参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。然而,按照GB/T 7714-2015《信息与文献 参考文献著录规则》”的定义,文后参考文献是指:“为撰写或编辑论文和著作而引用的有关文献信息资源。根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分,将注释规定为“对正文中某一内容作进一步解释或补充说明的文字”,列于文末并与参考文献分列或置于当页脚地。扩展资料:参考示例:A 专著、论文集、学位论文、报告[序号]主要责任者文献题名[文献类型标识]出版地:出版者,出版年起止页码(任选)[1]刘国钧,陈绍业,王凤翥 图书馆目录[M] 北京:高等教育出版社,15-[2]辛希孟 信息技术和信息服务国际研讨会论文集:A集[C] 北京:中国社会科学出版社,[3]张筑生 微分半动力系统的不变集[D] 北京:北京大学数学系数学研究所,[4]冯西桥 核反应堆压力管道和压力容器的LBB分析[R] 北京:清华大学核能技术设计研究院,[5] Gill,R Mastering English Literature[M] London: Macmillan,B 期刊文章[序号]主要责任者文献题名[J]刊名,年,卷(期):起止页码[7]金显贺,王昌长,王忠东,等 一种用于在线检测局部放电的数字滤波技术[J]清华大学学报(自然科学版),1993,33:62-[8] Heider,ER& DCO The structure of color space in naming and memory of two languages [J] Foreign Language Teaching and Research,1999: 62-参考资料来源:百度百科-参考文献
连续出版物的格式 标引项顺序号 作者题名[J]刊名,出版年份,卷号(期号):起止页码 (外名可缩写,缩写后首字母大写,并省略缩写点) 专著的著录格式 标引项顺序号 作者书名[M]版本(第一版不标注)出版地:出版者,出版年:起止页码 论文集的著录格式 标引项顺序号 作者题名[C]见(英文用In):主编论文集名出版地:出版者,出版年:起止页码 学位论文的著录格式 标引项顺序号 作者题名[D]保存地点:保存单位,年份 专利的著录格式 标引项顺序号 专利申请者题名[P]国别 专利文专利号,发布日期 技术标准的著录格式 标引项顺序号 起草责任者标准代号 标准顺序号—发布年 标准名称[S]出版地:出版者,出版年 报告 标引项顺序号 报告人题名[R]会议名称,会址,年份
参考文献“是指在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。然而,按照GB/T 7714-2015《信息与文献 参考文献著录规则》”的定义,文后参考文献是指:“为撰写或编辑论文和著作而引用的有关文献信息资源。根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分,将注释规定为“对正文中某一内容作进一步解释或补充说明的文字”,列于文末并与参考文献分列或置于当页脚地。扩展资料:书写格式:(1)顺序编码制的具体编排方式。参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。一种文献被反复引用者,在正文中用同一序号标示。一般来说,引用一次的文献的页码在文后参考文献中列出。格式为著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围)”。多次引用的文献,每处的页码或页码范围分别列于每处参考文献的序号标注处,置于方括号后并作上标。作为正文出现的参考文献序号后需加页码或页码范围的,该页码或页码范围也要作上标。作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。另外,参考文献页码或页码范围也要准确无误。(2)参考文献类型及文献类型,根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:专著M ; 报纸N ;期刊J ;专利文献P;汇编G ;古籍O;技术标准S ;学位论文D ;科技报告R;参考工具K ;检索工具W;档案B ;录音带A ;图表Q;唱片L;产品样本X;录相带V;会议录C;中译文T;乐谱I; 电影片Y;手稿H;微缩胶卷U ;幻灯片Z;微缩平片F;其他E。参考资料来源:百度百科-参考文献
