首页 > 毕业论文 > 斜齿轮减速器毕业论文资料

斜齿轮减速器毕业论文资料

发布时间:

斜齿轮减速器毕业论文资料

我也是刚刚做完,呵呵一. 课程设计书设计课题:设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为(包括其支承轴承效率的损失),减速器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V表一: 题号 参数 1 2 3 4 5运输带工作拉力(kN) 运输带工作速度(m/s) 卷筒直径(mm) 250 250 250 300 300二. 设计要求1.减速器装配图一张(A1)。绘制轴、齿轮零件图各一张(A3)。3.设计说明书一份。三. 设计步骤1. 传动装置总体设计方案2. 电动机的选择3. 确定传动装置的总传动比和分配传动比4. 计算传动装置的运动和动力参数5. 设计V带和带轮6. 齿轮的设计7. 滚动轴承和传动轴的设计8. 键联接设计9. 箱体结构设计10. 润滑密封设计11. 联轴器设计1.传动装置总体设计方案:1. 组成:传动装置由电机、减速器、工作机组成。2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。 其传动方案如下:图一:(传动装置总体设计图)初步确定传动系统总体方案如:传动装置总体设计图所示。选择V带传动和二级圆柱斜齿轮减速器(展开式)。传动装置的总效率 =× × ××=; 为V带的效率, 为第一对轴承的效率, 为第二对轴承的效率, 为第三对轴承的效率, 为每对齿轮啮合传动的效率(齿轮为7级精度,油脂润滑.因是薄壁防护罩,采用开式效率计算)。2.电动机的选择电动机所需工作功率为: P =P /η =1900××=, 执行机构的曲柄转速为n= =,经查表按推荐的传动比合理范围,V带传动的传动比i =2~4,二级圆柱斜齿轮减速器传动比i =8~40,则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n=(16~160)×=~。综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,选定型号为Y112M—4的三相异步电动机,额定功率为额定电流,满载转速 1440 r/min,同步转速1500r/min。方案 电动机型号 额定功率P kw 电动机转速 电动机重量N 参考价格元 传动装置的传动比 同步转速 满载转速 总传动比 V带传动 减速器1 Y112M-4 4 1500 1440 470 230 中心高 外型尺寸L×(AC/2+AD)×HD 底脚安装尺寸A×B 地脚螺栓孔直径K 轴伸尺寸D×E 装键部位尺寸F×GD132 515× 345× 315 216 ×178 12 36× 80 10 ×413.确定传动装置的总传动比和分配传动比(1) 总传动比由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为 =n /n=1440/=(2) 分配传动装置传动比 = × 式中 分别为带传动和减速器的传动比。为使V带传动外廓尺寸不致过大,初步取 =,则减速器传动比为 = ==根据各原则,查图得高速级传动比为 =,则 = =.计算传动装置的运动和动力参数(1) 各轴转速 = =1440/= = == = / = r/min = = r/min(2) 各轴输入功率 = × =×= = ×η2× =××= = ×η2× =××= = ×η2×η4=××=则各轴的输出功率: = × kW = × kW = × = × kW(3) 各轴输入转矩 = × × N•m电动机轴的输出转矩 =9550 =9550× N•所以: = × × =×× N•m = × × × =××× N•m = × × × =××וm = × × =×× N•m输出转矩: = × N•m = × N•m = וm = × N•m运动和动力参数结果如下表轴名 功率P KW 转矩T Nm 转速r/min 输入 输出 输入 输出 电动机轴 14401轴 轴 轴 轴 .齿轮的设计(一)高速级齿轮传动的设计计算1. 齿轮材料,热处理及精度考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮(1) 齿轮材料及热处理 ① 材料:高速级小齿轮选用 钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =24高速级大齿轮选用 钢正火,齿面硬度为大齿轮 240HBS Z =i×Z =×24= 取Z =78. ② 齿轮精度按GB/T10095-1998,选择7级,齿根喷丸强化。2.初步设计齿轮传动的主要尺寸按齿面接触强度设计 确定各参数的值:①试选 =查课本 图10-30 选取区域系数 Z = 由课本 图10-26 则 ②由课本 公式10-13计算应力值环数N =60n j =60××1×(2×8×300×8)=×10 hN = =×10 h #(为齿数比,即 )③查课本 10-19图得:K = K =④齿轮的疲劳强度极限取失效概率为1%,安全系数S=1,应用 公式10-12得:[ ] = =×550= [ ] = =×450=432 许用接触应力 ⑤查课本由 表10-6得: = 由 表10-7得: =1T=×10 × =×10 ××10 .设计计算①小齿轮的分度圆直径d = ②计算圆周速度 ③计算齿宽b和模数 计算齿宽b b= =计算摸数m 初选螺旋角 =14 = ④计算齿宽与高之比 齿高h= =× = =⑤计算纵向重合度 = =⑥计算载荷系数K使用系数 =1根据 ,7级精度, 查课本由 表10-8得动载系数K =,查课本由 表10-4得K 的计算公式:K = +×10 ×b =(1+ 1) ×1+×10 ×查课本由 表10-13得: K =查课本由 表10-3 得: K = =故载荷系数:K=K K K K =1×××⑦按实际载荷系数校正所算得的分度圆直径d =d =× = ⑧计算模数 = 4. 齿根弯曲疲劳强度设计由弯曲强度的设计公式 ≥ ⑴ 确定公式内各计算数值① 小齿轮传递的转矩 =•m 确定齿数z因为是硬齿面,故取z =24,z =i z =×24=传动比误差 i=u=z / z =78/24=Δi=% 5%,允许② 计算当量齿数z =z /cos =24/ cos 14 = z =z /cos =78/ cos 14 =③ 初选齿宽系数 按对称布置,由表查得 =1④ 初选螺旋角 初定螺旋角 =14 ⑤ 载荷系数KK=K K K K =1×××=⑥ 查取齿形系数Y 和应力校正系数Y 查课本由 表10-5得:齿形系数Y = Y = 应力校正系数Y = Y =⑦ 重合度系数Y 端面重合度近似为 =[×( )] =[-×(1/24+1/78)]×cos14 = =arctg(tg /cos )=arctg(tg20 /cos14 )= = 因为 = /cos ,则重合度系数为Y = cos / =⑧ 螺旋角系数Y 轴向重合度 = = =1- =⑨ 计算大小齿轮的 安全系数由表查得S =工作寿命两班制,8年,每年工作300天小齿轮应力循环次数N1=60nkt =60××1×8×300×2×8=×10 大齿轮应力循环次数N2=N1/u=×10 /=×10 查课本由 表10-20c得到弯曲疲劳强度极限 小齿轮 大齿轮 查课本由 表10-18得弯曲疲劳寿命系数:K = K = 取弯曲疲劳安全系数 S=[ ] = [ ] = 大齿轮的数值大.选用.⑵ 设计计算① 计算模数 对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d = 来计算应有的齿数.于是由:z = = 取z =25那么z =×25=81 ② 几何尺寸计算计算中心距 a= = = 将中心距圆整为110 按圆整后的中心距修正螺旋角 =arccos 因 值改变不多,故参数 , , 等不必修正.计算大.小齿轮的分度圆直径d = = d = = 计算齿轮宽度B= 圆整的 (二) 低速级齿轮传动的设计计算⑴ 材料:低速级小齿轮选用 钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =30速级大齿轮选用 钢正火,齿面硬度为大齿轮 240HBS z =×30= 圆整取z =70. ⑵ 齿轮精度按GB/T10095-1998,选择7级,齿根喷丸强化。⑶ 按齿面接触强度设计1. 确定公式内的各计算数值①试选K =②查课本由 图10-30选取区域系数Z =③试选 ,查课本由 图10-26查得 = = =应力循环次数N =60×n ×j×L =60××1×(2×8×300×8)=×10 N = ×10 由课本 图10-19查得接触疲劳寿命系数K = K = 查课本由 图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 取失效概率为1%,安全系数S=1,则接触疲劳许用应力[ ] = = [ ] = =×550/1=517 [ 查课本由 表10-6查材料的弹性影响系数Z = 选取齿宽系数 T=×10 × =×10 ××10 = 2. 计算圆周速度 3. 计算齿宽b= d =1× 4. 计算齿宽与齿高之比 模数 m = 齿高 h=×m =× =. 计算纵向重合度 6. 计算载荷系数KK =(1+ +×10 ×b =(1+)+ ×10 ×使用系数K =1 同高速齿轮的设计,查表选取各数值 = K = K =K =故载荷系数K= =1×××. 按实际载荷系数校正所算的分度圆直径d =d =× 计算模数 3. 