数学功底:微积分是严格要掌握的。不一定要掌握多元微积分,但一元微积分是必须要熟练掌握并使用的。另外线性代数一定要精通,特别是矩阵的运算、向量空间、秩等概念。当前机器学习框架中很多计算都需要用到矩阵的乘法、转置或是求逆。虽然很多框架都直接提供了这样的工具,但我们至少要了解内部的原型原理,比如如何高效判断一个矩阵是否存在逆矩阵并如何计算等。数理统计:概率论和各种统计学方法要做到基本掌握,比如贝叶斯概率如何计算?概率分布是怎么回事?虽不要求精通,但对相关背景和术语一定要了解。交互式数据分析框架:这里并不是指SQL或数据库查询,而是像Apache Hive或Apache Kylin这样的分析交互框架。开源社区中有很多这样类似的框架,可以使用传统的数据分析方式对大数据进行数据分析或数据挖掘。笔者有过使用经验的是Hive和Kylin。不过Hive特别是Hive1是基于MapReduce的,性能并非特别出色,而Kylin采用数据立方体的概念结合星型模型,可以做到很低延时的分析速度,况且Kylin是第一个研发团队主力是中国人的Apache孵化项目,因此日益受到广泛的关注。机器学习框架:机器学习当前真是火爆宇宙了,人人都提机器学习和AI,但笔者一直认为机器学习恰似几年前的云计算一样,目前虽然火爆,但没有实际的落地项目,可能还需要几年的时间才能逐渐成熟。不过在现在就开始储备机器学习的知识总是没有坏处的。说到机器学习的框架,大家耳熟能详的有很多种, 信手拈来的就包括TensorFlow、Caffe8、Keras9、CNTK10、Torch711等,其中又以TensorFlow领衔。笔者当前建议大家选取其中的一个框架进行学习,但以我对这些框架的了解,这些框架大多很方便地封装了各种机器学习算法提供给用户使用,但对于底层算法的了解其实并没有太多可学习之处。因此笔者还是建议可以从机器学习算法的原理来进行学习。
数据库系统的核心和基础,是数据模型,现有的数据库系统均是基于某种数据模型的。数据库系统的核心是数据库管理系统。数据库系统一般由数据库、数据库管理系统(DBMS)、应用系统、数据库管理员和用户构成。DBMS是数据库系统的基础和核心。
数据分析师的基本素养--论如何成为一名数据科学家 Part 1这里有一些我收集的关于数据处理方面的材料,希望能够对你有所帮助(请注意:我是一名本科生,下面提到的资料仅为个人整理所得,在任何方面都不可视为专家意见)。了解矩阵因式分解学习计算机线性代数相关的课程(这类课程有时也叫做线性代数应用、矩阵计算、数值分析或者矩阵分析等,它既可以属于计算机科学,也可以属于应用数学课程)。矩阵分解算法是许多数据挖掘应用的基础,而在标准的"机器学习"课程中使用的矩阵分解算法通常不具有代表性。面对TB规模的数据时,Matlab等传统工具无法有效地执行数据处理工作,你不可能在大数据上只执行一条eig()语句就可以得出预期的结果。分布式矩阵计算包,例如Apache Mahout[1] 中包含的那些,试图填补这方面的空白,但是,你仍需要理解数值算法/LAPACK/BLAS [2][3][4][5]的工作机制,以便正确使用它们,针对特殊情况进行调整,构建自己的数据处理工具,并将其扩展到商业机器集群中TB级别规模的数据之上[6]。数学课程通常基于本科代数与微积分的基础,因此你应该具有良好的先决条件。
数据库系统的核心是数据库管理系统。数据库系统一般由数据库、数据库管理系(DBMS)、应用系统、数据库管理员和用户构成。DBMS是数据库系统的基础和核心。
数据科学家倾向于用探索数据的方式来看待周围的世界。把大量散乱的数据变成结构化的可供分析的数据,还要找出丰富的数据源,整合其他可能不完整的数 据源,并清理成结果数据集。新的竞争环境中,挑战不断地变化,新数据不断地流入,数据科学家需要帮助决策者穿梭于各种分析,从临时数据分析到持续的数据交 互分析。当他们有所发现,便交流他们的发现,建议新的业务方向。他们很有创造力的展示视觉化的信息,也让找到的模式清晰而有说服力。把蕴含在数据中的规律 建议给Boss,从而影响产品,流程和决策。