参考文献是指为撰写论文而引用已经发表的有关文献,是论文不可缺少的重要组成部分 参考文献反映研究工作的背景和依据,向读者提供有关信息的出处,论著具有真实、广泛的科学依据,表明作者尊重他人研究成果的严肃态度,还免除了抄袭或剽窃的嫌疑国内外检索系统通常不仅收录论文的题名、关键词、摘要,还收录其参考文献,其中参考文献的质量和数量是评价论文的质量和水平、起点和深度以及科学依据的重要指标,也是期刊质量量化评价指标如影响因子、引用频次等统计分析的重要信息源 因此参考文献的数量和著录的规范与否直接影响着论文的质量和出版物的整体水平 正确列出相关的参考文献,不必大段抄录原文,只摘引其中最重要的观点与数据,可以大大节约论文的篇幅 本刊要求来稿作者,凡是引用参考文献的成果 (包括观点、方法、数据、图表和其他资料) 均需要对参考文献在文中引用的地方予以标注,并在文后参考文献表中列出 作者应按照国家标准GB/T 7714-2015书写参考文献著录项1、参考文献的分类按参考文献的提供目的划分,可分为引文文献、阅读型文献和推荐型文献3大类①引文文献是著者在撰写或编辑论著的过程中,为正文中的直接引语 (如数据、公式、理论、观点、图表等) 或间接引语而提供的有关文献信息资源②阅读型文献是著者在撰写或编辑论著的过程中,曾经阅读过的文献信息资源③推荐型文献通常是专家或教师为特定读者、特定目的而提供的、可供读者查阅的文献信息资源2、文献类型和标识代码参考文献目前共有16个文献类型和标识代码:普通图书M, 会议录C, 汇编G, 报纸N, 期刊J, 学位论文D, 报告R, 标准S, 专利P, 数据库DB, 计算机程序CP, 电子公告EB, 档案A, 舆图CM, 数据集DS, 其他Z凡无法归属于前15个类型的文献,均可以用Z来标志3、参考文献格式要求:参考文献按正文部分标注的序号依次列出,并在序号中加[]对于常见的各类参考文献标注方法如下:1) 著作:作者姓名,题名[M]出版地:出版者,出版年2) 期刊论文:作者姓名 题名[J]期刊名称,年,卷 (期) :页码3) 会议论文集:作者姓名 题名[C]//论文集名称,会议地点,会议日期4) 学位论文:作者姓名 题名[D]出版地:出版者,出版年5) 专利文献:专利申请者或所有者姓名 专利题名:专利国别,专利号[P]公告日期或公开日期 获取路径6) 电子文献:作者姓名 题名[文献类型标志 (含文献载体标志) 见其它]出版地:出版者,出版年 (更新或修改日期) , 获取路径7) 报告:作者姓名 题名[R]出版地:出版者,出版年8) 标准:标准号 题名[S]出版地:出版者,出版年同一著作中作者姓名不超过3名时,全部照录,超过3名时,只著录前3名作者,其后加“, 等”其他:数据库 (DB) , 计算机程序 (GP) , 光盘 (CD) , 联机网络 (OL) 4、参考文献著录格式参考文献按在正文中出现的先后次序列表于文后;表上以“参考文献:” (左顶格) 或“[参考文献]” (居中) 作为标识;参考文献的序号左顶格,并用数字加方括号表示,如[1], [2], …,以与正文中的指示序号格式一致 参照ISO690及ISO 6 9 0-2, 每一参考文献条目的最后均以结束 各类参考文献条目的编排格式及示例如下:专著、论文集、学位论文、报告 [序号]主要责任者 文献题名[文献类型标识]出版地:出版者,出版年 [1]刘国钧,陈绍业,王凤者 图书馆目录[M]北京:高等教育出版社, [2]辛希孟 信息技术与信息服务国际研讨会论文集:A集[C]北京:中国社会科学出版社, [3]张筑生 微分半动力系统的不变集[D]北京:北京大学数学系数学研究所, [4]冯西桥 核反应堆压力管道与压力容器的LBB分析[R]北京:清华大学核能技术设计研究院, [5]尼葛洛庞帝 数字化生存[M]胡泳,范海燕,译 海口:海南出版社,19%期刊文章 [序号]主要责任者 文献题名[J]刊名,年,卷 (期) :起止页码 [5]何龄修 读顾城《南明史》[J]中国史研究,1998, (3) :167- [6]金显贺,王昌长,王忠东,等·一种用于在线检测局部放电的数字滤波技术[J]清华大学学报 (自然科学版) , 1993, 33 (4) :62-论文集中的析出文献 [序号]析出文献主要责任者 析出文献题名[A]原文献主要责任者 (任选}原文献题名[C]出版地:出版者,出版年 析出文献起止页码 [7]钟文发·非线性规划在可燃毒物配置中的应用[A]赵玮 