网上搜搜吧,建议你上火星学习网学习平台上找找看
创设情境,培养学生创造个性;构建数学生活的美好乐园;精彩不容“错”过;上“活”概念课,灵动新课堂;“小情境”成就“大课堂”;让数学“压力”变成“魅力”;让数学中的“错”更精彩;如何让学生在快乐中学数学;兴趣,开启智慧的大门;追求和谐之美 塑造数学魅力;数学课让学生“动”起来。
论小学数学生活化
为什么米、分米、厘米的进制是100?
小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述, 包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提 出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、 正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云: “立片言以居要,乃全篇之 警策。 ”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概 括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内 容。2 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者 迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使 用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方 法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不 可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅 以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性 和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结 论作为理论分析和实验的逻辑发展, 是论述的概括集中和升华, 由局部到一般, 由具体事实、 经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出 本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据, 其中包括撰写该论文所参考的 书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物 名称、卷或期、页数、年份) 。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章, 无论是理论探讨方面, 还是教材教法方面和解题方法技巧方面, 以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主 题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做 到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其 次, 深入钻研这些文献资料, 看看能否得到进一步启发, 有无新的见解。 尽管选题可能重复, 类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使 观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发, 题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布 局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题 之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、 逻辑性。 其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点 明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提 示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程, 它包括对论文文字的修饰, 以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明 确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论 文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的 工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文 字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清 楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿 反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提 高。曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了 一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以, “学数学”与“学好数学”的 区别就在与你是拥有了一条鱼, 还是拥有了一张网。 数学, 是一门非常讲究思考的课程, 逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都 互相依存,但也各有千秋。例如圆。计算圆的面积的公式是 S=∏r2,因为半径不同,所以 我们经常会犯一些错。例如, “一个半径为 9 厘米和一个半径为 6 厘米的比萨饼等于一个半 径为 15 厘米的比萨饼” ,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆 的面积公式,让人产生了一个错误的天平。 其实,半径为 9 厘米和一个半径为 6 厘米的 比萨饼并不等于一个半径为 15 厘米的比萨饼,因为半径为 9 厘米和一个半径为 6 厘米的比 萨饼的面积是 S=∏r2=92∏+62∏=117∏,而半径为 15 厘米的比萨饼的面积是 S=∏r2=152 ∏=225∏,所以,半径为 9 厘米和一个半径为 6 厘米的比萨饼是不等于一个半径为 15 厘米 的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们 爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继 续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰 脚的人是望不到峰顶的。大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的 练习册中,有一题思考题是这样说的: “一辆客车从东城开向西城,每小时行 45 千米,行了 5 小时后停下, 这时刚好离东西两城的中点 18 千米, 东西两城相距多少千米?王星与小英 在解上面这道题时, 计算的方法与结果都不一样。 王星算出的千米数比小英算出的千米数少, 但是许老师却说两人的结果都对。 这是为什么呢?你想出来了没有?你也列式算一下他们两 人的计算结果。 ”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千 米) ,5+18=5(千米) ,5×2=261(千米) ,但仔细推敲看一下,就觉得不对劲。 其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点 18 千米” 这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点 18 千米的话, 列式就是前面的那一种, 如果是超过中点 18 千米的话, 列式应该就是 45×5 = 5(千米) ,5-18=5(千米) ,5×2=189(千米) 。