作者 | 彭鸿涛 张宗耀 聂磊 来源 | 大数据DT 一、数据科学家的工作模式与组织结构 数据科学家需要与业务专家一起工作才能发挥最大价值。实际工作中两种角色如何配合,取决于是采用业务驱动的模式还是数据驱动的模式。 数据驱动还是业务驱动 业务驱动的特点是业务人员主导数据分析需求的提出、结果的应用,在业务中应用数据洞察;而数据驱动的特点是更看重主动应用数据分析手段,从数据洞察发起业务、改善业务,当然在业务执行时也需要广泛应用数据洞察。在较新的业务领域采用数据驱动比较适合,已有复杂业务则采用业务驱动较好。 然而从自身能力的发展、数据驱动逐渐成为主要的工作模式的情况来看,数据科学家需要思考如何将数据驱动的模式做得更好,并且愿意承担更多责任。所以,除了算法、用法等基本技能,还需要考虑如何改善业务。 下图所示的职责占比只是示意,其实最核心的是由哪种角色来主导,在工作中也未见得业务专家不能主导数据驱动的模式。从业务结果的角度来看,所谓业务驱动和数据驱动只是到达一个既定目标时不同的工作方式而已。在实际的业务中也不会分工非常明确,即不会限定业务人员只能做什么或数据科学家只能做什么,只有相互无缝协作才是最佳的工作模式。 ▲业务专家与数据科学家的两种配合方式 数据科学家团队的组织结构 数据科学家团队的组织结构关系到数据应用的效率、管理的效率、个人的发展等诸多方面,企业在设置这个组织结构时需要认真考虑。每个企业的实际情况不同,可以采用不同的方法。数据科学家的组织结构一般分两种,即分散式结构和集中式结构。 分散式结构是数据科学家属于确定的业务部门,这样的组织结构的好处是其可以紧密地与业务人员合作,将业务问题转换为高效的数据分析任务。 但是其也有不足,一方面数据分析的知识积累是在个人身上,而不是在团队,另外一方面就是因为角色的限制使得业务部门内的数据科学家没有上升空间。业务部门内的数据科学家若要在职业道路上继续前进,要么离开,要么担任其他角色。一旦发生数据科学家的人事变化,这对团队稳定、知识积累等都是不利的。 集中式的数据科学家组织结构就是跨业务条线而成立独立的专门做数据分析的结构。这样的组织结构的好处就是团队相对稳定,给成员提供了不断成长的空间,也避免了知识积累的流失。 但是其也有不足,由于数据科学家脱离业务部门而独立存在,导致团队成员对业务的理解不够深入,模型的产出可能效率低下。业务部门也可能只将其看作支持部门,而不会在实际业务中有太多引入。 企业在构架数据科学家组织架构时,也可采用混合的结构。即使是集中式的组织结构,其汇报的层级也可能不同。没有所谓明确的业界标准的说法,因地制宜的做法才是最实际的。 二、数据科学家的工作方法要点 数据科学家的核心任务之一是通过数据分析手段将数据洞察应用在实际业务中,并能产生有效的结果。数据科学家在实际工作中需要注意以下要点,以确保上述目标的达成。 开始工作以前确保具备成功要件 在开始一件工作前,最好先明确一下业务场景、数据可获得性、数据质量等重要信息。在很多情况下,会出现因数据不支持无法进行细致分析、模型结果很好但是落地应用时没有对应的资源支持、数据分析只是探索没有对应的使用场景等问题。这些因素会严重影响数据分析的价值。 笔者作为顾问给多个客户实施数据分析项目时,就遇到过上述的问题。从客户的角度来讲,其关心的是业务问题的解决,并不会过多细致地考虑实施过程的细节。只有努力地尝试去做,才能发现有些问题会严重阻碍数据分析的进行,这也会影响数据分析的最终效果。 同时输出两种价值 假设要通过数据分析手段改善某业务问题,如构建预测模型筛选高价值、高响应率的客户,即使是在目标非常明确的情况下,数据科学家也要在做的过程中保证两种输出结果。 (1)重要发现 数据分析过程中势必要进行数据提取、数据处理、数据探查等一系列基础工作。在这些基础工作的过程中,往往会隐藏着有巨大业务价值的信息。比如,笔者的团队在给某金融机构构建高端客户的相关模型时发现一些信息,如“大部分客户只持有一类理财产品且在半年内没有交易活动”,这些信息对于后期的营销策略制定至关重要。 所以,数据科学家在实际工作中需保持“业务敏感性”,对于数据背后的业务故事保持好奇心,同时将一些重要的数据发现协同模型结果一并输出,这可以大大提高分析主题的价值。 (2)模型结果 给定分析主题,目标模型结果就可以基本确定,如寻找高价值客户就是模型输出一个名单,风险预警就是给出风险评分以及原因。这是模型输出的最基本形式。 在实际的模型实施应用中,业务人员会经常以挑剔的眼光来看待模型,并且基于模型结果总是有不同的疑惑需要数据科学家来解答。典型的疑惑如“聚类分析模型确实将客户分了几个类别,但是我还是不知道该如何营销这些客户”“社交网络分析模型给出了潜在的高价值客户名单,但这些信息不足以让营销人员开展营销”。 出现这种情况时,一种简单的做法就是和业务人员深入讨论,梳理出他们的关注点,然后将对应的指标从数据库中提取出来,作为模型输入的补充一并交给业务人员。 从本质上来讲,出现业务人员疑惑的原因是“业务人员期待模型输出决策而不是名单”以及团队缺乏将模型输出转换为营销决策的能力。数据科学家也需要具备将模型结果转换为业务决策的能力。 充满想象力地开展工作 算法能做到什么是数学范畴的知识,数据科学家的核心工作就是将业务需求转换为一系列的数据分析实践过程。若将各个算法看作一个个组件,那么用一个算法来解决问题还是用多个算法的组合来解决问题,需要数据科学家的想象力和不断尝试。 笔者的团队曾给某客户构建模型时,其需求是“根据客户持有产品的现状推荐产品,达到交叉销售的目的”。这是一个非常不具体的需求,能做的范围很大,能用的算法工具也很多。 最后我们采用的是构建“客户聚类与产品聚类的交叉分布以及迁移矩阵,并据此来展开不同目的营销”,若向上销售则可推荐同类产品,交叉销售则可推荐不同类的产品。这种做法之前没有实施过,但是结果证明其非常有效,仅在一次营销应用中就带来数十亿的营业额。 按照敏捷的方式来构建模型 数据挖掘过程也可以看作一个项目过程,从项目管理的角度当然可以按照敏捷的方式来进行。数据科学家需要积极主动地汇报分析思路、预期结果、进度等重要信息。时刻与业务人员以及管理人员保持沟通,对需求变化保持开放,将对模型的实际应用会有巨大的帮助。 一般情况下,让一个对数据和业务都不了解的人来构建模型,往往需要数月的时间;但让一个熟悉数据、业务、算法工具的人来建模,则可能只需几天就可以完成。不论哪种程度的人员来建模,都可以按照敏捷的方式来管理建模过程。 笔者与建模方法论CRISP-DM的提出者之一Julian Clinton一起工作过4年时间,在长期的项目实践中我们一直坚持该方法论所倡导的核心要点:紧贴业务、不断探索、以结果为导向、模型在应用后仍需不断调优等。事实证明,这些原则非常有效。CRISP-DM方法论的实施与实施过程中按照敏捷的方式来管理是相辅相成、相得益彰的。 以业务的成果来衡量自己的工作 模型的效果到底如何?数据科学家不应该基于测试集上优异的模型性能指标而洋洋自得,这没有任何意义,顶多代表建模的技巧高超。 模型最终带来的收益是由模型输出、匹配模型输出的业务决策、业务决策实施过程中的资源配置、应用场景的价值大小等综合因素共同决定的。缺少任何一环都会使得模型的价值直线下降。 数据科学家需要积极主动地推进这些环节的相关工作,积极收集模型部署后的监测数据,在“建模—业务决策匹配—业务决策实施—效果监控—模型或决策改进—再部署—再监测”的闭环中积极发挥作用。最终得出的业务结果数据,才是数据科学家真正成就感的源泉。
2020年成为数据科学家需要具备哪些技能?