运筹学的理论与应用-中国运筹学会第五届大会论文集[C]西安:西安电子科技大学出版社,468-报纸文章 [序号]主要责任者 文献题名[N]报纸名,出版日期 (版次) [8]谢希德 创造学习的新思路[N]人民日报,1998-12-25 (10) 国际、国家标准 [序号]标准编号,标准名称[S] [9]GB/T 16159-1996, 汉语拼音正词法基本规则[S]专利 [序号]专利所有者,专利题名[P]专利国别:专利号,出版日期 [10]姜锡洲 一种温热外敷药制备方案[P]中国专利:881056073, 1989-07-电子文献 [序号]主要责任者 电子文献题名[电子文献及载体类型标识]电子文献的出处或可获得地址,发表或更新日期/引用曰期 (任选) [11]学术堂 论文参考文献标准格式要求[EB/OL]-03- [12]万锦堃 中国大学学报论文文摘 (1983-1993) 英文版[D B/C D]北京:中国大百科全书出版社,19%各种未定义类型的文献 [序号]主要责任者 文献题名[Z]出版地:出版者,出版年
这个我也不知道,你问一下你的老师或者你是你的同学找百度搜一下。
高数学习应该按照这些套路来。课前有的同学喜欢预习,这点在初高中数学,非常有效,可是在面对高数的时候蒙圈了,因为根本看不懂,不过没关系,高数不用课前预习,因为你也看不懂,但是,上课一定要 认真的听讲,记得是认真的听讲,特别是认真听讲老师的推倒过程,这点是非常重要的,高数不仅仅要知道结果,重要的是过程。至于在课后,当然还是和普通的数学学习方法一样,及时的复习,复习当天的内容,特别是要做一定量的题目,理解消化和吸收。当然作业也是一项非常重要的事情,做作业一定要认真,虽然大学抄作业不丢人,因为还有不写作业的,但是,你如果是抄作业那还不如不写,建议认真完成高数的作业,因为实在太重要了。数学中的无穷以潜无穷和实无穷两种形式出现。在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。以上内容参考 百度百科-高等数学
啊反对
一定要有题目,作者名字,通讯地址,邮编,摘要关键词,正文,参考文献,最好还要有英文的Keyword与 Abstract ,范文随便上网找,结尾要有参考文献。关于条件极值的探讨(图片打不上,呵呵)俊聪 (应用数学学院,应用数学专业,08级)摘要 本文主要类比了无条件极值的判别法,讨论了条件极值是否拥有与无条件极值类似的判别法。通过利用黑赛矩阵与二阶微分,得出了怎样求条件极值和极值点的有效方法,并且得出了无条件极值所满足的判别法不是都适应条件极值的。关键词 条件极植一熟悉的条件极值判别法在研究数学问题时,有时会遇到与极值有关的问题,而我们常见的有无条件极值与条件极值。对于无条件极值,我们都有非常熟悉的判别法:若二元函数f在点的某个邻域U()内具有二阶连续偏导数,且是f的稳定点,则有:(1) 当>0,>0时,黑赛矩阵是正定的,f在点取得极小值;(2) 当<0, >0时,黑赛矩阵是负定的,f在点取得极大值;(3) 当<0时,黑赛矩阵是不定的,f在点不能取得极值;(4) 当=0时,黑赛矩阵是半定的,不能肯定f在点是否取得极值。因此,我们可以类比无条件极值,探讨条件极值,看它是否也满足上面的四条判别法。二 有关条件极值的一个定理为了研究上面的问题,我们首先给出一个常用定理:首先,这个定理需要条件:在的限制下,要求目标函数的极值。则有定理:设在满足上面的限制下,求函数的极值问题,其中与在区域D内有连续的一阶的偏导数。若D的内点是上述问题的极值点,且雅可比矩阵的秩为m,则存在m个常数,使得为拉格朗日函数的稳定点,即为下述n+m个方程的解。三 分析讨论以上问题通过引入上面的定理,我们可以得到它的稳定点,而我们接下来考虑的是条件极值能否在稳定点处取得极值,且如果取得极值,它取得的是极大值还是极小值。我们在这里还需用到黑赛矩阵。设是F的稳定点。令,并且使固定,考虑在点的黑赛矩阵此时,分类讨论:1当是正定的或负定的。这是是的极值点。而我们限制了。因此也是的相应的条件极值点。2当是不定的或半正定的或半负定的。这是可能不是的极值点,但也有可能是的极值点。我们可以通过,。求出,,…,,,…,之间的关系,得到,…,的二次型如果此时其系数矩阵是正定的,则是的极小值点;如果是负定的,则是的极大值点。通过以上分析,我们就可以得出一个重要的结论:条件极值类比与无条件极值第一,二条是成立的,对于第四条是不适应的,对于第三条虽然开始也无法判断,但可以找到其他途径,求出是否有极值。