首页 > 期刊发表知识库 > 论文中p值是什么意思

论文中p值是什么意思

发布时间:

论文中p值是什么意思

你应该说的是假设检验的p值法吧p值用来确定是否拒绝原假设H0,p<05 拒绝H0,否则接受。05是显著性水平

P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。  P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

文献中的p值是什么意思

P<05时,对比组之间的差异具有显著性意义;P<01时,对比组之间的差异具有非常显著性意义这是中华医学会的规范化。

P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。  P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

P值代表的是两组数据之间存在差异的显著性水平大小。P≤05表示差异显著,P≤01表示差异极显著。P就是Possibility(可能性、概率)的简写。建议你看一下《生物统计学》类的书籍。如果只是在看文献的时候遇到,可以不必纠结这个P值大小。

5

医学论文中p值是什么意思

p就是显著性=sigF的值是回归方程的显著性检验,表示的是模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。若F>Fa(k-1,n-k),则拒绝原假设,即认为列入模型的各个解释变量联合起来对被解释变量有显著影响,反之,则无显著影响。

P<05时,对比组之间的差异具有显著性意义;P<01时,对比组之间的差异具有非常显著性意义这是中华医学会的规范化。

概率

你应该说的是假设检验的p值法吧p值用来确定是否拒绝原假设H0,p<05 拒绝H0,否则接受。05是显著性水平

论文中的T值跟P值什么意思

T值就是这些统计检定值,与它们相对应的概率分布,就是t分布。统计显著性(sig)就是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=05提示样本中变量关联有5%的可能是由于偶然性造成的。一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。拓展资料R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)Fisher的具体做法是:假定某一参数的取值。选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。如果P<01,说明是较强的判定结果,拒绝假定的参数取值。如果0105,说明结果更倾向于接受假定的参数取值。可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。参考资料来源:百度百科-t检验百度百科-P值

1:T 这是数理统计中的一种统计量 T统计量2:而统计量指不含未知参数的样本函数。如样本x�1,x�2,…,x�n的算术平均数(样本均值)=1n(x�1+x�2+…+x�n)就是一个统计量。从样本构造统计量,实际上是对样本所含总体的信息提炼加工;根据不同的推断要求,可以构造不同的统计量。3:为什么要构造统计量,这个主要是为了参数估计与检验,具体就相当复杂了。。。4:最后P叫做P值是T、F等一些统计量在置信区间为α下的一种指标吧,5:总之呢,这个涉及到了描述统计学,数理统计学以及计量的很多知识6:希望你看看相关书籍 自己掌握吧

统计中t值和p值的区别为:1、t值,指的是T检验,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。2、P值,就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果P值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表。3、P值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成P值,或者将显著性水平换算成t值。在相同自由度下,查t表所得t统计量值越大,其尾端概率P越小,两者是此消彼长的关系,但不是直线型负相关。

1、t值T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布 。2、P值P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。扩展资料实用举例1、t检验可用于比较男女身高是否存在差别为了进行独立样本t检验,需要一个自(分组)变量(如性别:男、女)与一个因变量(如身高测量值)。根据自变量的特定值,比较各组中因变量的均值。用t检验比较下列男、女儿童身高的均值 。假设H0:男平均身高 = 女平均身高H1:男平均身高 ≠ 女平均身高选用双侧检验:选用α=05的统计显著水平2、P值从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。如果P<01,说明是较强的判定结果,拒绝假定的参数取值。如果0105,说明结果更倾向于接受假定的参数取值。参考资料来源:百度百科-t值参考资料来源:百度百科-p值

论文里的p值是什么意思

p值也叫检验p值是否定原假设的强度,p值的原理是这样的,总体假定为原假设,抽一样本,在原假设条件下,这一样本出现的概率值,按照小概率事件在一次实验中不可能发生的原则,P值就是小概率事件(拒绝原假设的小概率事件)的概率值,值越小,说明原假设越不可能,也可叫拒绝原假设的显著性水平