按齿根弯曲强度设计m≥ 一确定公式内各计算数值(1) 计算小齿轮传递的转矩 =•m(2) 确定齿数z因为是硬齿面,故取z =30,z =i ×z =×30=传动比误差 i=u=z / z ==Δi=% 5%,允许(3) 初选齿宽系数 按对称布置,由表查得 =1(4) 初选螺旋角 初定螺旋角 =12 (5) 载荷系数KK=K K K K =1×××=(6) 当量齿数 z =z /cos =30/ cos 12 = z =z /cos =70/ cos 12 =由课本 表10-5查得齿形系数Y 和应力修正系数Y (7) 螺旋角系数Y 轴向重合度 = = =1- =(8) 计算大小齿轮的 查课本由 图10-20c得齿轮弯曲疲劳强度极限 查课本由 图10-18得弯曲疲劳寿命系数K = K = S=[ ] = [ ] = 计算大小齿轮的 ,并加以比较大齿轮的数值大,选用大齿轮的尺寸设计计算.① 计算模数 对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d = 来计算应有的齿数.z = = 取z =30z =×30= 取z =70 ② 初算主要尺寸计算中心距 a= = = 将中心距圆整为103 修正螺旋角 =arccos 因 值改变不多,故参数 , , 等不必修正 分度圆直径 d = = d = = 计算齿轮宽度 圆整后取 低速级大齿轮如上图:V带齿轮各设计参数附表1.各传动比V带 高速级齿轮 低速级齿轮 2. 各轴转速n (r/min) (r/min) (r/min) (r/min) . 各轴输入功率 P (kw) (kw) (kw) (kw) . 各轴输入转矩 T (kN•m) (kN•m) (kN•m) (kN•m) 5. 带轮主要参数小轮直径 (mm) 大轮直径 (mm) 中心距a(mm) 基准长度 (mm) 带的根数z90 57.传动轴承和传动轴的设计1. 传动轴承的设计⑴. 求输出轴上的功率P ,转速 ,转矩 P = = =.m⑵. 求作用在齿轮上的力已知低速级大齿轮的分度圆直径为 = 而 F = F = F F = F tan =×圆周力F ,径向力F 及轴向力F 的方向如图示:⑶. 初步确定轴的最小直径先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本 取 输出轴的最小直径显然是安装联轴器处的直径 ,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号查课本 ,选取 因为计算转矩小于联轴器公称转矩,所以查《机械设计手册》 选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径 ⑷. 根据轴向定位的要求确定轴的各段直径和长度① 为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径 ;左端用轴端挡圈定位,按轴端直径取挡圈直径 半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取 ② 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据 ,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.D B 轴承代号 45 85 19 7209AC 45 85 19 7209B 45 100 25 7309B 50 80 16 7010C 50 80 16 7010AC 50 90 20 7210C 2. 从动轴的设计 对于选取的单向角接触球轴承其尺寸为的 ,故 ;而 .右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度 mm,③ 取安装齿轮处的轴段 ;齿轮的右端与左轴承之间采用套筒定位.已知齿轮 的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 . 齿轮的左端采用轴肩定位,轴肩高,取 .轴环宽度 ,取b=8mm. ④ 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取 .⑤ 取齿轮距箱体内壁之距离a=16 ,两圆柱齿轮间的距离c=20 .考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8 ,已知滚动轴承宽度T=16 ,高速齿轮轮毂长L=50 ,则至此,已初步确定了轴的各端直径和长度.5. 求轴上的载荷 首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,查《机械设计手册》20-149表.对于7010C型的角接触球轴承,a=,因此,做为简支梁的轴的支承跨距.传动轴总体设计结构图: (从动轴)(中间轴) (主动轴)从动轴的载荷分析图: 6. 按弯曲扭转合成应力校核轴的强度根据 = = 前已选轴材料为45钢,调质处理。查表15-1得[ ]=60MP 〈 [ ] 此轴合理安全7. 精确校核轴的疲劳强度.⑴. 判断危险截面截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.⑵. 截面Ⅶ左侧。抗弯系数 W= = =12500抗扭系数 = = =25000截面Ⅶ的右侧的弯矩M为 截面Ⅳ上的扭矩 为 = 截面上的弯曲应力 截面上的扭转应力 = = 轴的材料为45钢。调质处理。由课本 表15-1查得: 因 经插入后得 =轴性系数为 = K =1+ = =1+ ( -1)=所以 综合系数为: K = =碳钢的特性系数 取 取安全系数 S = ≥S= 所以它是安全的截面Ⅳ右侧抗弯系数 W= = =12500抗扭系数 = = =25000截面Ⅳ左侧的弯矩M为 M=133560截面Ⅳ上的扭矩 为 =295截面上的弯曲应力 截面上的扭转应力 = = K = K = 所以 综合系数为:K = K =碳钢的特性系数 取 取安全系数 S = ≥S= 所以它是安全的8.键的设计和计算①选择键联接的类型和尺寸一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.根据 d =55 d =65查表6-1取: 键宽 b =16 h =10 =36 b =20 h =12 =50②校和键联接的强度 查表6-2得 [ ]=110MP 工作长度 36-16=20 50-20=30③键与轮毂键槽的接触高度 K = h =5K = h =6由式(6-1)得: <[ ] <[ ]两者都合适取键标记为: 键2:16×36 A GB/T1096-1979键3:20×50 A GB/T1096-19799.箱体结构的设计减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,大端盖分机体采用 配合.1. 机体有足够的刚度在机体为加肋,外轮廓为长方形,增强了轴承座刚度2. 考虑到机体内零件的润滑,密封散热。因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为 3. 机体结构有良好的工艺性.铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.4. 对附件设计 A 视孔盖和窥视孔在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固B 油螺塞:放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。C 油标:油标位在便于观察减速器油面及油面稳定之处。油尺安置的部位不能太低,以防油进入油尺座孔而溢出.D 通气孔:由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.E 盖螺钉:启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。钉杆端部要做成圆柱形,以免破坏螺纹.F 位销:为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.G 吊钩:在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.减速器机体结构尺寸如下:名称 符号 计算公式 结果箱座壁厚 10箱盖壁厚 9箱盖凸缘厚度 12箱座凸缘厚度 15箱座底凸缘厚度 25地脚螺钉直径 M24地脚螺钉数目 查手册 6轴承旁联接螺栓直径 M12机盖与机座联接螺栓直径 =() M10轴承端盖螺钉直径 =() 10视孔盖螺钉直径 =() 8定位销直径 =() 8 , , 至外机壁距离 查机械课程设计指导书表4 342218 , 至凸缘边缘距离 查机械课程设计指导书表4 2816外机壁至轴承座端面距离 = + +(8~12)50大齿轮顶圆与内机壁距离 > 15齿轮端面与内机壁距离 > 10机盖,机座肋厚 9 轴承端盖外径 +(5~) 120(1轴)125(2轴)150(3轴)轴承旁联结螺栓距离 120(1轴)125(2轴)150(3轴)10. 润滑密封设计对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.油的深度为H+ H=30 =34所以H+ =30+34=64其中油的粘度大,化学合成油,润滑效果好。密封性来讲为了保证机盖与机座联接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗度应为 密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太大,国150mm。并匀均布置,保证部分面处的密封性。11.联轴器设计1.类型选择.为了隔离振动和冲击,选用弹性套柱销联轴器2.载荷计算.公称转矩:T=9550 9550 查课本 ,选取 所以转矩 因为计算转矩小于联轴器公称转矩,所以查《机械设计手册》 选取LT7型弹性套柱销联轴器其公称转矩为500Nm

