fanfanwing
我也是刚刚做完,呵呵一. 课程设计书设计课题:设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为(包括其支承轴承效率的损失),减速器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V表一: 题号 参数 1 2 3 4 5运输带工作拉力(kN) 运输带工作速度(m/s) 卷筒直径(mm) 250 250 250 300 300二. 设计要求1.减速器装配图一张(A1)。绘制轴、齿轮零件图各一张(A3)。3.设计说明书一份。三. 设计步骤1. 传动装置总体设计方案2. 电动机的选择3. 确定传动装置的总传动比和分配传动比4. 计算传动装置的运动和动力参数5. 设计V带和带轮6. 齿轮的设计7. 滚动轴承和传动轴的设计8. 键联接设计9. 箱体结构设计10. 润滑密封设计11. 联轴器设计1.传动装置总体设计方案:1. 组成:传动装置由电机、减速器、工作机组成。2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。 其传动方案如下:图一:(传动装置总体设计图)初步确定传动系统总体方案如:传动装置总体设计图所示。选择V带传动和二级圆柱斜齿轮减速器(展开式)。传动装置的总效率 =× × ××=; 为V带的效率, 为第一对轴承的效率, 为第二对轴承的效率, 为第三对轴承的效率, 为每对齿轮啮合传动的效率(齿轮为7级精度,油脂润滑.因是薄壁防护罩,采用开式效率计算)。2.电动机的选择电动机所需工作功率为: P =P /η =1900××=, 执行机构的曲柄转速为n= =,经查表按推荐的传动比合理范围,V带传动的传动比i =2~4,二级圆柱斜齿轮减速器传动比i =8~40,则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n=(16~160)×=~。综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,选定型号为Y112M—4的三相异步电动机,额定功率为额定电流,满载转速 1440 r/min,同步转速1500r/min。方案 电动机型号 额定功率P kw 电动机转速 电动机重量N 参考价格元 传动装置的传动比 同步转速 满载转速 总传动比 V带传动 减速器1 Y112M-4 4 1500 1440 470 230 中心高 外型尺寸L×(AC/2+AD)×HD 底脚安装尺寸A×B 地脚螺栓孔直径K 轴伸尺寸D×E 装键部位尺寸F×GD132 515× 345× 315 216 ×178 12 36× 80 10 ×413.确定传动装置的总传动比和分配传动比(1) 总传动比由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为 =n /n=1440/=(2) 分配传动装置传动比 = × 式中 分别为带传动和减速器的传动比。为使V带传动外廓尺寸不致过大,初步取 =,则减速器传动比为 = ==根据各原则,查图得高速级传动比为 =,则 = =.计算传动装置的运动和动力参数(1) 各轴转速 = =1440/= = == = / = r/min = = r/min(2) 各轴输入功率 = × =×= = ×η2× =××= = ×η2× =××= = ×η2×η4=××=则各轴的输出功率: = × kW = × kW = × = × kW(3) 各轴输入转矩 = × × N•m电动机轴的输出转矩 =9550 =9550× N•所以: = × × =×× N•m = × × × =××× N•m = × × × =××וm = × × =×× N•m输出转矩: = × N•m = × N•m = וm = × N•m运动和动力参数结果如下表轴名 功率P KW 转矩T Nm 转速r/min 输入 输出 输入 输出 电动机轴 14401轴 轴 轴 轴 .齿轮的设计(一)高速级齿轮传动的设计计算1. 齿轮材料,热处理及精度考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮(1) 齿轮材料及热处理 ① 材料:高速级小齿轮选用 钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =24高速级大齿轮选用 钢正火,齿面硬度为大齿轮 240HBS Z =i×Z =×24= 取Z =78. ② 齿轮精度按GB/T10095-1998,选择7级,齿根喷丸强化。2.初步设计齿轮传动的主要尺寸按齿面接触强度设计 确定各参数的值:①试选 =查课本 图10-30 选取区域系数 Z = 由课本 图10-26 则 ②由课本 公式10-13计算应力值环数N =60n j =60××1×(2×8×300×8)=×10 hN = =×10 h #(为齿数比,即 )③查课本 10-19图得:K = K =④齿轮的疲劳强度极限取失效概率为1%,安全系数S=1,应用 公式10-12得:[ ] = =×550= [ ] = =×450=432 许用接触应力 ⑤查课本由 表10-6得: = 由 表10-7得: =1T=×10 × =×10 ××10 .