四 实例分析我们首先举出一个例子:已知f(x,y,z)=x+y+z,求它在限制条件xyz=下的极值点。解:根据题意,我们首先设F(x,y,z,)=f(x,y,z)+ (xyz-)接着,我们算dF(x,y,z,)=0,从而解得x=y=z=c, =如果c=0,则可得f(x,y,z)在xyz=下无极值点当c0时,则在=,=(c,c,c)处,有=此时此矩阵不是正定的,也不是负定的。再对xyz-=0求微分,在=(c,c,c)处,解得dz=-dx-dy,代入得=(dxdy+dydz+dzdx)=(——dxdy—)=当c>0时,正定,(c,c,c)为极小值点,当c<0, 负定,(c,c,c)为极大值点。因此,通过这个例子,我们在不能判断黑赛矩阵是正定还是负定的情况下,可以通过适当的转化使极值点求出来。其实,我们也可以通过其他类似的方法来求有关条件极值的有关问题。例如,我们可以用二阶微分的方法来求条件极值。对于二阶微分,有公式:我们通过举个例子来加以说明。已知f=xyz,求它在限制条件下的极值。解:令F(x,y,z,)= xyz+ ()求dF=0,则=yz+2x=0 =xz+2y=0 =xy+2z=0 =0则可以解得八个稳定点当=—时,有稳定点(1,1,1),(1,—1,—1), (—1,—1,1), (—1,1,—1)当 =时,有稳定点 (1,1,—1),(—1,——1),(—1,1,1), (1,—1,1)则dF=(yz+2x)dx+(xz+2y)dy+(xy+2z)dz=我们首先来判断点 (1,1,1)是否为极值点,求出稳定点 的微分dz=—dx—dy,且(,)=—+=——+2(dx+dy)dz,把dz=—dx—dy带进去,得(,)=———2<0,则可得(1,1,1)是极大值点,同理可得(1,—1,—1), (—1,—1,1), (—1,1,—1)是极大值点,而(1,1,—1),(—1,——1),(—1,1,1), (1,—1,1)都是极小值点,进而我们可求出此时极大值点所对应的极值都为1,极小值点所对应的极值都为—1,从而得解。[参考文献][1] 华东师范大学数学系 数学分析下册 第三版[M]高等教育出版社 2001[2]孙振绮 丁效华 工科数学分析例题与习题下册[M]机械工业出版社 2008
高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。1 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。
你把数学界五大猜想的介绍与评论稍微说一说就行了。
像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。
一定要有题目,作者名字,通讯地址,邮编,摘要关键词,正文,参考文献,最好还要有英文的Keyword与 Abstract ,范文随便上网找,结尾要有参考文献。关于条件极值的探讨(图片打不上,呵呵)俊聪 (应用数学学院,应用数学专业,08级)摘要 本文主要类比了无条件极值的判别法,讨论了条件极值是否拥有与无条件极值类似的判别法。通过利用黑赛矩阵与二阶微分,得出了怎样求条件极值和极值点的有效方法,并且得出了无条件极值所满足的判别法不是都适应条件极值的。关键词 条件极植一熟悉的条件极值判别法在研究数学问题时,有时会遇到与极值有关的问题,而我们常见的有无条件极值与条件极值。对于无条件极值,我们都有非常熟悉的判别法:若二元函数f在点的某个邻域U()内具有二阶连续偏导数,且是f的稳定点,则有:(1) 当>0,>0时,黑赛矩阵是正定的,f在点取得极小值;(2) 当<0, >0时,黑赛矩阵是负定的,f在点取得极大值;(3) 当<0时,黑赛矩阵是不定的,f在点不能取得极值;(4) 当=0时,黑赛矩阵是半定的,不能肯定f在点是否取得极值。因此,我们可以类比无条件极值,探讨条件极值,看它是否也满足上面的四条判别法。二 有关条件极值的一个定理为了研究上面的问题,我们首先给出一个常用定理:首先,这个定理需要条件:在的限制下,要求目标函数的极值。则有定理:设在满足上面的限制下,求函数的极值问题,其中与在区域D内有连续的一阶的偏导数。若D的内点是上述问题的极值点,且雅可比矩阵的秩为m,则存在m个常数,使得为拉格朗日函数的稳定点,即为下述n+m个方程的解。三 分析讨论以上问题通过引入上面的定理,我们可以得到它的稳定点,而我们接下来考虑的是条件极值能否在稳定点处取得极值,且如果取得极值,它取得的是极大值还是极小值。