STU你好,整理的1000份机械课设毕设,你说的里面有的,直接用就行V

留下邮箱,我发给你

行星齿轮减速器毕业论文ppt

呵呵,要求这么高,只有定做了。包过、包修改的。这种事情做梦可以想一想,现在还有免费的东西?物价上涨、房价上涨,谁不赚钱啊。是不是,楼主?机械的我本地电脑上有300多套,需要的话。联系团队图标上的Q号吧

20毕业设计 三自由度圆柱坐标型工业机器人 21毕业设计XKA5032A/C数控立式升降台铣床自动换刀设计 22毕业设计 四通管接头的设计 23课程设计:带式运输机上的传动及减速装置 24毕业设计(论文) 行星减速器设计三维造型虚拟设计分析 25毕业设计论文 关节型机器人腕部结构设计 26本科生毕业设计全套资料 Z32K型摇臂钻床变速箱的改进设计/ 27毕业设计 EQY-112-90 汽车变速箱后面孔系钻削组合机床设计 28毕业设计 D180柴油机12孔攻丝机床及夹具设计 29毕业设计 C616型普通车床改造为经济型数控车床 30毕业设计(论文)说明书 中单链型刮板输送机设计 液压类毕业设计1毕业设计 ZFS1600/12/26型液压支架掩护梁设计2毕业设计 液压拉力器 3毕业设计 液压台虎钳设计 4毕业设计论文 双活塞液压浆体泵液力缸设计 5毕业设计 GKZ高空作业车液压和电气控制系统设计 数控加工类毕业设计1课程设计 设计低速级斜齿轮零件的机械加工工艺规程 2毕业设计 普通车床经济型数控改造 3毕业论文 钩尾框夹具设计(镗φ92孔的两道工序的专用夹具) ...4 机械制造工艺学课程设计 设计“拨叉”零件的机械加工工艺规程及工艺装备(年产量5000件)5课程设计 四工位专用机床传动机构设计 6课程设计说明书 设计“推动架”零件的机械加工工艺及工艺设备 7机械制造技术基础课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具 8械制造技术基础课程设计 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 9毕业设计 轴类零件设计 10毕业设计 壳体零件机械加工工艺规程制订及第工序工艺装备设计 11毕业设计 单拐曲轴零件机械加工规程设计说明书 12机械制造课程设计 机床传动齿轮的工艺规程设计(大批量) 13课程设计 轴零件的机械加工工艺规程制定 14毕业论文 开放式CNC(Computer Numerical Control)系统设计15毕业设计 单拐曲轴工艺流程 16毕业设计 壳体机械加工工艺规程 17毕业设计 连杆机械加工工艺规程 18毕业设计(论文) 子程序在冲孔模生产中的运用——编制数控加工(1#-6#)标模点孔的程序 19毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计 20机械制造技术基础课程设计 设计“减速器传动轴”零件的机械加工工艺规程(年产量为5000件) 21课程设计 杠杆的加工 22毕业设计 多回转电动执行机构箱体加工工艺规程及工艺装备设计 23毕业论文 数控铣高级工零件工艺设计及程序编制 24毕业论文 数控铣高级工心型零件工艺设计及程序编制25毕业设计 连杆的加工工艺及其断面铣夹具设计 26机械制造工艺学课程设计说明书:设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 杂合XKA5032AC数控立式升降台铣床自动换刀装置设计机用虎钳课程设计.rar行星齿轮减速器减速器的虚拟设计(王少华).rar物流液压升降台的设计自动加料机控制系统.rar全向轮机构及其控制设计.rar齿轮齿条转向器.rar出租车计价系统.rar(毕业设计)油封骨架冲压模具连杆孔研磨装置设计 .rar蜗轮蜗杆传动.rar用单片机实现温度远程显示.doc基于Alter的EP1C6Q240C8的红外遥器(毕业论文).doc变频器 调试设计及应用镍氢电池充电器的设计.doc铣断夹具设计型双动拉伸压力机的设计WY型滚动轴承压装机设计Z32K型摇臂钻床变速箱的改进设计基于PLC高速全自动包装机的控制系统应用基于单片机控制的步进电机调速系统的设计普通-式双柱汽车举升机设计无模压力成形机设计(word+CAD)手机恒流充电器的设计3 摘要.doc智能型充电器的电源和显示的设计气动通用上下料机械手的设计同轴2级减速器设计行星齿轮减速器减速器的虚拟设计(王少华)运送铝活塞铸造毛坯机械手设计_王强CA6140车床后托架加工工艺及夹具设计SSCK20A数控车床主轴和箱体加工编程织机导板零件数控加工工艺与工装设计密封垫片冲裁模设计瓶盖拉深模的设计手机塑料外壳注塑模毕业设计五金模具毕业设计织机导板零件数控加工工艺与工装设计.rar_CA6140车床开环纵向系统设计C616型普通车床改造CA6150数控车床主轴箱及传动系统系统的设计XK100数控主轴箱设计XK5040铣床垂直进给机构XY数控工作台1毕业论文 经济型数控车床纵向进给系统设计及进给系统的润滑设计.doc毕业设计 环境专业 某盐化公司生产废水治理工程技术方案板料毕业设计成形CAE可行性分析==模具.doc毕业设计数控类 汽车车灯同步转向装置.doc毕业设计 设计加工客车上 “车门垫板”零件的冲裁模 hao348414338 Q

少齿差行星齿轮减速器的设计(完整一套设计,有说明书:论文,图纸) 设计的基本内容:行星齿轮 内齿圈 还有太阳轮的模数 齿宽 齿数 还有各个齿轮的变位系数。遇到的问题:当内啮合的两渐开线齿轮齿数差很小时,极易产生各种干涉 你设计出来的 齿轮有可能不容易加工或者是齿数不合理 解决方法是:根据你设计出来的齿轮的问题进行分析,重新修改参数,设计。少齿差行星齿轮传动是行星齿轮传动中的一种,由一个外齿轮与一个内齿轮组成一对内啮合齿轮副,它采用的是渐开线齿形,内外齿轮的齿数相差很小,故简称为少齿差传动。一般所讲的少齿差行星齿轮传动是专指渐开线少齿差行星齿轮传动而言的。渐开线少齿差行星齿轮传动以其适用于一切功率、速度范围和一切工作条件,受到了世界各国的广泛关注,成为世界各国在机械传动方面的重点研究方向之一。发展趋势齿轮传动技术是机械工程技术的重要组成部分,在一定程度上标志着机械工程技术的水平,因此,齿轮被公认为工业和工业化的象征。为了提高机械的承载能力和传动效率,减少外形尺寸质量及增大减速机传动比等,国内外的少齿差行星齿轮传动正沿着高承载能力、高精度、高速度、高可靠性、高传动效率、小型化、低振动、低噪音、低成本、标准化和多样化的方向发展的总趋势。少齿差行星齿轮传动具有体积小、重量轻、结构紧凑、传动比大、效率高等优点,广泛应用于矿山、冶金、飞机、轮船、汽车、机床、起重运输、电工机械、仪表、化工、农业等许多领域,少齿差行星齿轮传动有着广泛的发展前景。少齿差行星齿轮传动的特点少齿差行星齿轮传动具有以下优点:(1)加工方便、制造成本较低。渐开线少齿差传动的特点是用普通的渐开线齿轮刀具和齿轮机床就可以加工齿轮,不需要特殊的刀具与专用设备,材料也可采用普通齿轮材料。(2)传动比范围大,单级传动比为10~1000以上。(3)结构形式多,应用范围广。由于其输入轴与输出轴可在同一轴线上,也可以不在同一轴线上,所以能适应各种机械的需要。(4)结构紧凑、体积小、重量轻。由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少1/3~2/3。(5)效率高。当传动比为10~200时,效率为80%~94%。效率随着传动比的增加而降低。(6)运转平稳、噪音小、承载能力大。由于是内啮合传动,两啮合轮齿一为凹齿、一为凸齿,两者的曲率中心在同一方向,曲率半径又接近相等,因此接触面积大,使轮齿的接触强度大为提高;又因采用短齿制,轮齿的弯曲强度也提高了。此外,少齿差传动时,不是一对轮齿啮合,而是3~9对轮齿同时接触受力[1],所以运转平、噪音小,并且在相同的模数情况下,其传递力矩比普通圆柱齿轮减速器大。基于以上特点,小到机器人的关节、大到冶金矿山机械,以及从要求不高的农用、食品机械,到要求较高的印刷和国防工业都有应用实例。