说的最直白的就是从一堆数据中找出有价值的东西,以便用来赚更多的钱。。。
一、数据挖掘工具分类 数据挖掘工具根据其适用的范围分为两类:专用挖掘工具和通用挖掘工具。 专用数据挖掘工具是针对某个特定领域的问题提供解决方案,在涉及算法的时候充分考虑了数据、需求的特殊性,并作了优化。对任何领域,都可以开发特定的数据挖掘工具。例如,IBM公司的AdvancedScout系统针对NBA的数据,帮助教练优化战术组合。特定领域的数据挖掘工具针对性比较强,只能用于一种应用;也正因为针对性强,往往采用特殊的算法,可以处理特殊的数据,实现特殊的目的,发现的知识可靠度也比较高。 通用数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。通用的数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。例如,IBM公司Almaden研究中心开发的QUEST系统,SGI公司开发的MineSet系统,加拿大SimonFraser大学开发的DBMiner系统。通用的数据挖掘工具可以做多种模式的挖掘,挖掘什么、用什么来挖掘都由用户根据自己的应用来选择。 二、数据挖掘工具选择需要考虑的问题 数据挖掘是一个过程,只有将数据挖掘工具提供的技术和实施经验与企业的业务逻辑和需求紧密结合,并在实施的过程中不断的磨合,才能取得成功,因此我们在选择数据挖掘工具的时候,要全面考虑多方面的因素,主要包括以下几点: (1) 可产生的模式种类的数量:分类,聚类,关联等 (2) 解决复杂问题的能力 (3) 操作性能 (4) 数据存取能力 (5) 和其他产品的接口 三、数据挖掘工具介绍: QUEST QUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点: 提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。 各种开采算法具有近似线性计算复杂度,可适用于任意大小的数据库。 算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。 为各种发现功能设计了相应的并行算法。 MineSet MineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet有如下特点: MineSet以先进的可视化显示方法闻名于世。 支持多种关系数据库。可以直接从Oracle、Informix、Sybase的表读取数据,也可以通过SQL命令执行查询。 多种数据转换功能。在进行挖掘前,MineSet可以去除不必要的数据项,统计、集合、分组数据,转换数据类型,构造表达式由已有数据项生成新的数据项,对数据采样等。 操作简单、支持国际字符、可以直接发布到Web。 DBMiner DBMiner是加拿大SimonFraser大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色: 能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。 综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。 提出了一种交互式的类SQL语言——数据开采查询语言DMQL。 能与关系数据库平滑集成。 实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。 Intelligent Miner 由美国IBM公司开发的数据挖掘软件Intelligent Miner是一种分别面向数据库和文本信息进行数据挖掘的软件系列,它包括Intelligent Miner for Data和Intelligent Miner for Text。Intelligent Miner for Data可以挖掘包含在数据库、数据仓库和数据中心中的隐含信息,帮助用户利用传统数据库或普通文件中的结构化数据进行数据挖掘。它已经成功应用于市场分析、行为监测及客户联系管理等;Intelligent Miner for Text允许企业从文本信息进行数据挖掘,文本数据源可以是文本文件、Web页面、电子邮件、Lotus Notes数据库等等。 