,并形成论文为止三、立足课题,形成体系,全面提升自身素质中小学教育科研以课题为核心而展开研究,具有理性化、系统化等特点,这决定了教育科研活动比一般的教研活动更有利于教师的教育教学能力的迅速提高理性化上,教育科研活动要求我们老师边实践,边反思,边总结,因此,教育科研可以使我们的老师在“实践—反思—实践—总结”的良性循环中,迅速提升教育教学能力;系统化上,课题研究是一项系统工程,而且周期相对比较长,从计划、实施到总结,需要我们作出通盘的考虑,而正是这种通盘的考虑,才使得我们的研究涉及到教育教学的方方面面,也使得教育科研能够成为提高我们教师教育教学能力的最有效载体中学数学教师如果能将自己的教育科研的成果通过数学教育学术论文的形式总结出来,则自身的综合素质将得到迅速的提高1.从公布课题中寻找题材即从各级教育学会、教科所公布的教育科研课题中去找题材每一阶段,各级教育学会、教科所都会公布一下教育科研课题,我们可以结合各校、各学段、各人的具体情况进行选择、细化一般的,这类课题内容丰富,题材广泛,口子较大,我们要进行具体的细化2.从科研动向中寻找题材即从当前教育科研新动向结合自己工作的实际情况来寻找题材 以《学科教学中学生综合素质的培养研究》为例,2002年秋季,新课程改革实验在全国铺开,素质教育于二十世纪九十年代正式提出,并在全国进行了至上而下的深入研究 世纪需要的是高素质的综合性人才,如何在学校的各个学科教学中培养学生的综合素质,是一个值得认真研究的课题 然而在现实生活中,传统的教育观念仍然阻碍着素质教育的实施,应试教育在某些地区、某些时候还存在着很大的市场,“满堂灌”的课堂教学模式并不鲜见,尤其值得一提的是过重的学业负担束缚着学生创造力的发展,陈旧的千篇一律的课时、课程设计难以让学生展开自主发展的翅膀 如何将学生从重复的机械的学习中解放出来,如何更有效的开展素质教育,提高学生的素质,体现以人为本的思想,是值得我们认真思考的问题学校中课堂教学是教师向学生传授知识的主阵地,因此探讨课堂教学中学科教学与素质教育的关系,实施学科教学中学生综合素质的培养,对于实施新的课程方案,对于新的一轮课堂教学的改革,让学生得到自主发展,让每个学生学有所得,学有所长,是有一定意义的教而不研则浅,研而不教则虚 只要我们有一双善于发现的慧眼,从平时所做、所看和所思去寻找自己想写而又能写问题,开展教育教学研究,撰写教育教学论文,把教学和教研有机结合起来,实现教研相长,就一定能不断促进自身的专业成长