双齿减速器设计毕业论文

某大型水压机的驱动系统和控制系统的设计C618数控车床的主传动系统设计CA6140杠杆加工工艺及夹具设计CKP预粉磨设计(总体及壳体)型双动拉伸压力机的设计L-108空气压缩机曲轴零件LED显示屏动态显示和远程监控的实现N10000-OSEPA选粉机PE10自行车无级变速器设计PLC-Z30130X31型钻床控制系统的PLC改造PLC-三菱FX2N PLC在电梯控制中的应用PLC-基于DS1820的室温监测装置的设计PLC-彩瓦成型机的PLC设计PLC-金属粉末成型液压机的PLC设计PLC控制的变频调速恒压供水系统程序TH5940型数控加工中心进给系统设计USB接口设计ZH3100组合式选粉机Z形件弯曲Φ1000 立 轴 锤 击 式 破 碎 机φ2600筒辊磨压辊及加压、卸料装置设计φ2600筒辊磨液压系统及料流控制装置设计Ф×13m管磨机(总体、回转部件)的设计Ф机立窑(总体、窑体、卸料部件)设计三通管的塑料模设计中单链型刮板输送机设计仓库温湿度的监测系统传动盖冲压工艺制定及冲孔模具设计传动装置毕业设计及论文全遥控数字音量控制的D类功率放大器减速器箱体钻口面孔组合机床总体设计及主轴箱设计出租车计费系统的设计制冷专业毕业设计(家用空调)单拐曲轴机械加工工艺单片机16×16点阵(滚动显示)的设计单片机的多功能智能小车单片机的数字钟设计双齿减速器设计可预置的定时显示报警系统后钢板弹簧吊耳加工工艺及夹具设计城市公交查询系统基于AT89C51单片机倒车防撞报警系统设计基于EDA和单片机技术的逻辑分析仪设计课件基于GSM模块的车载防盗系统设计基于PLC高速全自动包装机的控制系统应用基于单片机控制的霓虹灯控制器基于单片机的交通灯控制器的研究与设计基于单片机的多功能转速表基于单片机的数码录音与播放系统基于单片机的电器遥控器设计外行星摆线马达结构设计多功能自动跑步机(机械部分设计)大棚温湿自动控制系统工程机械制造厂供电系统设计(电气工程系)带式输送机传动装置设计悬挂运动控制系统的设计手机恒流充电器的设计托板冲模毕业设计拔叉及夹具设计拖拉机拨叉铣专机的设计拨叉加工加工工艺及夹具设计拨叉钻床夹具指纹U盘的设计推动架的设计推动架零件的机械加工工艺的设计数控机床主传动系统设计数控直流稳压电源数控车床主传动机构设计数控车床纵向进给及导轨润滑机构设计旋转门的设计普通钻床改造为多轴钻床智能型充电器的电源和显示的设计机械毕业设计及论文机械设计课程设计_减速器锥柱二级传动杠杆的设计板材坡口机总体设计某小区的智能化系统设计椭圆盖注射的设计模具-五金-护罩壳侧壁冲孔模设计模具-五金-空气滤清器壳正反拉伸复合模设计模具-五金-笔记本电脑壳上壳冲压模设计模具-冷冲扬声器模具设计模具-注塑-多用工作灯后盖注塑模模具-注塑-对讲机外壳注射模设计模具-注塑-手机充电器塑料模具模具-注塑-水管三通管塑料模具模具-电池板铝边框冲孔模的设计模具-离合器板冲成形模具设计模具-铰链落料冲孔复合模具设计气体泄漏超声检测系统的设计水泥粉磨选粉系统改造汽车离合器(EQ153)的设计汽车离合器(螺旋430)的设计液位平衡控制系统实验装置设计清淤船的设计火灾自动报警系统设计(电气类)电动智能小车电气工程及其自动化(电力)毕业设计电流线圈架塑料模设计电织机导板零件数控直岗拉卡水电站电气一次及发电机继电保护设计移动通信的电波衰落与抗衰落技术分析的设计空气压缩机曲轴设计立式组合机床液压系统论文.doc货车底盘布置的设计轿车双摆臂悬架的设计及产品建模钻四槽铣床与夹具图纸钻法兰四孔夹具的设计钻泵体盖6-φ2孔机床与夹具图纸钻泵体盖6-φ7孔机床与夹具图纸面筋成型机的设计面筋成形生产线颗粒状糖果包装机设计马路保洁车的设计高层建筑外墙清洗机---升降机部分的设计高速数字多功能土槽试验台车的设计齿轮的设计和应用推荐书籍

已经发到你的邮箱了!请注意查收。

1 10L真空搅拌机设计2 8英寸钢管热浸镀锌自动生产线设计3 卧式钢筋切断机的设计4 气门摇臂轴支座毕业设计5 后钢板弹簧吊耳的加工工艺6 环面蜗轮蜗杆减速器7 S195柴油机机体三面精镗组合机床总体设计及夹具设计8 车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计9 机油盖注塑模具设计10 机油冷却器自动装备线压紧工位装备设计11 5基于AT89C2051单片机的温度控制系统的设计12 基于普通机床的后托架及夹具设计开发13 减速器的整体设计14 搅拌器的设计15 金属粉末成型液压机PLC设计16 精密播种机17 可调速钢筋弯曲机的设计18 空气压缩机V带校核和噪声处理19 冲压拉深模设计20 螺旋管状面筋机总体及坯片导出装置设计21 落料,拉深,冲孔复合模22 膜片式离合器的设计23 内螺纹管接头注塑模具设计24 内循环式烘干机总体及卸料装置设计25 全自动洗衣机控制系统的设计26 生产线上运输升降机的自动化设计27 实验用减速器的设计28 手机充电器的模具设计29 鼠标盖的模具设计30 双齿减速器设计31 双铰接剪叉式液压升降台的设计32 水泥瓦模具设计与制造工艺分析33 四层楼电梯自动控制系统的设计34 塑料电话接线盒注射模设计35 塑料模具设计36 同轴式二级圆柱齿轮减速器的设计37 托板冲模毕业设计38 推动架设计39 椭圆盖注射模设计40 万能外圆磨床液压传动系统设计41 五寸软盘盖注射模具设计42 锡林右轴承座组件工艺及夹具设计43 心型台灯塑料注塑模具毕业设计44 机械手设计45 机械手自动控制系统的PLC实现方法研究46 汽车制动系统实验台设计47 数控多工位钻床设计48 数控车床主轴和转塔刀架毕业设计49 送布凸轮的设计和制造50 CA6140车床后托架夹具设计51 带式输送机毕业设计论文52 电火花加工论文53 机床的数控改造及发展趋势54 机械加工工艺规程毕业论文55 机械手毕业论文56 基于ANSYS的齿轮泵有限元分析57 可编程序控制器在机床数控系统中应用探讨58 矿石铲运机液压系统设计59 汽车连杆加工工艺及夹具设计论文60 数控车床半闭环控制系统设计61 数控多工位钻床设计62 数控机床体积定位精度的测量与补偿63 数控机床维修64 数控加工工艺与编程65 塑料注射模设计与制造66 新型电动执行机构67 液力传动变速箱设计与仿真论文68 轴类零件的加工工艺论文69 中型货车变速器的设计70 数控钻床横、纵两向进给系统的设计71 经济型数控车床控制系统设计72 Y210—2型电动机定子铁芯冲压模具设计73 双坐标十字滑台设计及控制74 注射器盖毕业设计75 二级减速器的毕业设计 联系