设计计算①小齿轮的分度圆直径d = ②计算圆周速度 ③计算齿宽b和模数 计算齿宽b b= =计算摸数m 初选螺旋角 =14 = ④计算齿宽与高之比 齿高h= =× = =⑤计算纵向重合度 = =⑥计算载荷系数K使用系数 =1根据 ,7级精度, 查课本由 表10-8得动载系数K =,查课本由 表10-4得K 的计算公式:K = +×10 ×b =(1+ 1) ×1+×10 ×查课本由 表10-13得: K =查课本由 表10-3 得: K = =故载荷系数:K=K K K K =1×××⑦按实际载荷系数校正所算得的分度圆直径d =d =× = ⑧计算模数 = 4. 齿根弯曲疲劳强度设计由弯曲强度的设计公式 ≥ ⑴ 确定公式内各计算数值① 小齿轮传递的转矩 =•m 确定齿数z因为是硬齿面,故取z =24,z =i z =×24=传动比误差 i=u=z / z =78/24=Δi=% 5%,允许② 计算当量齿数z =z /cos =24/ cos 14 = z =z /cos =78/ cos 14 =③ 初选齿宽系数 按对称布置,由表查得 =1④ 初选螺旋角 初定螺旋角 =14 ⑤ 载荷系数KK=K K K K =1×××=⑥ 查取齿形系数Y 和应力校正系数Y 查课本由 表10-5得:齿形系数Y = Y = 应力校正系数Y = Y =⑦ 重合度系数Y 端面重合度近似为 =[×( )] =[-×(1/24+1/78)]×cos14 = =arctg(tg /cos )=arctg(tg20 /cos14 )= = 因为 = /cos ,则重合度系数为Y = cos / =⑧ 螺旋角系数Y 轴向重合度 = = =1- =⑨ 计算大小齿轮的 安全系数由表查得S =工作寿命两班制,8年,每年工作300天小齿轮应力循环次数N1=60nkt =60××1×8×300×2×8=×10 大齿轮应力循环次数N2=N1/u=×10 /=×10 查课本由 表10-20c得到弯曲疲劳强度极限 小齿轮 大齿轮 查课本由 表10-18得弯曲疲劳寿命系数:K = K = 取弯曲疲劳安全系数 S=[ ] = [ ] = 大齿轮的数值大.选用.⑵ 设计计算① 计算模数 对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d = 来计算应有的齿数.于是由:z = = 取z =25那么z =×25=81 ② 几何尺寸计算计算中心距 a= = = 将中心距圆整为110 按圆整后的中心距修正螺旋角 =arccos 因 值改变不多,故参数 , , 等不必修正.计算大.小齿轮的分度圆直径d = = d = = 计算齿轮宽度B= 圆整的 (二) 低速级齿轮传动的设计计算⑴ 材料:低速级小齿轮选用 钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =30速级大齿轮选用 钢正火,齿面硬度为大齿轮 240HBS z =×30= 圆整取z =70. ⑵ 齿轮精度按GB/T10095-1998,选择7级,齿根喷丸强化。⑶ 按齿面接触强度设计1. 确定公式内的各计算数值①试选K =②查课本由 图10-30选取区域系数Z =③试选 ,查课本由 图10-26查得 = = =应力循环次数N =60×n ×j×L =60××1×(2×8×300×8)=×10 N = ×10 由课本 图10-19查得接触疲劳寿命系数K = K = 查课本由 图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 取失效概率为1%,安全系数S=1,则接触疲劳许用应力[ ] = = [ ] = =×550/1=517 [ 查课本由 表10-6查材料的弹性影响系数Z = 选取齿宽系数 T=×10 × =×10 ××10 = 2. 计算圆周速度 3. 计算齿宽b= d =1× 4. 计算齿宽与齿高之比 模数 m = 齿高 h=×m =× =. 计算纵向重合度 6. 计算载荷系数KK =(1+ +×10 ×b =(1+)+ ×10 ×使用系数K =1 同高速齿轮的设计,查表选取各数值 = K = K =K =故载荷系数K= =1×××. 按实际载荷系数校正所算的分度圆直径d =d =× 计算模数 3. 按齿根弯曲强度设计m≥ 一确定公式内各计算数值(1) 计算小齿轮传递的转矩 =•m(2) 确定齿数z因为是硬齿面,故取z =30,z =i ×z =×30=传动比误差 i=u=z / z ==Δi=% 5%,允许(3) 初选齿宽系数 按对称布置,由表查得 =1(4) 初选螺旋角 初定螺旋角 =12 (5) 载荷系数KK=K K K K =1×××=(6) 当量齿数 z =z /cos =30/ cos 12 = z =z /cos =70/ cos 12 =由课本 表10-5查得齿形系数Y 和应力修正系数Y (7) 螺旋角系数Y 轴向重合度 = = =1- =(8) 计算大小齿轮的 查课本由 图10-20c得齿轮弯曲疲劳强度极限 查课本由 图10-18得弯曲疲劳寿命系数K = K = S=[ ] = [ ] = 计算大小齿轮的 ,并加以比较大齿轮的数值大,选用大齿轮的尺寸设计计算.