我们在这里还需用到黑赛矩阵。设是F的稳定点。令,并且使固定,考虑在点的黑赛矩阵此时,分类讨论:1当是正定的或负定的。这是是的极值点。而我们限制了。因此也是的相应的条件极值点。2当是不定的或半正定的或半负定的。这是可能不是的极值点,但也有可能是的极值点。我们可以通过,。求出,,…,,,…,之间的关系,得到,…,的二次型如果此时其系数矩阵是正定的,则是的极小值点;如果是负定的,则是的极大值点。通过以上分析,我们就可以得出一个重要的结论:条件极值类比与无条件极值第一,二条是成立的,对于第四条是不适应的,对于第三条虽然开始也无法判断,但可以找到其他途径,求出是否有极值。四 实例分析我们首先举出一个例子:已知f(x,y,z)=x+y+z,求它在限制条件xyz=下的极值点。解:根据题意,我们首先设F(x,y,z,)=f(x,y,z)+ (xyz-)接着,我们算dF(x,y,z,)=0,从而解得x=y=z=c, =如果c=0,则可得f(x,y,z)在xyz=下无极值点当c0时,则在=,=(c,c,c)处,有=此时此矩阵不是正定的,也不是负定的。再对xyz-=0求微分,在=(c,c,c)处,解得dz=-dx-dy,代入得=(dxdy+dydz+dzdx)=(——dxdy—)=当c>0时,正定,(c,c,c)为极小值点,当c<0, 负定,(c,c,c)为极大值点。因此,通过这个例子,我们在不能判断黑赛矩阵是正定还是负定的情况下,可以通过适当的转化使极值点求出来。其实,我们也可以通过其他类似的方法来求有关条件极值的有关问题。例如,我们可以用二阶微分的方法来求条件极值。对于二阶微分,有公式:我们通过举个例子来加以说明。已知f=xyz,求它在限制条件下的极值。解:令F(x,y,z,)= xyz+ ()求dF=0,则=yz+2x=0 =xz+2y=0 =xy+2z=0 =0则可以解得八个稳定点当=—时,有稳定点(1,1,1),(1,—1,—1), (—1,—1,1), (—1,1,—1)当 =时,有稳定点 (1,1,—1),(—1,——1),(—1,1,1), (1,—1,1)则dF=(yz+2x)dx+(xz+2y)dy+(xy+2z)dz=我们首先来判断点 (1,1,1)是否为极值点,求出稳定点 的微分dz=—dx—dy,且(,)=—+=——+2(dx+dy)dz,把dz=—dx—dy带进去,得(,)=———2<0,则可得(1,1,1)是极大值点,同理可得(1,—1,—1), (—1,—1,1), (—1,1,—1)是极大值点,而(1,1,—1),(—1,——1),(—1,1,1), (1,—1,1)都是极小值点,进而我们可求出此时极大值点所对应的极值都为1,极小值点所对应的极值都为—1,从而得解。[参考文献][1] 华东师范大学数学系 数学分析下册 第三版[M]高等教育出版社 2001[2]孙振绮 丁效华 工科数学分析例题与习题下册[M]机械工业出版社 2008
锐哲教育服务中心帮您解答 我站提供的期刊杂志都是经国家新闻出版署批准,具有CN(国内统一)刊号,ISSN(国际标准)刊号的省级正刊及国家中文核心期刊的正规期刊。 本站受多家杂志期刊委托,目前主要代理教育、法律、经济,社会科学,计算机,财务,工程,机械,贸易,化工,冶金,医药,文化等论文发表。论文快速发表 论文代写 公司运做 决不欺诈 投稿信箱:中国学术期刊网:
【初中数学教学论文】:亲你可以到,(鲁韵论文网)~了解下,上面有相关的(初中数学教学论文)资料或者直接加~~~Q~~~~(我的名称)我能帮上你的忙。
,论文题目:(下附署名)要求准确,简练,醒目,新颖2,目录目录是论文中主要段落的简表(短篇论文不必列目录)3,摘要是文章主要内容的摘录,要求短,精,完整字数少可几十字,多不超过三百字为宜4,关键词或主题词关键词是从论文的题名,提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在"提要"的左下方主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语(参见《汉语主题词表》和《世界汉语主题词表》) 学位论文的标准格式二5,论文正文(1)引言:引言又称前言,序言和导言,用在论文的开头 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围引言要短小精悍,紧扣主题(2)论文正文:正文是论文的主体,正文应包括论点,论据, 