一.机械设计课程设计任务书 二.传动方案的拟定及说明 由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。 本传动机构的特点是:减速器横向尺寸较小,两大齿轮浸油深度可以大致相同。结构较复杂,中间轴较长、刚度差,中间轴承润滑较困难。 三.电动机的选择 原始数据 运输机筒转矩 1550 卷筒的直径D(mm) 400 运输带速度V(m/s) 带速允许偏差(%) 5 使用期限 (年) 10 工作制度 (班/日) 2 1. 电动机类型和结构的选择 因为本传动的工作状况是:工作平稳、单向运转。所以选用常用的封闭式Y(IP44)系列的电动机。 2. 电动机容量的选择 1) 卷筒轴的输出功率Pw Pw= 6kW 2) 电动机的输出功率 =Pw/η 传动装置的总效率 η= 式中, ……为从电动机至卷筒轴之间的各传动机构和轴承的效率。由本表2-4查得:V带轮传动 =;滚动轴承 =;圆柱齿轮传动 =;联轴器 =;卷筒轴滑动轴承 =,则 = 故 Pd= = 3)电动机的额定功率 由本表20-1选取电动机的额定功率 =11kW 3. 电动机转速的选择 为了便于选择电动机转速,先推算电动机转速的可选范围,由本表2-1查得V带传动常用的传动比范围 ~4,单级圆柱齿轮传动比范围 ~6,则电动机转速可选范围为 =773~6187r/min 可见同步转速为3000 r/min,1500 r/min,1000 r/min的电动机符合。对于后两者进行比较,如下表: 方案 电动机型号 额定功率(Kw) 电动机转速(r/min) 电动机质量 (Kg) 总传动比 传动比 同步 满载 1 Y160M-4 11 1500 1460 123 2 Y160L-6 11 1000 970 147 由表中数据比较可知道,方案2传动比小,但结构尺寸大,造价高;综合考虑,选用造价较低,结构尺寸较小,总传动比较小的方案1。 4.电动机型号的确定 由本表20-1,本表20-2查出电动机型号为Y160M-4,其额定功率为11 kW,满载转速1460 r/min。基本符合题目所需的要求。 5.传动装置的总传动比及其分配 (1) 计算总传动比 i= = (2) 合理分配各级传动比 由于减速箱是同轴式布置,所以两级传动比相同。 因为i=,取V带轮传动的传动比 =,则单级圆柱齿轮传动的传动比 = 四.计算传动装置的运动和动力参数 1. 各轴转速 电动机轴为0轴,减速器高速轴为I抽,中间轴承为II轴,低速轴为III轴,各轴转速为 =1460 r/min =1460/ r/min = r/min = 2. 各轴输入功率 按电动机额定功率 计算各轴输入功率,即 =11 Kw =11× Kw =×× Kw =×× Kw 3. 各轴转矩 Nm Nm Nm Nm 各轴转速、输入功率、输入转矩如下表: 项 目 电动机轴0 高速轴I 中间轴II 低速轴III 转速(r/min) 1460 43 功率(kW) 11 转矩(N•m) 传动比 效率 五.传动件设计计算 (其设计参数见《机械设计》) 1.高速级齿轮传动设计 1. 选精度等级、材料及齿数 1) 用斜齿圆柱齿轮 2) 材料及热处理; 小齿轮:40Cr(调质),硬度为280 HBS。 大齿轮:45钢(调质),硬度为240 HBS, 精度:7级精度; 3) 齿数 =24, =u =×24=, 取 =85; 4) 选取螺旋角。初选螺旋角β=14° 2. 按齿面接触强度设计 按式(10—21) ≥ 1) 确定公式内的各计算数值 试选 = (1) 由图10-30选取区域系数 = (2) T1=×10 N•mm (3) 由表10-7选取齿宽系数 =1 (4) 由图10-26查得 =, =,则 = + = (5) 由表10-6查得材料的弹性影响系数 = Mp (6) 由图10-21d 按齿面硬度查得 小齿轮的接触疲劳强度极限 =600 MPa;大齿轮的解除疲劳强度极限 =550 MPa; (7) 由式(10-13)计算应力循环次数 N1=60n1jLh=60××1×(2×8×300×10)= N2=N1/= (8) 由图10-19查得接触疲劳寿命系数 =; = (9) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 =558MPa =539MPa [σH]=( + )/2= 2) 计算 (1) 试算小齿轮分度圆直径 ≥ = = mm (2) 计算圆周速度 v= = = (3) 计算齿宽b及模数 b=φd =1× mm = = = mm h= =× b/h= (4) 计算纵向重合度