P<05时,对比组之间的差异具有显著性意义;P<01时,对比组之间的差异具有非常显著性意义这是中华医学会的规范化。

用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。如果p值很小,说明在原假设下极端观测结果的发生概率很小。而如果出现了,根据小概率原理,就有理由拒绝原假设;p值越小,拒绝原假设的理由越充分。p值是基于数据的检验统计量算出来的概率值。如果p值是5%,也就是说,如果以此为界拒绝原假设的话,那么只有5%的可能性犯错。原假设是对的,但却拒绝了,这是错误的。所以说p值越大,拒绝原假设的理由越不充分。如果p值接近于0,拒绝原假设,那么几乎不可能犯错,于是说明数据是极其不符合原假设。换言之,是假设检验中零假设成立或表现更严重的可能性。p值若与选定显著性水平(05或01)相比更小,则零假设会被否定而不可接受。然而这并不直接表明原假设正确。通常在连续分布的假设下,p值是一个服从[0,1]区间均匀分布的随机变量,在实际使用中因样本等各种因素存在不确定性。近100年来,统计学家使用p值来描述数据的统计显著性,这种方法造成了许多人在工作中把统计显著性的阈值(事先给定值)强行假定为大于等于实际显著性(实际数据计算出的p值),于是强行拒绝原假设,做出了很多不科学的决策。p值产生的结果可能会带来争议。2018年,由72位科学家组成的小组在《自然·人类行为》上发表了一篇名为《重新定义统计意义》的评论文章,赞同将统计显著性的阈值从05调整到005。这样就使得科研人员不能强行让如此小的统计显著性阈值大于实际数据计算出来的p值。在科学研究的许多领域,p值小于05被认为是确定实验数据可靠性的金标准。这个标准支持了大多数已发表的科学结论,违反这一标准的论文很难发表,而且也很难得到学术机构的资助。然而,即使是费雪也明白,统计显著性的概念以及支撑它的p值具有相当大的局限性。几十年来,科学家也逐渐意识到了这些局限性。历史p值的计算可以追溯到18世纪,当时计算的是人类出生性别比,并与男女出生概率相同的零假设相比的统计学差异。约翰·阿布斯诺特于1710年研究了这一问题,并检查了伦敦从1629年到1710年的82年中每一年的出生记录。阿布斯诺特观察到每一年在伦敦出生的男婴数都超过了女婴数。考虑到零假设是男性或女性出生概率相同,这一观察结果出现的概率是1/282,或约为4,836,000,000,000,000,000分之1;这个计算得到的值,用现代术语说,就是P值。这个数字小得惊人,使阿布斯诺特认为这一结果的出现不是由于几率,而是由于神的旨意。“由此可见,支配一切的是艺术,而不是几率”。用现代术语来说,他在p=1/282的显著性水平上拒绝了男女出生可能性相同的零假设。1925年,英国遗传学家兼统计学家罗纳德·爱尔默·费希尔出版了《研究者的统计方法》(Statistical Methods for Research Workers)一书。这本书的书名在当时看起来并不会“畅销”,但实际上这本书却取得了巨大的成功,而且还使费雪成为现代统计学之父。在这本书中,他着眼于研究人员如何将统计检验理论应用于实际数据,以便基于数据得出他们所发现的结论。当使用某个统计假设来做检验时,该检验能够概述数据与其假设的模型之间的兼容性,并生成一个p值。 费雪建议,作为一个方便的指南,研究人员可以考虑将p值设为05。对于这一点,他专门论述道:“在判断某个偏差是否应该被认为是显著的时候,将这一阈值作为判断标准是很方便的。”

显著性水平与P 值的区别:1、表示含义不同:(1)显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。(2)P值即概率,反映某一事件发生的可能性大小。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。2、取值含义不同:(1)显著性水平是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=05或α=01。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。(2)统计学根据显著性检验方法所得到的P 值,一般以P < 05 为有统计学差异, P<01 为有显著统计学差异,P<001为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于05 、01、001。扩展资料P值的由来:从某总体中抽样(1)这一样本是由该总体抽出,其差别是由抽样误差所致;(2)这一样本不是从该总体抽出,所以有所不同。判断是哪种原因的做法:统计学中用显著性检验来判断。其步骤是:(1)建立检验假设(又称无效假设,符号为H0):如要比较A药和B药的疗效是否相等,则假设两组样本来自同一总体,即A药的总体疗效和B药相等,差别仅由抽样误差引起的碰巧出现的。(2)选择适当的统计方法计算H0成立的可能性即概率有多大,概率用P值表示。(3)根据选定的显著性水平(05或01),决定接受还是拒绝H0。如果P>05,不能否定“差别由抽样误差引起”,则接受H0;如果P<05或P <01,可以认为差别不由抽样误差引起,可以拒绝H0,则可以不拒绝另一种可能性的假设(又称备选假设,符号为H1),即两样本来自不同的总体,所以两药疗效有差别。参考资料来源百度百科-显著性水平百度百科-假设检验中的P值

  • 索引序列
  • 论文中p值是什么意思
  • 文献中的p值是什么意思
  • 医学论文中p值是什么意思
  • 论文中的T值跟P值什么意思
  • 论文里的p值是什么意思
  • 返回顶部