论证过程和结论主体部分包括以下内容:提出问题-论点;分析问题-论据和论证;解决问题-论证方法与步骤; 结论6,参考文献一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行中文:标题--作者--出版物信息(版地,版者,版期)英文:作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证(2)所列举的参考文献要标明序号,著作或文章的标题,作者,出版物信息如何选题获取最佳论文选题的途径 1,选择你有浓厚兴趣,而且在某方面较有专长的课题 2,在不了解和了解不详的领域中寻找课题3,要善于独辟蹊径,选择富有新意的课题4,选择能够找得到足够参考资料的课题5,征询导师和专家的意见6,善于利用图书馆; 图书馆的自动化,网络化为读者选题提供了便利条件 论文的核心不同的问题,有不同的写法,一般一篇论文论述一个核心问题(综述除外)论文的核心是作者根据国内外发展和自己工作梳理出来的,可以从多个方面着手元部件和系统,理论分析和实验,系统特性和测试,方案设计和实现等;新思想,新概念,新理论,新途径,新方案,新进展,不同看法文章结构和长度结构题目,摘要和关键词引言正文结论和致谢(结束语)参考文献,附录等文章长度并无明确规定,一般科技期刊文章在4000-8000字(含图表),根据杂志和文章类别而定综述文章多由编辑部门邀请权威撰写,涉及历史的回顾和未来的展望,内容广泛,可以较长科技论文的篇名用简洁恰当的词组反映文章的特定内容,明确无误篇名简短,不超过20个字少用研究和空洞应用之类字避免用不熟悉的简称,缩写和公式等关键词4-6个反映文章特征内容,通用性比较强的词组第一个为本文主要工作或内容,或二级学科第二个为本文主要成果名称或若干成果类别名称第三个为本文采用的科学研究方法名称,综述或评论性文章应为"综述"或"评论"第四个为本文采用的研究对象的事或物质名称避免使用分析,特性等普通词组引言主要回答为什么研究(why)介绍论文背景,相关领域研究历史与现状,本文目的一般不要出现图表正文论文核心,主要回答怎么研究(how),一般正文应有下述几个部分组成本文观点,理论或原理分析实现方法或方案(根据内容而定)数值计算,仿真分析或实验结果(根据内容而定)讨论,主要根据理论分析,仿真或实验结果讨论不同参数产生的变化,理论分析与实验相符的程度以及可能出现的问题等结论文章的总结,要回答研究出什么(what)以正文为依据,简洁指出由研究结果所揭示的原理及其普遍性研究中有无例外或本论文尚难以解决的问题与以前已经发表的论文异同在理论与实际上的意义对近一步研究的建议致谢对给予本文研究的选题,构思,实验或撰写等方面给以指导,帮助或建议的人员致以谢意;由于论文作者不能太多,所以部分次要参加者可不列入作者,表示致谢;一般资助单位应在文章首页下脚加注,一般不再致谢参考文献文章中引用他人成果或文章内容应注明参考文献参考文献规格应按国标或出版社编辑部格式作者,文献题名,刊名,年,卷(期),起止页码附录附录不是文章的必要组成部分,但可为深入了解本文人员提供参考主要提供论文有关公式推导,演算以及不宜列入正文的数据和图表等注意事项-缩写词,外文字母摘要和正文中的缩写词第一次出现都必须写出全称外文字母必须分清大小写,正斜体和上,下角正体:计量单位(cm, kg)斜体:物理量,坐标,函数符号 R,L,C注意事项-量和单位使用国际标准和国家法定计量单位一篇文章不要用一个符号表示两个或多个物理量,如用C同时表示常数和电容首次出现(公式)的符号应在其后说明物理意义量的符号一般为单个字母,如阈值电压(Threshold Voltage) 不能用TV ,应当用 Vt 组合单位的斜线不能多于1个,W/m2/k应为W/( m2· k)或W·m-2·k -1 注意事项-图,表图表内容及含义,坐标名称量纲清楚图和表内容不应重复,一种数据用图或表一个表示应按顺序连续编号 F 1, F 2, Table 1…图框宜细,曲线应粗表格应用三线表基本入手途径(一)选题最关键一定要选择具有一定理论深度的题目,可拓展性强的领域要尽可能选择研究学科交叉点不要盲目追随研究热点,强调独立选择创新之路提出自然的,很简单的,具有直觉性的解决方法,做深下去考虑自己感兴趣的,具有实际意义的点做下去要广泛粗看,少量精看基本入手途径(二)提高论文写作能力背诵科技英文段落及常用句式由浅入深,勤于动笔向国外投稿,得到反馈科技论文的摘要简明扼要, 