环式减速器毕业论文

机械设计课程设计计算说明书 一、传动方案拟定…………….……………………………….2 二、电动机的选择……………………………………….…….2 三、计算总传动比及分配各级的传动比……………….…….4 四、运动参数及动力参数计算………………………….…….5 五、传动零件的设计计算………………………………….….6 六、轴的设计计算………………………………………….....12 七、滚动轴承的选择及校核计算………………………….…19 八、键联接的选择及计算………..……………………………22 设计题目:V带——单级圆柱减速器 第四组 德州科技职业学院青岛校区 设计者:#### 指导教师:%%%% 二○○七年十二月计算过程及计算说明 一、传动方案拟定 第三组:设计单级圆柱齿轮减速器和一级带传动 (1) 工作条件:连续单向运转,载荷平稳,空载启动,使用年限10年,小批量生产,工作为二班工作制,运输带速允许误差正负5%。 (2) 原始数据:工作拉力F=1250N;带速V=; 滚筒直径D=280mm。 二、电动机选择 1、电动机类型的选择: Y系列三相异步电动机 2、电动机功率选择: (1)传动装置的总功率: η总=η带×η2轴承×η齿轮×η联轴器×η滚筒 =××××× = (2)电机所需的工作功率: P工作=FV/1000η总 =1250×× =、确定电动机转速: 计算滚筒工作转速: n筒=60×960V/πD =60×960×π×280 =111r/min 按书P7表2-3推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’a=3~6。取V带传动比I’1=2~4,则总传动比理时范围为I’a=6~24。故电动机转速的可选范围为n筒=(6~24)×111=666~2664r/min 符合这一范围的同步转速有750、1000、和1500r/min。 根据容量和转速,由有关手册查出有三种适用的电动机型号:因此有三种传支比方案:综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min 。 4、确定电动机型号 根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132S-6。 其主要性能:额定功率:3KW,满载转速960r/min,额定转矩。质量63kg。 三、计算总传动比及分配各级的伟动比 1、总传动比:i总=n电动/n筒=960/111= 2、分配各级伟动比 (1) 据指导书,取齿轮i齿轮=6(单级减速器i=3~6合理) (2) ∵i总=i齿轮×I带 ∴i带=i总/i齿轮= 四、运动参数及动力参数计算 1、计算各轴转速(r/min) nI=n电机=960r/min nII=nI/i带=960/(r/min) nIII=nII/i齿轮=686/6=114(r/min) 2、 计算各轴的功率(KW) PI=P工作= PII=PI×η带=× PIII=PII×η轴承×η齿轮=×× =、 计算各轴扭矩(N•mm) TI=×106PI/nI=×106× =25729N•mm TII=×106PII/nII =×106× =•mm TIII=×106PIII/nIII=×106× =232048N•mm 五、传动零件的设计计算 1、 皮带轮传动的设计计算 (1) 选择普通V带截型 由课本表得:kA= Pd=KAP=×3= 由课本得:选用A型V带 (2) 确定带轮基准直径,并验算带速 由课本得,推荐的小带轮基准直径为 75~100mm 则取dd1=100mm dd2=n1/n2•dd1=(960/686)×100=139mm 由课本P74表5-4,取dd2=140mm 实际从动轮转速n2’=n1dd1/dd2=960×100/140 = 转速误差为:n2-n2’/n2=686- =<(允许) 带速V:V=πdd1n1/60×1000 =π×100×960/60×1000 = 在5~25m/s范围内,带速合适。 (3) 确定带长和中心矩 根据课本得 0. 7(dd1+dd2)≤a0≤2(dd1+dd2) 0. 7(100+140)≤a0≤2×(100+140) 所以有:168mm≤a0≤480mm 由课本P84式(5-15)得: L0=2a0+(dd1+dd2)+(dd2-dd1)2/4a0 =2×400+(100+140)+(140-100)2/4×400 =1024mm 根据课本表7-3取Ld=1120mm 根据课本P84式(5-16)得: a≈a0+Ld-L0/2=400+(1120-1024/2) =400+48 =448mm (4)验算小带轮包角 α1=1800-dd2-dd1/a×600 =1800-140-100/448×600 = =>1200(适用) (5)确定带的根数 根据课本(7-5) P0= 根据课本(7-6) △P0= 根据课本(7-7)Kα= 根据课本(7-23)KL= 由课本式(7-23)得 Z= Pd/(P0+△P0)KαKL =() ×× =5 (6)计算轴上压力 由课本查得q=,由式(5-18)单根V带的初拉力: F0=500Pd/ZV(α-1)+qV2 =[500×××()+×]N =160N 则作用在轴承的压力FQ, FQ=2ZF0sinα1/2=2×5× =1250N 2、齿轮传动的设计计算 (1)选择齿轮材料及精度等级 考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45钢,调质,齿面硬度220HBS;根据课本选7级精度。齿面精糙度Ra≤μm (2)按齿面接触疲劳强度设计 由d1≥(kT1(u+1)/φdu[σH]2)1/3 确定有关参数如下:传动比i齿=6 取小齿轮齿数Z1=20。则大齿轮齿数: Z2=iZ1=6×20=120 实际传动比I0=120/2=60 传动比误差:i-i0/I=6-6/6=0%< 可用 齿数比:u=i0=6 由课本取φd= (3)转矩T1 T1=9550×P/n1=9550× =•m (4)载荷系数k 由课本取k=1 (5)许用接触应力[σH] [σH]= σHlimZNT/SH由课本查得: σHlim1=625Mpa σHlim2=470Mpa 由课本查得接触疲劳的寿命系数: ZNT1= ZNT2= 通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数SH= [σH]1=σHlim1ZNT1/SH=625× =575 [σH]2=σHlim2ZNT2/SH=470× =460 故得: d1≥766(kT1(u+1)/φdu[σH]2)1/3 =766[1××(6+1)/×6×4602]1/3mm = 模数:m=d1/Z1= 根据课本表9-1取标准模数:m=2mm (6)校核齿根弯曲疲劳强度 根据课本式 σF=(2kT1/bm2Z1)YFaYSa≤[σH] 确定有关参数和系数 分度圆直径:d1=mZ1=2×20mm=40mm d2=mZ2=2×120mm=240mm 齿宽:b=φdd1=× 取b=35mm b1=40mm (7)齿形系数YFa和应力修正系数YSa 根据齿数Z1=20,Z2=120由表相得 YFa1= YSa1= YFa2= YSa2= (8)许用弯曲应力[σF] 根据课本P136(6-53)式: [σF]= σFlim YSTYNT/SF 由课本查得: σFlim1=288Mpa σFlim2 =191Mpa 由图6-36查得:YNT1= YNT2= 试验齿轮的应力修正系数YST=2 按一般可靠度选取安全系数SF= 计算两轮的许用弯曲应力 [σF]1=σFlim1 YSTYNT1/SF=288×2× =410Mpa [σF]2=σFlim2 YSTYNT2/SF =191×2× =204Mpa 将求得的各参数代入式(6-49) σF1=(2kT1/bm2Z1)YFa1YSa1 =(2×1××22×20) ×× =8Mpa< [σF]1 σF2=(2kT1/bm2Z2)YFa1YSa1 =(2×1××22×120) ×× =< [σF]2 故轮齿齿根弯曲疲劳强度足够 (9)计算齿轮传动的中心矩a a=m/2(Z1+Z2)=2/2(20+120)=140mm (10)计算齿轮的圆周速度V V=πd1n1/60×1000=×40×960/60×1000 = 六、轴的设计计算 输入轴的设计计算 1、按扭矩初算轴径 选用45#调质,硬度217~255HBS 根据课本并查表,取c=115 d≥115 ()1/3mm= 考虑有键槽,将直径增大5%,则 d=×(1+5%)mm= ∴选d=22mm 2、轴的结构设计 (1)轴上零件的定位,固定和装配 单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定 (2)确定轴各段直径和长度 工段:d1=22mm 长度取L1=50mm ∵h=2c c= II段:d2=d1+2h=22+2×2× ∴d2=28mm 初选用7206c型角接触球轴承,其内径为30mm, 宽度为16mm. 考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长: L2=(2+20+16+55)=93mm III段直径d3=35mm L3=L1-L=50-2=48mm Ⅳ段直径d4=45mm 由手册得:c= h=2c=2× d4=d3+2h=35+2×3=41mm 长度与右面的套筒相同,即L4=20mm 但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(30+3×2)=36mm 因此将Ⅳ段设计成阶梯形,左段直径为36mm Ⅴ段直径d5=30mm. 长度L5=19mm 由上述轴各段长度可算得轴支承跨距L=100mm (3)按弯矩复合强度计算 ①求分度圆直径:已知d1=40mm ②求转矩:已知T2=•mm ③求圆周力:Ft 根据课本式得 Ft=2T2/d2=69495/40= ④求径向力Fr 根据课本式得 Fr=Ft•tanα=×tan200=632N ⑤因为该轴两轴承对称,所以:LA=LB=50mm(1)绘制轴受力简图(如图a) (2)绘制垂直面弯矩图(如图b) 轴承支反力: FAY=FBY=Fr/2=316N FAZ=FBZ=Ft/2=868N 由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为 MC1=FAyL/2=×50=•m (3)绘制水平面弯矩图(如图c) 截面C在水平面上弯矩为: MC2=FAZL/2=×50=•m (4)绘制合弯矩图(如图d) MC=(MC12+MC22)1/2=()1/2=•m (5)绘制扭矩图(如图e) 转矩:T=×(P2/n2)×106=35N•m (6)绘制当量弯矩图(如图f) 转矩产生的扭剪文治武功力按脉动循环变化,取α=1,截面C处的当量弯矩: Mec=[MC2+(αT)2]1/2 =[(1×35)2]1/2=•m (7)校核危险截面C的强度 由式(6-3) σe=Mec/×353 =< [σ-1]b=60MPa ∴该轴强度足够。 输出轴的设计计算 1、按扭矩初算轴径 选用45#调质钢,硬度(217~255HBS) 根据课本取c=115 d≥c(P3/n3)1/3=115()1/3= 取d=35mm2、轴的结构设计 (1)轴的零件定位,固定和装配 单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。 (2)确定轴的各段直径和长度 初选7207c型角接球轴承,其内径为35mm,宽度为17mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长41mm,安装齿轮段长度为轮毂宽度为2mm。 (3)按弯扭复合强度计算 ①求分度圆直径:已知d2=300mm ②求转矩:已知T3=271N•m ③求圆周力Ft:根据课本式得 Ft=2T3/d2=2×271×103/300= ④求径向力式得 Fr=Ft•tanα=× ⑤∵两轴承对称 ∴LA=LB=49mm (1)求支反力FAX、FBY、FAZ、FBZ FAX=FBY=Fr/2= FAZ=FBZ=Ft/2= (2)由两边对称,书籍截C的弯矩也对称 截面C在垂直面弯矩为 MC1=FAYL/2=×49=•m (3)截面C在水平面弯矩为 MC2=FAZL/2=×49=•m (4)计算合成弯矩 MC=(MC12+MC22)1/2 =()1/2 =•m (5)计算当量弯矩:根据课本得α=1 Mec=[MC2+(αT)2]1/2=[(1×271)2]1/2 =•m (6)校核危险截面C的强度 由式(10-3) σe=Mec/()=(×453) =<[σ-1]b=60Mpa ∴此轴强度足够七、滚动轴承的选择及校核计算 根据根据条件,轴承预计寿命 16×365×10=58400小时 1、计算输入轴承 (1)已知nⅡ=686r/min 两轴承径向反力:FR1=FR2= 初先两轴承为角接触球轴承7206AC型 根据课本得轴承内部轴向力 FS= 则FS1=FS2= (2) ∵FS1+Fa=FS2 Fa=0 故任意取一端为压紧端,现取1端为压紧端 FA1=FS1= FA2=FS2= (3)求系数x、y FA1/FR1= FA2/FR2= 根据课本得e= FA1/FR158400h ∴预期寿命足够 2、计算输出轴承 (1)已知nⅢ=114r/min Fa=0 FR=FAZ= 试选7207AC型角接触球轴承 根据课本得FS=,则 FS1=FS2=× (2)计算轴向载荷FA1、FA2 ∵FS1+Fa=FS2 Fa=0 ∴任意用一端为压紧端,1为压紧端,2为放松端 两轴承轴向载荷:FA1=FA2=FS1= (3)求系数x、y FA1/FR1= FA2/FR2= 根据课本得:e= ∵FA1/FR158400h ∴此轴承合格 八、键联接的选择及校核计算 轴径d1=22mm,L1=50mm 查手册得,选用C型平键,得: 键A 8×7 GB1096-79 l=L1-b=50-8=42mm T2=48N•m h=7mm 根据课本P243(10-5)式得 σp=4T2/dhl=4×48000/22×7×42 =<[σR](110Mpa) 2、输入轴与齿轮联接采用平键联接 轴径d3=35mm L3=48mm T=271N•m 查手册P51 选A型平键 键10×8 GB1096-79 l=L3-b=48-10=38mm h=8mm σp=4T/dhl=4×271000/35×8×38 =<[σp](110Mpa) 3、输出轴与齿轮2联接用平键联接 轴径d2=51mm L2=50mm T= 查手册选用A型平键 键16×10 GB1096-79 l=L2-b=50-16=34mm h=10mm 据课本得 σp=4T/dhl=4×6100/51×10×34=<[σp]