① 计算模数 对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d = 来计算应有的齿数.z = = 取z =30z =×30= 取z =70 ② 初算主要尺寸计算中心距 a= = = 将中心距圆整为103 修正螺旋角 =arccos 因 值改变不多,故参数 , , 等不必修正 分度圆直径 d = = d = = 计算齿轮宽度 圆整后取 低速级大齿轮如上图:V带齿轮各设计参数附表1.各传动比V带 高速级齿轮 低速级齿轮 2. 各轴转速n (r/min) (r/min) (r/min) (r/min) . 各轴输入功率 P (kw) (kw) (kw) (kw) . 各轴输入转矩 T (kN•m) (kN•m) (kN•m) (kN•m) 5. 带轮主要参数小轮直径 (mm) 大轮直径 (mm) 中心距a(mm) 基准长度 (mm) 带的根数z90 57.传动轴承和传动轴的设计1. 传动轴承的设计⑴. 求输出轴上的功率P ,转速 ,转矩 P = = =.m⑵. 求作用在齿轮上的力已知低速级大齿轮的分度圆直径为 = 而 F = F = F F = F tan =×圆周力F ,径向力F 及轴向力F 的方向如图示:⑶. 初步确定轴的最小直径先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本 取 输出轴的最小直径显然是安装联轴器处的直径 ,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号查课本 ,选取 因为计算转矩小于联轴器公称转矩,所以查《机械设计手册》 选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径 ⑷. 根据轴向定位的要求确定轴的各段直径和长度① 为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径 ;左端用轴端挡圈定位,按轴端直径取挡圈直径 半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取 ② 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据 ,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.D B 轴承代号 45 85 19 7209AC 45 85 19 7209B 45 100 25 7309B 50 80 16 7010C 50 80 16 7010AC 50 90 20 7210C 2. 从动轴的设计 对于选取的单向角接触球轴承其尺寸为的 ,故 ;而 .右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度 mm,③ 取安装齿轮处的轴段 ;齿轮的右端与左轴承之间采用套筒定位.已知齿轮 的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 . 齿轮的左端采用轴肩定位,轴肩高,取 .轴环宽度 ,取b=8mm. ④ 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取 .⑤ 取齿轮距箱体内壁之距离a=16 ,两圆柱齿轮间的距离c=20 .考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8 ,已知滚动轴承宽度T=16 ,高速齿轮轮毂长L=50 ,则至此,已初步确定了轴的各端直径和长度.5. 求轴上的载荷 首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,查《机械设计手册》20-149表.对于7010C型的角接触球轴承,a=,因此,做为简支梁的轴的支承跨距.传动轴总体设计结构图: (从动轴)(中间轴) (主动轴)从动轴的载荷分析图: 6. 按弯曲扭转合成应力校核轴的强度根据 = = 前已选轴材料为45钢,调质处理。查表15-1得[ ]=60MP 〈 [ ] 此轴合理安全7. 精确校核轴的疲劳强度.⑴. 判断危险截面截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.⑵. 截面Ⅶ左侧。抗弯系数 W= = =12500抗扭系数 = = =25000截面Ⅶ的右侧的弯矩M为 截面Ⅳ上的扭矩 为 = 截面上的弯曲应力 截面上的扭转应力 = = 轴的材料为45钢。调质处理。由课本 表15-1查得: 因 经插入后得 =轴性系数为 = K =1+ = =1+ ( -1)=所以 综合系数为: K = =碳钢的特性系数 取 取安全系数 S = ≥S= 所以它是安全的截面Ⅳ右侧抗弯系数 W= = =12500抗扭系数 = = =25000截面Ⅳ左侧的弯矩M为 M=133560截面Ⅳ上的扭矩 为 =295截面上的弯曲应力 截面上的扭转应力 = = K = K = 所以 综合系数为:K = K =碳钢的特性系数 取 取安全系数 S = ≥S= 所以它是安全的8.