200字左右,无废话;用第三人称写,说明文章目的,方法,结果和结论,不应出现"本文","我们","作者"字眼,也不要有"首先" , "最后" , "简单" , "主要"和"次要"等修饰词;文摘可单独发表,应有独立性和自明性,不得使用文章中的章节号,图号和表号等;第一句不要重复文章篇名或已表述过的信息;不能写常识性内容,过去情况和未来的计划,只写最新进展三,关于英文文摘英文摘要(Abstract)SCI,ISTP和EI等索引主要是根据英文题名和文摘选录文摘长度一般为100-200 内容要求与中文大体相同,主要讲目的,过程,方法和结果内容要精练,不要将结论译成英文作摘要文章题目第一词切不可用冠词The,A,An和And(单位名称也不用The Institute …)四,怎样读文章怎样读文章(一)在读文章前,确信它是值得的先看题目,然后是摘要,如果没有完全失望,继续看介绍和结论(title->abstract->introduction->conclusions)在掌握所有细节之前,浏览整个文章,尽量找到那些关键点(the most implortant points)如果还觉得它是有关和值得的,就回去继续看(当然如果是老板要你看的重要文章,跳过前面的内容,直接读就行了) 高的效率从结论开始,浏览图示和表,看看他的引用 只在你觉得相关或者你觉得能给你不同的观点的时候才读其他部分 跳过你已经知道的部分(比如背景和动机) 怎样读文章(二)积极主动的思考作者怎么想出这个念头的 这件工作到底完成了什么 它和这个领域的其他工作有什么关系 其中重要的引用文献是哪些 在这个工作的基础上合理的下一步工作是什么 相关领域的什么想法和这个主题相关 有什么不同 这些想法怎样帮助解决自己的研究问题 怎样读文章(三)总结所读的每个主题关键问题key problems 所描述问题的不同表达形式 不同方法之间的关系 替代的方法 读完以后,看一下表述的问题 什么使得这篇文章易读 文章解决了哪个级别的细节问题 什么例子用来阐述重要的概念 什么问题没有解决 结果能够一般化(推广)吗 怎样读文章(四)良好的组织习惯一个有用的方法是,用笔记录自己读过和听过的东西写下自己的想法(speculations),感兴趣的难题,可能的解决方法,要查看的参考数目,笔记,文章的概要,有趣的印证阶段性的复习可以发现这些思想是不是开始走在一起(fit together)即使那些笔记没有用,也会帮助我们集中精力,找到重点和进行总结(You may find yourself spending over half of your time reading, especially at the This is ) 怎样读文章(五)发展自己的IDEA确认所描述的思想真的有用(而不是仅仅理论上成立,或者是一些不重要的例子上面成立)真正理解文章,就要懂得问题的动机,解决方法的可能选择,解决方法基于的假设这些假设是不是现实,它们是不是可以在使方法有效的情况下移除,进一步的研究方向,实际完成或者实现的工作,理论判定或者实验验证的有效性,扩充和延伸算法的潜力 保存读过的文章,建立在线的参考书目增加关键字的的域,文章的位置和感兴趣的文章的总结这对以后写文章以及给其他的研究生很有用 怎样读文章(六)阅读,思考,再阅读,再思考每周留一定的时间看看是不是可以想出研究想法 每周至少到图书馆看一下相关领域前面杂志的摘要选择一两篇仔细阅读并且批判 每周进行一次调查,利用电子资源或者图书馆寻找领域相关的技术报告,选择性批判性的阅读 参加一个研讨会或者讨论组,批判性的听取 了解研究的进展要注意你清楚这个领域的所有文献,如果你不经常复习一个月以前的文献,你可能发现自己对别人的思想不清楚了另外一方面,也不要让别人的想法限制了你的创造力 要注意避免的方面主动(活跃)的听和读需要被当作贯穿你整个事业的"不间断教育"不要愚蠢的认为在你开始研究前应当读完所有的文献,而应该选择性的阅读一开始从经典的文章(询问你的老师或者同学从而得到一些最有用的杂志和会议)和最近几年的杂志和会议开始 五,开始写作开始写作(一)读一些最新的论文,尤其是那些发表了的学习它们的内容和表达,注意它们里面的-进一步工作(future work) 仔细的记笔记记下每一个新的结果,即使没有重要的和有帮助的东西 写出一个纲要,它以后会经常改变,经常在头脑中保持一个新的构想对以后平滑的过渡很有好处 开始写作(二)第一章:导言问题是什么 为什么重要 别人做了什么工作 自己方法的主要思想是什么 文章的其他部分是怎样组织的 