A single-stage cylindrical gear reducer, mainly by the owners, driven shift gears, bearings, ring, cover, owners, vice shell, spline shaft, which sets the spline flange, gland, the bearings Block Group into. Characterized by active gear shift is a step-like, one end of the Department of shift gears and gear driven link, and the other end with bearings, ring fixed connection, the bearings and bearing the coat connection, bearing housing and sub-surface connection. Because of this reducer the main, from the use of gear shift gear and take the initiative to shift gears to increase the other side of the Department of bearings, bearing, cantilever past, and to strengthen the work of gear strength, increased the life span of reducer. The following is a design statement: Modified parameters: the work of a conveyor belt pulling force: 2300N Conveyor belt speed: / s Roller diameter: 400mm Daily working hours: 24h Transmission Work Experience: 3 years

仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2) 原始数据:滚筒圆周力F=;带速V=;滚筒直径D=220mm。运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=××××(2)电机所需的工作功率:Pd=FV/1000η总=1700××、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×π×220=根据【2】表中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×符合这一范围的同步转速有960 r/min和1420r/min。由【2】表查出有三种适用的电动机型号、如下表方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比KW 同转 满转 总传动比 带 齿轮1 Y132s-6 3 1000 960 3 Y100l2-4 3 1500 1420 3 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩。三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/、分配各级传动比(1) 取i带=3(2) ∵i总=i齿×i 带π∴i齿=i总/i带=四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=(r/min)nII=nI/i齿=(r/min)滚筒nw=nII=(r/min)2、 计算各轴的功率(KW)PI=Pd×η带=××η轴承×η齿轮=××、 计算各轴转矩Td=×入/n1 = =入/n2=五、传动零件的设计计算1、 皮带轮传动的设计计算(1) 选择普通V带截型由课本[1]P189表10-8得:kA= P=×据PC=和n1=由课本[1]P189图10-12得:选用A型V带(2) 确定带轮基准直径,并验算带速由[1]课本P190表10-9,取dd1=95mm>dmin=75dd2=i带dd1(1-ε)=3×95×()= mm由课本[1]P190表10-9,取dd2=280带速V:V=πdd1n1/60×1000=π×95×1420/60×1000=在5~25m/s范围内,带速合适。(3) 确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×500+(95+280)+(280-95)2/4×450=根据课本[1]表(10-6)选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0)/2=500+()/2=497mm(4) 验算小带轮包角α1= ×(dd2-dd1)/a=×(280-95)/497=>1200(适用)(5) 确定带的根数单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=查[1]表10-3,得Kα=;查[1]表10-4得 KL= PC/[(P1+△P1)KαKL]=[() ××]= (取3根)(6) 计算轴上压力由课本[1]表10-5查得q=,由课本式(10-20)单根V带的初拉力:F0=500PC/ZV[(α)-1]+qV2=[()]+ =则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×3×()=、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=取z2=78由课本表6-12取φd=(3)转矩T1T1=×106×P1/n1=×106×(4)载荷系数k : 取k=(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60××10×300×18= /×108查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=按一般可靠度要求选取安全系数SHmin=[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=模数:m=d1/Z1=取课本[1]P79标准模数第一数列上的值,m=(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=×20mm=50mmd2=mZ2=×78mm=195mm齿宽:b=φdd1=×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=< [σbb1]σbb2=2kT1YFS2/ b2md1=< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=××50/60×1000=因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×()1/3mm=考虑键槽的影响以及联轴器孔径系列标准,取d=35mm3、齿轮上作用力的计算齿轮所受的转矩:T=×106P/n=×106× N齿轮作用力:圆周力:Ft=2T/d=2×198582/195N=2036N径向力:Fr=Fttan200=2036×tan200=741N4、轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。(1)、联轴器的选择可采用弹性柱销联轴器,查[2]表可得联轴器的型号为HL3联轴器:35×82 GB5014-85(2)、确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位(3)、确定各段轴的直径将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.(5)确定轴各段直径和长度Ⅰ段:d1=35mm 长度取L1=50mmII段:d2=40mm初选用6209深沟球轴承,其内径为45mm,宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+19+55)=96mmIII段直径d3=45mmL3=L1-L=50-2=48mmⅣ段直径d4=50mm长度与右面的套筒相同,即L4=20mmⅤ段直径d5=52mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=96mm(6)按弯矩复合强度计算①求分度圆直径:已知d1=195mm②求转矩:已知T2=③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=×tan200=⑤因为该轴两轴承对称,所以:LA=LB=48mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:FAY=FBY=Fr/2=由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为MC1=FAyL/2=×96÷2=截面C在水平面上弯矩为:MC2=FAZL/2=×96÷2=(4)绘制合弯矩图(如图d)MC=(MC12+MC22)1/2=()1/2=(5)绘制扭矩图(如图e)转矩:T=×(P2/n2)×106=(6)绘制当量弯矩图(如图f)转矩产生的扭剪文治武功力按脉动循环变化,取α=,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[(×)2]1/2=(7)校核危险截面C的强度由式(6-3)σe=×453=< [σ-1]b=60MPa∴该轴强度足够。主动轴的设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×()1/3mm=考虑键槽的影响以系列标准,取d=22mm3、齿轮上作用力的计算齿轮所受的转矩:T=×106P/n=×106× N齿轮作用力:圆周力:Ft=2T/d=2×53265/50N=2130N径向力:Fr=Fttan200=2130×tan200=775N确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,4 确定轴的各段直径和长度初选用6206深沟球轴承,其内径为30mm,宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。(2)按弯扭复合强度计算①求分度圆直径:已知d2=50mm②求转矩:已知T=③求圆周力Ft:根据课本P127(6-34)式得Ft=2T3/d2=2×④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=×⑤∵两轴承对称∴LA=LB=50mm(1)求支反力FAX、FBY、FAZ、FBZFAX=FBY=Fr/2=(2) 截面C在垂直面弯矩为MC1=FAxL/2=×100/2=19N?m(3)截面C在水平面弯矩为MC2=FAZL/2=×100/2=(4)计算合成弯矩MC=(MC12+MC22)1/2=(192+)1/2=(5)计算当量弯矩:根据课本P235得α=[MC2+(αT)2]1/2=[(×)2]1/2=(6)校核危险截面C的强度由式(10-3)σe=Mec/()=(×303)=<[σ-1]b=60Mpa∴此轴强度足够(7) 滚动轴承的选择及校核计算一从动轴上的轴承根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)由初选的轴承的型号为: 6209,查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=, 基本静载荷CO=,查[2]表可知极限转速9000r/min(1)已知nII=(r/min)两轴承径向反力:FR1=FR2=1083N根据课本P265(11-12)得轴承内部轴向力FS= 则FS1=FS2=(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=682N FA2=FS2=682N(3)求系数x、yFA1/FR1=682N/1038N = =根据课本P265表(14-14)得e=48000h∴预期寿命足够二.主动轴上的轴承:(1)由初选的轴承的型号为:6206查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,基本额定动载荷C=,基本静载荷CO=,查[2]表可知极限转速13000r/min根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)已知nI=(r/min)两轴承径向反力:FR1=FR2=1129N根据课本P265(11-12)得轴承内部轴向力FS= 则FS1=FS2=(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1= FA2=FS2=(3)求系数x、yFA1/FR1= = =根据课本P265表(14-14)得e=48000h∴预期寿命足够七、键联接的选择及校核计算1.根据轴径的尺寸,由[1]中表12-6高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79大齿轮与轴连接的键为:键 14×45 GB1096-79轴与联轴器的键为:键10×40 GB1096-792.键的强度校核大齿轮与轴上的键 :键14×45 GB1096-79b×h=14×9,L=45,则Ls=L-b=31mm圆周力:Fr=2TII/d=2×198580/50=挤压强度: =<125~150MPa=[σp]因此挤压强度足够剪切强度: =<120MPa=[ ]因此剪切强度足够键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。八、减速器箱体、箱盖及附件的设计计算~1、减速器附件的选择通气器由于在室内使用,选通气器(一次过滤),采用M18×油面指示器选用游标尺M12起吊装置采用箱盖吊耳、箱座吊耳.放油螺塞选用外六角油塞及垫片M18×根据《机械设计基础课程设计》表选择适当型号:起盖螺钉型号:GB/T5780 M18×30,材料Q235高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235螺栓:GB5782~86 M14×100,材料Q235箱体的主要尺寸::(1)箱座壁厚z=× 取z=8(2)箱盖壁厚z1=× 取z1=8(3)箱盖凸缘厚度b1=×8=12(4)箱座凸缘厚度b=×8=12(5)箱座底凸缘厚度b2=×8=20(6)地脚螺钉直径df =×(取18)(7)地脚螺钉数目n=4 (因为a<250)(8)轴承旁连接螺栓直径d1= =×18= (取14)(9)盖与座连接螺栓直径 d2=()df =× 18= (取10)(10)连接螺栓d2的间距L=150-200(11)轴承端盖螺钉直d3=()df=×18=(取8)(12)检查孔盖螺钉d4=()df=×18= (取6)(13)定位销直径d=()d2=×10=8(14)至外箱壁距离C1(15) (16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。(17)外箱壁至轴承座端面的距离C1+C2+(5~10)(18)齿轮顶圆与内箱壁间的距离:> mm(19)齿轮端面与内箱壁间的距离:=12 mm(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm(21)轴承端盖外径∶D+(5~5.5)d3D~轴承外径(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.九、润滑与密封1.齿轮的润滑采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。2.滚动轴承的润滑由于轴承周向速度为,所以宜开设油沟、飞溅润滑。3.润滑油的选择齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。4.密封方法的选取选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为轴承盖结构尺寸按用其定位的轴承的外径决定。十、设计小结课程设计体会课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。十一、参考资料目录[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

