首页 > 毕业论文 > 数学关于极限的毕业论文

数学关于极限的毕业论文

发布时间:

数学关于极限的毕业论文

(一)确定论文提要,再加进材料,形成全文的概要论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。(二)原稿纸页数的分配写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。(三)编写提纲论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。编写要点编写毕业论文提纲有两种方法:一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。详细提纲举例详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。

极限思想是高中数学中的一种重要的数学思想,利用极限思想使人们能够从有限中认识无限,从近似中认识精确,从量变中认识质变成为可能。高中数学教材中有多处内容渗透了极限的思想和方法,如“球的体积和表面积”、“双曲线的渐近线”等,但是极限思想在实际教学中没有得到普遍的认可和推广,学生对这种思想方法相当陌生。对于某些数学问题,如果我们能够灵活运用极限思想求解,往往可以避开一些抽象复杂的运算,降低解题难度,还可以优化解题思路,收到事半功倍的效果。下面是笔者尝试将极限思想和方法渗透融合在解题教学中,实现方法与内容的整合。一、寻求极限位置,实现估算与精算的结合例1 过抛物线 的焦点F作一直线交抛物线于P、Q两点,若线段PF与QF的长分别是p、q,则 等于( )。 (A)2a (B) (C) 4a (D) 图1解析:本题是有关不变性的问题,常规解法是探求p、q、a的关系,过程繁琐,且计算较复杂。若能充分认识到变与不变的辨证关系,利用运动和变化的观点,借助于极限思想即取PQ的极限位置可使问题变得简便易行,如图1所示,将直线PQ绕点F顺时针方向旋转到与y轴重合,此时Q与O重合,点P运动到无穷远处,虽不能再称它为抛物线的弦了,它是弦的一种极限情形,因为 ,而 ,所以 ,故答案选C。针对客观选择题题型的特点,这种解法体现出思维的灵活性和敏捷性,凸显了试题的选拔功能。【评注】将精算与估算相结合,是一种重要的数学能力,有利于从不同层面对理性思维能力进行全面而又灵活的考查。因此,这类数学试题给高中数学教与学的方向以启示,注重多元联系表示,拓宽思维,提高思维含量。二、考查极限图形,简化计算例2 在正n棱锥中,相邻两侧面所成的二面角的取值范围是( )。 (A) (B) (C) (D) 解析:如图2所示,设正n棱锥为 ,由于n多变,所以底面正n边形、侧面出现不确定状态,这样导致直接分析求解将是繁难,甚至是“到而不达”的,若另辟蹊径,采用极限法,则解法将是简捷、易行的,其计算量得到极大的简化。本例中底面正n边形固定,而棱锥的高不定,故可将顶点S看作是运动变化的,设相邻两侧面所成的二面角的平面角为 。当点S向下运动无限趋近底面正n边形的中心这个极限位置时, 趋于平角 ;当点S向上运动趋于无穷远时,侧棱将无限趋于与底面垂直,即正n棱锥趋近于正n棱柱,此时 无限趋于底面正n边形的内角 ,故二面角的取值范围是: ,从而答案选A。【评注】“化静为动,以动制静”,利用运动和变化的观点,着眼于问题的极限状态,摈弃了繁琐的数学运算,使得所研究问题更加直观、明朗。因此,根据问题的不同条件和特点,合理选择运算途径是提高运算能力的关键,而灵活地利用极限思想就成为减少运算量的一条重要途径。三、分析极限状态,探索解题思路例3 已知抛物线方程为 。求证:在x轴正方向上必存在一点M,使得对于抛物线上任意一条过M的弦PQ均有 为定值。分析:假设点M确实存在,因为过点M的任意一条弦PQ均有 为定值,因此对过点M的一条特殊弦——垂直于x轴的弦 也应该有 为定值。如图3所示,设 ,则 ,但是仅凭此式还看不出点M到底是哪个定点。下面再考查弦的一个极限情形——x轴的正半轴,它过点M,它的一个端点是原点O,另一个端点可以看成是无穷远处的极限点 (假想的点),它是弦的一种极限情形,显然有 ,所以 ,它也应该是定值,且 ,由此可得 ,于是可以猜想定点M(p,0),下证过点M(p,0)的任一弦PQ均有 (定值)。 图3证明:设过点M(p,0)的直线参数方程为 ,代入抛物线方程得 ,设此方程的两根为 ,则 ,而 的几何意义分别表示MP及MQ的值。所以 。因此点M(p,0)是满足题意的点。【评注】通过分解有关对象在运动变化过程中的极限状态,提取信息、信息整合,从而寻求到合理的解决问题的途径,降低了解题难度,优化了解题过程,有效激活了创新思维,凸显了极限思想在解题中的独特功能及应用的广泛性。四、巧取极限,实现无限与有限的统一例4 设数列 满足 (1)当 时,求 ,并由此猜想出 的一个通项公式; (2)当 时,证明对所有的 ,有① ;② 。解析:本题是数列与不等式的综合题,是考查猜想、归纳、迭代、放缩推理及分析问题和解决问题能力的一道优秀试题。(1)及(2)①入口宽,也易解决。但是(2)②的放缩难度较大,拉开了档次,体现了较好的区分度。事实上,(2)①的结论给解答(2)②有明确的启示。因为由 可以推导出 ( ),运用这个不等式来证明(2)②,思路最为清晰、快捷。这种要求,是考查考生进入高校继续学习的潜能所必须的。(1) (略)。(2)①用数学归纳法证明(略)。②由(2)①可知 ,即 。 于是 。 。【评注】本例利用了高等数学中的级数理论:正项级数 的前n项和有上界,故级数 收敛,但其收敛速度不大于 的收敛速度( )。其实从初等数学的观点也很容易理解:若单调递增数列 存在极限,则 。通过无限与有限的统一,实现了对不等式的放缩。利用极限思想,把问题放置于极限状态,即活跃了思维,又提高了分析、解决问题的能力。因此,教师要有意识地强化用极限思想解题的意识,并在不断应用它解决问题的过程中,让学生真正体会到“提高观点,降低难度,减轻负担”的含义。自己去瞧瞧吧,,,,,我只能帮到这里了。。。。。