SAS Enterprise Miner 这是一种在我国的企业中得到采用的数据挖掘工具,比较典型的包括上海宝钢配矿系统应用和铁路部门在春运客运研究中的应用。SAS Enterprise Miner是一种通用的数据挖掘工具,按照"抽样--探索--转换--建模--评估"的方法进行数据挖掘。可以与SAS数据仓库和OLAP集成,实现从提出数据、抓住数据到得到解答的"端到端"知识发现。 SPSS Clementine SPSS Clementine是一个开放式数据挖掘工具,曾两次获得英国政府SMART 创新奖,它不但支持整个数据挖掘流程,从数据获取、转化、建模、评估到最终部署的全部过程,还支持数据挖掘的行业标准--CRISP-DM。Clementine的可视化数据挖掘使得"思路"分析成为可能,即将集中精力在要解决的问题本身,而不是局限于完成一些技术性工作(比如编写代码)。提供了多种图形化技术,有助理解数据间的关键性联系,指导用户以最便捷的途径找到问题的最终解决办法。 数据库厂商集成的挖掘工具 SQL Server 2000包含由Microsoft研究院开发的两种数据挖掘算法:Microsoft决策树和Microsoft聚集。此外,SQL Server 2000中的数据挖掘支持由第三方开发的算法。 Microsoft决策树算法:该算法基于分类。算法建立一个决策树,用于按照事实数据表中的一些列来预测其他列的值。该算法可以用于判断最倾向于单击特定标题(banner)或从某电子商务网站购买特定商品的个人。 Microsoft聚集算法:该算法将记录组合到可以表示类似的、可预测的特征的聚集中。通常这些特征可能是隐含或非直观的。例如,聚集算法可以用于将潜在汽车买主分组,并创建对应于每个汽车购买群体的营销活动。,SQL Server 2005在数据挖掘方面提供了更为丰富的模型、工具以及扩展空间。包括:可视化的数据挖掘工具与导航、8种数据挖掘算法集成、DMX 、XML/A、第三方算法嵌入支持等等。 Oracle Data Mining (ODM) 是 Oracle 数据库 10g 企业版的一个选件,它使公司能够从最大的数据库中高效地提取信息并创建集成的商务智能应用程序。数据分析人员能够发现那些隐藏在数据中的模式和内涵。应用程序开发人员能够在整个机构范围内快速自动提取和分发新的商务智能 — 预测、模式和发现。ODM 针对以下数据挖掘问题为 Oracle 数据库 10g 提供支持:分类、预测、回归、聚类、关联、属性重要性、特性提取以及序列相似性搜索与分析 (BLAST)。所有的建模、评分和元数据管理操作都是通过 Oracle Data Mining 客户端以及 PL/SQL 或基于 Java 的 API 来访问的,并且完全在关系数据库内部进行。 IBM Intelligent Miner 通过其世界领先的独有技术,例如典型数据集自动生成、关联发现、序列规律发现、概念性分类和可视化呈现,它可以自动实现数据选择、数据转换、数据发掘和结果呈现这一整套数据发掘操作。若有必要,对结果数据集还可以重复这一过程,直至得到满意结果为止。现在,IBM的 Intelligent Miner已形成系列,它帮助用户从企业数据资产中识别和提炼有价值的信息。它包括分析软件工具 ----Intelligent Miner for Data和IBM Intelligent Miner forText ,帮助企业选取以前未知的、有效的、可行的业务知识---- 如客户购买行为,隐藏的关系和新的趋势,数据来源可以是大型数据库和企业内部或Internet 上的文本数据源。然后公司可以应用这些信息进行更好、更准确的决策,获得竞争优势。
最初的数据挖掘分类应用大多都是在这些方法及基于内存基础上所构造的算法。和它们的权系数:W1, W2, , Wn,求和计算出的 Xi*Wi ,产生了
FineBI数据挖掘的结果将以字段和记录的形式添加到多维数据库中,并可以在新建分析时从一个专门的数据挖掘业务包中被使用,使用的方式与拖拽任何普通的字段没有任何区别。配合FineBI新建分析中的各种控件和图表,使用OLAP的分析人员可以轻松的查看他们想要的特定的某个与结果,或是各种各样结果的汇总。