二挡减速器毕业论文

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它是由齿轮、轴、轴承及箱体组成的减速装置,用于原动机和工作机或执行机构之间,起匹配转速和传递扭矩的作用。齿轮减速器的特点是效率高、寿命长、维护方便,因此应用广泛。本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的拟定选择V带和同轴式二级圆柱齿轮减速器为传动装置,然后进行减速器和v带的设计计算(电动机的选择、V带设计、齿轮传动设计、轴的结构设计、选择并验算联轴器、键的选择和校核和轴承的润滑、大齿轮加工工艺编制等内容)运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维零件图绘制和装配图的绘制。关键词:齿轮啮合 轴传动 传动比 传动效率

一种单级圆柱齿轮减速器,主要由主、从动变位齿轮、轴承、挡圈、端盖、主、副壳体、花键轴、内花键套法兰、压盖、轴承座组成。 其特点是主动变位齿轮是台阶式的,一端部齿轮与从动变位齿轮联接,另一端部与轴承、挡圈固定联接,轴承的外套与轴承座联接,轴承座与副壳体表面联接固定。 此减速器由于主、从齿轮采用变位齿轮,主动变位齿轮的另一端部增加轴承、轴承座,改变过去的悬臂状态,加强齿轮的工作强度,提高了减速器的寿命。 下面是设计说明书: 修改参数:输送带工作拉力:2300N 输送带工作速度: 滚筒直径:400mm 每日工作时数:24h 传动工作年限:3年 机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录 设计任务书……………………………………………………1 传动方案的拟定及说明………………………………………4 电动机的选择…………………………………………………4 计算传动装置的运动和动力参数……………………………5 传动件的设计计算……………………………………………5 轴的设计计算…………………………………………………8 滚动轴承的选择及计算………………………………………14 键联接的选择及校核计算……………………………………16 连轴器的选择…………………………………………………16 减速器附件的选择……………………………………………17 润滑与密封……………………………………………………18 设计小结………………………………………………………18 参考资料目录…………………………………………………18 机械设计课程设计任务书 题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器 一. 总体布置简图 1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器 二. 工作情况: 载荷平稳、单向旋转 三. 原始数据 鼓轮的扭矩T(N�6�1m):850 鼓轮的直径D(mm):350 运输带速度V(m/s): 带速允许偏差(%):5 使用年限(年):5 工作制度(班/日):2 四. 设计内容 1. 电动机的选择与运动参数计算; 2. 斜齿轮传动设计计算 3. 轴的设计 4. 滚动轴承的选择 5. 键和连轴器的选择与校核; 6. 装配图、零件图的绘制 7. 设计计算说明书的编写 五. 设计任务 1. 减速器总装配图一张 2. 齿轮、轴零件图各一张 3. 设计说明书一份 六. 设计进度 1、 第一阶段:总体计算和传动件参数计算 2、 第二阶段:轴与轴系零件的设计 3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制 4、 第四阶段:装配图、零件图的绘制及计算说明书的编写 传动方案的拟定及说明 由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。 本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。 电动机的选择 1.电动机类型和结构的选择 因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。 2.电动机容量的选择 1) 工作机所需功率Pw Pw= 2) 电动机的输出功率 Pd=Pw/η η= = Pd= 3.电动机转速的选择 nd=(i1’�6�1i2’…in’)nw 初选为同步转速为1000r/min的电动机 4.电动机型号的确定 由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求 计算传动装置的运动和动力参数 传动装置的总传动比及其分配 1.计算总传动比 由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为: i=nm/nw nw= i= 2.合理分配各级传动比 由于减速箱是同轴式布置,所以i1=i2。 因为i=,取i=25,i1=i2=5 速度偏差为<5%,所以可行。 各轴转速、输入功率、输入转矩 项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮 转速(r/min) 960 960 192 功率(kW) 4 转矩(N�6�1m) 191 传动比 1 1 5 5 1 效率 1

  • 索引序列
  • 斜齿轮减速器毕业论文资料
  • 行星齿轮减速器毕业论文ppt
  • 双齿减速器设计毕业论文
  • 环式减速器毕业论文
  • 二挡减速器毕业论文
  • 返回顶部