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

极限思想作为一种数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。 极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。极限思想是微积分理论的基础,而微积分与经济学、物理学、机械自动化等与生活息息相关的学科是密不可分的。尤其是对于经济学来说,是一个透过现象看本质的必不可少的工具,经济学的核心词语“边际”便是一个将导数经济化的概念。只有结合微积分等数学知识,才能使经济学从一个仅仅对表面现象进行肤浅的常识推理、流于表面化的学科,变为一个用科学的方法进行数理分析、再结合各社会学科的丰富知识,从而分析出深层次的、更具有广泛应用性的基本结论的学科。 其他学科也是如此,极限思想的应用无处不在,理解掌握并合理应用极限要思想,可以让我们在解决实际问题的过程中,能较快发现解决问题的方法,提高实际效果。

关于极限的毕业论文题目

同意一楼的说法。挑战主要指有勇气VS极限,冲破主要指打破极限了,下次可以很轻松的达到。而超越极限是指用意志超越自己,战胜自我,我个人觉得这个用做题目不错。以上是我个人的见解,如有帮助到你,甚感高兴!

生命无极限生命本是一泗清泉,只有勇于拼搏的人才能尝出它的甘洌。在奥运场上,四年一次的舞台,给了他们生命的展示。如果说只有冠军才能有王者的风韵。那么,这变是人类史上最大的遗憾。多少年来,人们为着同一个目标努力着。可是,金牌,只有一个,然而想拥有它的人,却有一群。但在我的心里,登上奥运战场,他们,便是王者。也许为了这最后的胜利,他们付出了毕生的努力,他们为了成功,牺牲了最动人的年华。我国的竞走运动员,为了奥运,离开了她仅4个月大的女儿。墙上多少个"正"字才能换回与女儿的相见一面。那是一种穿心的痛,作为一个母亲她将自己献给了体育。面对窗外出升的新月,却只能孤独地想象,我的亲人在哪儿,他们是否也在念挂着我。可是,为了奥运,我要拼搏,即使是最后一名,跑道上也要留有我的身影。留想奥运,那是一种拼搏的精神。 生命本是一米阳光,只有把握住机会的人才能体会它的灿烂。最后一枪,是扣人心弦的,也就是这最后一枪,改变了人一生的命运,最后一枪,使全世界知道了杜丽的名字。在最后一枪之前,还有0。6环的差距。可是对手没有把握住。杜丽,你赢了!奥运,是懂得怎样把握住机会的竞技场。 生命本是那坚硬的石头上的一颗小水珠,只有永不放弃的人才能拥有水滴石穿之时。21:23,在前三局中国以1:2败与俄罗斯,这是至关重要的一局,如果输了,中国只能跟金牌擦身而过。许多人不想看到女排一败涂地的结局,纷纷转换了频道。然而,上帝在创造女排姑娘之前,为她们安装了一颗永不服输的心。就是这颗坚韧的心,陪着女排姑娘们度过了最艰难的一关。窗外发出一阵激烈的掌声。我知道,我们一定是赢了。是她们,顶着巨大的压力,在大比分落后的情况下,挽回了致命的一局。我注意到了这样一个镜头:在拦网过程中,李婷摔倒,她用双拳向地面使劲地一锤,是啊,每一分对于她们来说是多么重要。李婷站了起来,重新开始了她的征途。当时,我是用一颗感恩的心来看待这些姑娘的。感恩,感谢你们为祖国添加了本届奥运会第一枚团体金牌;感恩,感谢教练的微笑,给了她们莫大的支持;感恩,感谢上苍赐予她们一颗永不言弃的心。今天,是感恩节。是奥运健儿为我们带来了胜利的曙光,使自豪填满我们的胸膛。 在人生的旅途中,有太多的也许,也许曾经得到,也许就这样错过。蓦然会首中,依旧不变的,是一颗无悔的心。他们选择了体育,从此就等待希望。他们没有后悔,哪怕放弃拥有。他们创造了太多的奇迹,那是生命的真谛,那是生命的根源:生命无极限!