键的设计和计算①选择键联接的类型和尺寸一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.根据 d =55 d =65查表6-1取: 键宽 b =16 h =10 =36 b =20 h =12 =50②校和键联接的强度 查表6-2得 [ ]=110MP 工作长度 36-16=20 50-20=30③键与轮毂键槽的接触高度 K = h =5K = h =6由式(6-1)得: <[ ] <[ ]两者都合适取键标记为: 键2:16×36 A GB/T1096-1979键3:20×50 A GB/T1096-19799.箱体结构的设计减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,大端盖分机体采用 配合.1. 机体有足够的刚度在机体为加肋,外轮廓为长方形,增强了轴承座刚度2. 考虑到机体内零件的润滑,密封散热。因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为 3. 机体结构有良好的工艺性.铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.4. 对附件设计 A 视孔盖和窥视孔在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固B 油螺塞:放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。C 油标:油标位在便于观察减速器油面及油面稳定之处。油尺安置的部位不能太低,以防油进入油尺座孔而溢出.D 通气孔:由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.E 盖螺钉:启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。钉杆端部要做成圆柱形,以免破坏螺纹.F 位销:为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.G 吊钩:在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.减速器机体结构尺寸如下:名称 符号 计算公式 结果箱座壁厚 10箱盖壁厚 9箱盖凸缘厚度 12箱座凸缘厚度 15箱座底凸缘厚度 25地脚螺钉直径 M24地脚螺钉数目 查手册 6轴承旁联接螺栓直径 M12机盖与机座联接螺栓直径 =() M10轴承端盖螺钉直径 =() 10视孔盖螺钉直径 =() 8定位销直径 =() 8 , , 至外机壁距离 查机械课程设计指导书表4 342218 , 至凸缘边缘距离 查机械课程设计指导书表4 2816外机壁至轴承座端面距离 = + +(8~12)50大齿轮顶圆与内机壁距离 > 15齿轮端面与内机壁距离 > 10机盖,机座肋厚 9 轴承端盖外径 +(5~) 120(1轴)125(2轴)150(3轴)轴承旁联结螺栓距离 120(1轴)125(2轴)150(3轴)10. 润滑密封设计对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.油的深度为H+ H=30 =34所以H+ =30+34=64其中油的粘度大,化学合成油,润滑效果好。密封性来讲为了保证机盖与机座联接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗度应为 密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太大,国150mm。并匀均布置,保证部分面处的密封性。11.联轴器设计1.类型选择.为了隔离振动和冲击,选用弹性套柱销联轴器2.载荷计算.公称转矩:T=9550 9550 查课本 ,选取 所以转矩 因为计算转矩小于联轴器公称转矩,所以查《机械设计手册》 选取LT7型弹性套柱销联轴器其公称转矩为500Nm
25 全自动洗衣机控制系统的设计26 生产线上运输升降机的自动化设计27 实验用减速器的设计28 手机充电器的模具设计29 鼠标盖的模具设计30 双齿减速器设计
机械设计课程设计计算说明书 一、传动方案拟定…………….……………………………….2 二、电动机的选择……………………………………….…….
主观:你要收索这方面的材料,用来应答。 客观:从现在社会的状况,辩答从中存在的问题和需要什么政策来约束或支持。 毕业论文答辩注意以下几个问题,对提高成绩是有益的
我也是刚刚做完,呵呵一. 课程设计书设计课题:设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为0.96(
仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