数据库系统的核心是数据库管理系统,它是帮助用户创建,维护和使用数据库的软件系统。数据库的核心是数据,它是存储在计算机存储设备上的,结构化的相关数据集合。
数据,现在被誉为工业社会的“石油”。数据(data)是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经 加工的原始素材。数据可以是连续的值,比如声音、图像,称为模拟数据。也可以是离散的,如符号、文字,称为数字数据。在计算机系统中,数据以二进制信息单元0,1的形式表示,被存储在磁盘或者内存当中。 数据库是数据管理的产物。数据管理是数据库的核心任务,内容包括对数据的分类、组织、编码、储存、检索和维护。随着计算机硬件和软件的发展,数据库技术也不断地发展。从数据管理的角度看,数据库技术到目前共经历了人工管理阶段、文件系统阶段和数据库系统阶段。第二个问题:为什么要使用数据库?A人工管理阶段 人工管理阶段是指计算机诞生的初期(即20世纪50年代后期之前),这个时期的计算机主要用于科学计算。从硬件看,没有磁盘等直接存取的存储设备;从软件看,没有操作系统和管理数据的软件,数据处理方式是批处理。 这个时期数据管理的特点是: 数据不保存 该时期的计算机主要应用于科学计算,一般不需要将数据长期保存,只是在计算某一课题 时将数据输入,用完后不保存原始数据,也不保存计算结果。 没有对数据进行管理的软件系统 程序员不仅要规定数据的逻辑结构,而且还要在程序中设计物理结构,包括存储结构、存取方法、输入输出方式等。因此程序中存取数据的子程序随着存储的改变而改变,数据与程序不具有一致性。 没有文件的概念
数据库系统的核心是数据库管理系统。用于建立、使用和维护数据库,简称DBMS。它对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。用户通过DBMS访问数据库中的数据,数据库管理员也通过DBMS进行数据库的维护工作。它可以支持多个应用程序和用户用不同的方法在同时或不同时刻去建立,修改和询问数据库。大部分DBMS提供数据定义语言DDL(Data Definition Language)和数据操作语言DML(Data Manipulation Language),供用户定义数据库的模式结构与权限约束,实现对数据的追加、删除等操作。DBMS优点1、控制数据冗余。数据库管理应尽可能地消除了冗余,但是并没有完全消除,而是控制大量数据库固有的冗余。例如,为了表现数据间的关系,数据项的重复一般是必要的,有时为了提高性能也会重复一些数据项。2、保证数据一致性。通过消除或控制冗余,可降低不一致性产生的危险。如果数据项在数据库中只存储了一次,则任何对该值的更新均只需进行一次,而且新的值立即就被所有用户获得。如果数据项不只存储了一次,而且系统意识到这点,系统将可以确保该项的所有拷贝都保持一致。不幸的是,许多DBMS都不能自动确保这种类型的一致性。3、提高数据共享。数据库应该被有权限的用户共享。DBMS的引入使更多的用户可以更方便的共享更多的数据。新的应用程序可以依赖于数据库中已经存在的数据,并且只增加没有存储的数据,而不用重新定义所有的数据需求。
数据库设计可以分为概念结构设计、逻辑结构设计和物理结构设计三个阶段。(1)概念结构设计。这是数据库设计的第一个阶段,在管理信息系统的分析阶段,已经得到了系统的数据流程图和数据字典,现在要结合数据规范化的理论,用一种数据模型将用户的数据需求明确地表示出来。概念数据模型是面向问题的模型,反映了用户的现实工作环境,是与数据库的具体实现技术无关的。建立系统概念数据模型的过程叫做概念结构设计。(2)逻辑结构设计。根据已经建立的概念数据模型,以及所采用的某个数据库管理系统软件的数据模型特性,按照一定的转换规则,把概念模型转换为这个数据库管理系统所能够接受的逻辑数据模型。不同的数据库管理系统提供了不同的逻辑数据模型,如层次模型、网状模型、关系模型等。(3)物理结构设计。为一个确定的逻辑数据模型选择一个最适合应用要求的物理结构的过程,就叫做数据库的物理结构设计。数据库在物理设备上的存储结构和存取方法称为数据库的物理数据模型。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。