多元函数的极限毕业论文

这里都是偏导数的定义记住limh趋于0[f(x+h,y)-f(x,y]/h得到的就是f'x同理limh趋于0[f(x,y+h)-f(x,y]/h得到的就是f'y显然这里就是-2f'x=6以及1/3f'y=2/3

多元函数的极限一般是利用一元函数求极限的方法、换元或者迫敛准则等来求:

例如:

(x,y)->(0,0) sin(x²+y²) / (x²+y²) 令 u = x²+y²= lim(u->0) sinu / u = 1

(x,y) = x²y / (x²+y²)

∵ | x²y | / (x²+y²) ≤ (1/2) |x|

lim(x,y)->(0,0) |x| = 0

∴ lim(x,y)->(0,0) x²y / (x²+y²) = 0

记住limh趋于0[f(x+h,y)-f(x,y]/h得到的就是f'x

同理limh趋于0[f(x,y+h)-f(x,y]/h得到的就是f'y

显然这里就是-2f'x=6以及1/3f'y=2/3

扩展资料:

函数极限在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点  (无限个)都落在该邻域之内。

对于任意给定的ε>0,存在某一个正数δ,对于D上任意一点P0,只要P在P0的δ邻域与D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D一致连续。

一致连续比连续的条件要苛刻很多。

设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零。则称f在P0点可微。

以  的极限为例,f(x) 在点  以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数  ,使得当x满足不等式  时,对应的函数值f(x)都满足不等式:  ,那么常数A就叫做函数f(x)当 x→x。时的极限。

多元函数的极限一般是利用一元函数求极限的方法、换元或者迫敛准则等来求:

例如:

(x,y)->(0,0) sin(x²+y²) / (x²+y²) 令 u = x²+y²

= lim(u->0) sinu / u = 1

(x,y) = x²y / (x²+y²)

∵ | x²y | / (x²+y²) ≤ (1/2) |x|

lim(x,y)->(0,0) |x| = 0

∴ lim(x,y)->(0,0) x²y / (x²+y²) = 0

在如图的题目中,这里都是应用偏导数的定义

记住limh趋于0[f(x+h,y)-f(x,y]/h得到的就是f'x

同理limh趋于0[f(x,y+h)-f(x,y]/h得到的就是f'y

显然这里就是-2f'x=6以及1/3f'y=2/3

扩展资料:

求多元函数的注意事项:

2.在某些情况下直接计算二重极限比较方便,例如lim(x→0,y→1)[(x^2+3x)/xy]=lim(x→0,y→0)[(x+3)/y]=3 。这个可以在最后一步时将x,y的极限值直接代入

3.二重极限化累次极限是有限定条件的,不满足条件则不能化成累次极限。

参考资料来源:百度百科-极限 (数学术语)

凑定义,分母凑-2h,外边✖️-2,所以-2×3等于-6,第二个同理等于3×2等于6

多元函数极限的毕业论文

多元函数的极限一般是利用一元函数求极限的方法、换元或者迫敛准则等来求:

例如:

(x,y)->(0,0) sin(x²+y²) / (x²+y²) 令 u = x²+y²= lim(u->0) sinu / u = 1

(x,y) = x²y / (x²+y²)

∵ | x²y | / (x²+y²) ≤ (1/2) |x|

lim(x,y)->(0,0) |x| = 0

∴ lim(x,y)->(0,0) x²y / (x²+y²) = 0

记住limh趋于0[f(x+h,y)-f(x,y]/h得到的就是f'x

同理limh趋于0[f(x,y+h)-f(x,y]/h得到的就是f'y

显然这里就是-2f'x=6以及1/3f'y=2/3

扩展资料:

函数极限在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点  (无限个)都落在该邻域之内。

对于任意给定的ε>0,存在某一个正数δ,对于D上任意一点P0,只要P在P0的δ邻域与D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D一致连续。

一致连续比连续的条件要苛刻很多。

设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零。则称f在P0点可微。

以  的极限为例,f(x) 在点  以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数  ,使得当x满足不等式  时,对应的函数值f(x)都满足不等式:  ,那么常数A就叫做函数f(x)当 x→x。时的极限。

首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处

多元函数的极限是多元函数微分学中非常重要的一个基础概念。本篇文章是我在微积分的学习中为了巩固多元函数极限的知识而记录的,方便随时进行复习。本文主要对多元函数的多重极限的基本概念进行了梳理,及一些求解的方法归档。

话不多说,看定义!

这种 定义十分高大上,然而却不像是说的人话,很多同学一看见就一脸懵逼。然而有的试卷偏偏喜欢出类似的证明题,同学们一旦碰到运用定义的来解决的题,就抓耳挠腮,或是想不起来定义的具体内容,或是不知道究竟如何运用它去说明极限存在。

接下来,我们对它的重点进行逐项分析,搞懂它究竟表达的是什么意思,通过这种方式来巩固对定义的记忆。

总结一下,原来的定义可以翻译为:

记住!根据邻域的概念,这个区域既可以是无限趋近于 点时函数值才趋近于 ,也可以是 点外一圈区域内都有函数值正好等于 。这正好与我们极限的几何意义完全符合。

通过这种方式,定义是不是比原来容易理解多了呢?希望通过这种方式,大家都能记住二重极限的 定义,并运用到证明中。

要点就是根据公式数学上的关系,尽量使得能够将原式推导到一个“ ”的关系上。通过 能任意取值,说明这样一个 也必存在。满足定义所有条件,则极限存在。

存在且值为0。

本题的一个关键点在于夹逼准则的变化应用。注意到我们在求解中采用了取绝对值的方式替换原表达式,以方便进行夹逼准则的使用。但是这样的做法解出来的不是绝对值的极限吗?为什么就能得到原来的结果了呢?首先请牢牢记住以下结论!

当极限为0时,绝对值的极限=原表达式的极限。

证明该结论的方法依然是利用 夹逼准则 ,当极限为0时, 又因为: ,利用夹逼准则就可以得到原极限也等于0啦。

证明极限不存在的方法,总体来说就只有一种,就是利用二维面上不同于一维上只能从坐标轴左右趋近于点,而是可以从无数条路线趋近于聚点的特点,只要任意线路趋近的极限不等于其他的极限,则极限不存在。

具体而言,首先可以用带任意系数的直线系 趋近。只要代入原函数后无法消掉系数 ,则说明此时极限必与 相关且不唯一极限不存在。

其次,若系数能够被消掉,则可以巧妙运用不同的曲线,如抛物线、直线、圆弧等来趋近于该点。若任意二者之间代入算出来的极限不等,也说明极限不存在。选取曲线时应根据原函数的特点。

凑定义,分母凑-2h,外边✖️-2,所以-2×3等于-6,第二个同理等于3×2等于6

函数极限的运算毕业论文

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

第一种:利用函数连续性:lim f(x) = f(a) x->a

(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)

第二种:恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

第三种:通过已知极限

特别是两个重要极限需要牢记。

扩展资料

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。

1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立

(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A

不但能证明极限存在,还可以求极限,主要用放缩法。

2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

3.柯西准则

数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

  • 索引序列
  • 数学关于极限的毕业论文
  • 关于极限的毕业论文题目
  • 多元函数的极限毕业论文
  • 多元函数极限的毕业论文
  • 函数极限的运算毕业论文
  • 返回顶部