所以正确答案应该是: 45×5=5 (千米) 5+18=5 , (千米) 5×2=261 , (千米) 45×5=5 和 (千米) ,5-18=5(千米) 5×2=189(千米) , 。两个答案,也就是说王星的答案 加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需 要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的 答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是 0 了, 那么 0 是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于 0,0 就表示没 有数量。 ”这样说显然是不正确的。我们都知道,温度计上的 0 摄氏度表示水的冰点(即一 个标准大气压下的冰水混合物的温度) ,其中的 0 便是水的固态和液态的区分点。而且在汉 字里,0 作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量…… 至此,我们知道了“没有数量是 0,但 0 不仅仅表示没有数量,还表示固态和液态水的区分 点等等。 ” “任何数除以 0 即为没有意义。 ”这是小学至中学老师仍在说的一句关于 0 的“定论” ,当 时的除法 (小学时) 就是将一份分成若干份, 求每份有多少。 一个整体无法分成 0 份, “没 即 有意义” 。后来我才了解到 a/0 中的 0 可以表示以零为极限的变量(一个变量在变化过程中 其绝对值永远小于任意小的已定正数) ,应等于无穷大(一个变量在变化过程中其绝对值永 远大于任意大的已定正数) 。从中得到关于 0 的又一个定理“以零为极限的变量,叫做无穷 小” 。在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙 面没有一点空隙。 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通 过实验和研究,我们知道,三角形的内角和是 180 度,外角和是 360 度。用 6 个正三角形就 可以铺满地面。 再来看正四边形,它可以分成 2 个三角形,内角和是 360 度,一个内角的度数是 90 度,外 角和是 360 度。用 4 个正四边形就可以铺满地面。 正五边形呢?它可以分成 3 个三角形,内角和是 540 度,一个内角的度数是 108 度,外角和 是 360 度。它不能铺满地面。 六边形,它可以分成 4 个三角形,内角和是 720 度,一个内角的度数是 120 度,外角和是 360 度。用 3 个正四边形就可以铺满地面。 七边形,它可以分成 5 个三角形,内角和是 900 度,一个内角的度数是 900/7 度,外角和是 360 度。它不能铺满地面。 由此,我们得出了。n 边形,可以分成(n-2)个三角形,内角和是(n-2)*180 度,一个内 角的度数是(n-2)*180÷2 度,外角和是 360 度。若(n-2)*180÷2 能整除 360,那么就能 用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面, 我们还可以用两种、 三种等更多的图形组合起来铺 满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、 正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不 规则的基本图形拼成的。“十一”期间,许多商场都在打折,趁着这个好时机,我和爸爸妈妈一起去了“万霖”商 场。 在二楼,我们看中了一套西服,它的标价是五百二十元,售货员说: “现在正赶上‘十一’ , 您可以选择打八折或者满二百返一百六十,两种都差不多。 ” 真的差不多吗?我脑子产生了这样一个疑问。如果选择打八折,那么就要花 520×8=416(元) 。而要是满两百返一百六十呢。我们要先付 520 元,之后会拿到 160×2=320(元) 的返券,那我们实际就花了 520-320=200(元) 。416 和 200 比起来,当然第二种比较好。 可是拿到返券之后呢?再买 320 元的东西又可以返 160 元, 而这 160 元的返券离 200 元只差 200-160=40(元) ,你要是填上这 40 元买东西,就又可以返 160 元。你难道不心动吗?可如 果真这样做,你就掉入一个无底洞,花 200 返 160,花 200 返 160……你永远也花不完剩下 的钱。 商家为了赚钱可真是“费尽心机”啊国庆假期中,我和妈妈一起去超市购物,准备找找千克和克走进超市,首先来到了饼干柜旁,这 么多琳琅满目的饼干中,我选择了我最喜欢闲趣饼干,我仔细看了看,终于在角落里找到了"净 含量 100 克",说明这包饼干不含袋子的重量是 100 克,那要是有 10 包这样的饼干不就是 1 千 克了 接着我们又来到买米的地方,我发现一袋米要 10 千克,如果我们家每天吃 2 千克的话,我家每 个月就要吃 60 千克,也就是这样的 6 袋米了 后来我又看到了 16 个鸡蛋大约有 1 千克,一个菠萝大约 2 千克,
(1)思维导图在小学数学中的运用探究(2)小学数学教学有效性的提升策略分析(3)小组合作学习在小学数学中的应用研究(4)小学数学教学中渗透数学思想的探索如需资料,可M我
《生活中的数学》可以讲一下如何用数学知识解决问题
为什么米、分米、厘米的进制是100?
网上搜搜吧,建议你上火星学习网学习平台上找找看
如何使数学课有数学味
为什么米、分米、厘米的进制是100?
网上搜搜吧,建议你上火星学习网学习平台上找找看
论小学数学生活化
网上搜搜吧,建议你上火星学习网学习平台上找找看
买西瓜的数学那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,6斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤5元,单价是:5÷1=5元,而一斤半十五块五,也就是5斤5元,它的单价是:5÷5,我没细算,想想可能应该比5多,但是却犯了个致命的错误。算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。回到家,我把这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。“因为这儿是5÷1=5,而别人那儿是5÷5,反正他这儿便宜”我理直气壮。妈妈说:“你呀,太马虎了,5÷5=333……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!”
认识了小学五年级勾股定理知识和勾股定理知识的常见运用,想必很多同学会去深入学习。本站用户整理了五年级数学小论文:勾股定理,欢迎阅读。五年级数学小论文:勾股定理1、证明一个三角形是直角三角形2、用于直角三角形中的相关计算3、有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作—— 周髀算经 的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的 九章算术一书 中,勾股定理得到了更加规范的一般性表达。书中的 勾股章 说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)即:c=(a2+b2)(1/2)定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是33+4。
小学数学深度学习论文标题可以定《如何向四十分钟要质量——课堂管理的学问》、《如何提高孩子学习数学的兴趣——针对中差生的教学策略》论文选题要注意以下因素要进行文献梳理,这一部分至关重要,原创性是对论文的基本要求,如果忽略了这点,很有可能自己的研究题目已经被别人研究过,破坏了论文的原创性,尽量找到所有权威来源的相关文献,一方面可避免上述的问题,找到最适合自己的选题。然后要确定选题,不要太模糊,范围太大,就经验而言,选题越小,越容易做,更加适合学生的把握,曾经的指导老师告诫我们,论文的写作目的不是要做出多么伟大的学术贡献,而在训练学生的学术修养和学术研究能力。