第二章:问题问题定义术语介绍基本属性讨论第三章:主要想法1……第k+2章:主要想法k第k+3章:结论重述完成的工作讨论进一步的工作开始写作(三)不要总认为文章必须从第一页写直接写主要想法big idea,记录怎样和其他部分组织在一起一个组织各章的方法是展现给你的实验室同学(fellow students),如果你能够将它们组织成连贯的"一小时报告",那就表明你可以写你的文章了开始写作(四)无休止的修改格式而不是内容也是常犯的错误要避免这种情况 清楚自己想说什么这是写清楚要的最难最重要的因素如果你写出笨拙的东西,不断的修补,就表明不清楚自己想说什么确信你的文章真的有思想(ideas)要说清楚为什么,不仅仅是怎么样 从每一段到整个文章都应该把最引人入胜的东西放在前面让读者容易看到你写的东西(Make it easy for the reader to find out what you've done)注意处理摘要(carefully craft the abstract)确定(be sure)说出了你的好思想是什么确定你自己知道这个思想是什么,然后想想怎么用几句话写出来开始写作(五)不要大肆夸耀你自己做的事情 得到反馈如果你加入讨论组,会收到很多别人的文章,他们请你评论知道别人对论文的意见很重要你给别人帮助,别人会在你需要的时候帮助你而且,自己也能提高为文章写有用的评论是一门艺术你应当读上两遍,第一遍了解其思想(IDEAS),第二遍看表达 如何减少写论文的痛苦写下自己的想法是完善它的好方法你可能发现自己的想法在纸上会变成一团糟 慢慢 地你也发觉它清晰起来记住你写得草稿很可能要全部推翻着重于内容而不是格式不要追求完美记住:写作是一个不断完善的过程当你发现所写的不是你开始想写的,写下粗稿,以后再修补写粗稿可以理出自己的思想,渐渐进入状态如果写不出全部内容,就写纲要,在容易写具体的内容时再补充如果写不出来,就把想到的东西全部写出来,即使你觉得是垃圾当你写出足够的内容,再编辑它们,转化成有意义的东西另一个原因是想把所有的东西都有序的写出来(in order)次序是不一定的你可能要从正文写起,最后在你知道你写的到底是什么的时候再写简介写作是很痛苦的事情,有时候一天只能写上一页追求完美也可能导致对已经完美的文章无休止的修改润饰这不过是浪费时间罢了把写作当作和人说话就行了 积极的动力积极的反馈定下每天,每周,每月的目标是一个很好的主意 尽可能让自己获得成就感及时的交流要与人分享你的想法或者给别人以建议分而治之 在写论文时,不是写整个的文章,而是一节,一段,一章的写一次实现一个部分,找出那些一个小时里可以解决的问题,如果不确信,不要让它们阻止你完成一些东西——一天一次记住:你完成的每一步工作都使你接近完成六,论文写作辅助工具Word-论文模板Origin绘图工具的使用MathType公式编辑器Linux实验七,一个例子及常见问题学士论文例子基于对等网络的即时消息系统在写之前把目录做好终点就是起点以终为始,以始为终学士论文常见问题论文格式不合要求或字数不够 第一章改为: "绪论"或"概述"或许要好一些,这一单应分为几个小节概述最好写到4页以上,概述写清背景,动机以及本文的工作安排也可以把本文的贡献放上去, 对于论文的实验结果,应给出实验结果的详细分析,而不应是仅仅罗列一些结果有的论文描述算法时给出了算法的代码,最好不要大段地拷贝代码,而尽量用流程图或伪代码并对代码给出分析 论文尽量少用或不用"我,我们"之类的词,尤其尽量不要用"我"这一字眼 你的情况,借本课本多从课本上找依据,再搞几个数学名著的理论用名著撑面子~有点乱,但是加油哈 一个专业论文网预祝马到成功o(∩_∩)
数学很有用 学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 黄金分割 对于“黄金分割”大家应该都不陌生吧! 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 也许,618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。 古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是618。建筑师们发现,按这样的比
【初中数学教学论文】:亲你可以到,(鲁韵论文网)~了解下,上面有相关的(初中数学教学论文)资料或者直接加~~~Q~~~~(我的名称)我能帮上你的忙。