尽管一些经典反问题的研究可以追溯很早,反问题这一学科的兴起却是近几十年来的事情。在科学研究中经常要通过间接观测来探求位于不可达、不可触之处的物质的变化规律;生产中经常要根据特定的功能对产品进行设计,或按照某种目的对流程进行控制。这些都可以提出为某种形式的反问题。可见,反问题的产生是科学研究不断深化和工程技术迅猛发展的结果,而计算技术的革命又为它提供了重要的物质基础。现在,反问题的研究已经遍及现代化生产、生活、研究的各个领域。简单的概括不足以说明问题,我们下面具体介绍一些常见的反问题类型,希望大家能够对它有一个概括的了解 工业生产离不开产品设计,如何设计出优质产品使之更好地实现其功能,是关系到厂家信誉和企业生存的大问题。在这方面,从事反问题研究的数学家可以为企业家出谋划策。事实上,最早的反问题研究就是起源于定向设计问题。我们知道,单摆的等时性只是在小角度的假设下才近似成立。能不能找到一种特殊轨线的摆,使它严格满足等时性?Huygens于1673年提出并解决了这一问题,这种特殊的轨线就是旋轮线,它的方程为到了十九世纪,挪威数学家Abel将Huygens的问题推广为:测出了物体从不同高处落下的时间,如何反求物体下落的轨道?他于1823年给出了问题的解答。当代工业产品的极大丰富为反问题的研究提供了广阔的用武之地,许多工业设计问题是相当困难的,需要用到高深的数学手段。例如,国外的光学仪器厂家提出:能否设计一种光栅,利用其非线性衍射效应产生出高能量的单色光射线?这就是一个定向设计问题,它要求数学家利用推导和计算手段构造出所需要的曲面(光栅)形状。定向设计不限于产品,它的应用相当广泛。比如说:一个城市的某条街道车流量很大,不堪负荷,怎样通过铺设新的路段来进行分流?在军事行动中如何对不同种类的炮火进行分布以达到特定的轰炸效果?这类问题往往涉及各种事物的组合、分配、布局,要求在各种相互制约、相互影响的因素中寻找出最佳方案,为领导的决策提供依据。 给你一只管子,不允许直接进入内部测量,你能算出里面的形状吗?如果管子是轴对称的,这时只需要知道内部的截面半径就可以了。美国贝尔电话实验室的Sondhi和Gophinath提供了一个方法:在管子的一边发出声音,用仪器测量管口的位移速度和压力。通过测量结果就可以推知管内的截面半径。理论计算与实验结果吻合得很好。不要小看了这个例子,它实际上暗示了许多不能直接测量的物性探测问题可以通过类似的间接方法来解决。我们通常说“上天入地”都是很困难的事情,可是在一些情况下似乎必须“入地”才能解决问题,比如说石油勘探。石油通常埋在几千米的地下,无法直接观察油田的位置和储量,靠试打井的办法来探测不但费用昂贵(一口井的代价要上千万元),而且效率极低(只能探测到井附近的局部信息)。一个可行的办法是通过地面爆炸向地下发射地震波,同时接收地层的反射波信号。可以想象,地面接收到的反射信号中含有地下的物性结构信息(地层的密度、声速等等),利用数学手段将这些信息提取出来,就可以对地下的油储及其分布作出科学的判断。这很象在夏天人们挑西瓜,把瓜放在耳边拍一拍,有经验的人就知道瓜瓤熟不熟,不需要切开来看,不会破坏西瓜的完整。类似的探测方法可以应用于许多方面,如:农用土壤分析、地下水勘查,甚至于在考古发现上也有应用。位于三峡库区的四川省云阳县故陵镇有一个大土包,相传为楚国古墓,但是历经三千余年的变迁,已经难以确认了。科技工作者在地表利用地震波法、高精度磁法、电场岩性探测和地化方法四种手段进行探测,不但确认了古墓的存在,而且得到了关于古墓的埋藏深度、形状、大小甚至墓道的准确信息,为抢救和保护文物作出了贡献。 在前面讲到的Abel反问题中,如果把下落的物体用扫描射线替代,从另一个角度来看它为我们提供了从射线的走时响应反推其传播轨迹的方法,将不同轨迹射线的反演结果组合起来就能得到传播介质的内部形态信息。本世纪初,Hebglotz和Wiechebt应用Abel型反演方法解决了在一定对称条件下通过地震波的走时曲线来反推地层内部形貌的方法。据此Mohobovic(1909年)发现了地壳与地幔之间的断层。现在,利用地震波的接收信号通过成像来考察地层地貌形态已经成为地球物理勘探最为重要的手段。例如,通过走时成像,可以得到地震波在不同深度的传播速度;而在已知速度的前提下,利用声波方程或其单程波方程偏移成像方法,又可以得到反射界面的位置和形状。成像的另一个重要应用是医学上的计算机层析成像(CT),这是X光射线自Roentgen发明(获1900年诺贝尔奖)以来在医疗诊断上的重大进展,其发明人Hounsfield和Cormack因此获得了1979年的诺贝尔医学奖。CT技术是医学、电子技术、计算机技术和反演数学相结合的产物,它利用计算机来对穿越人体的X射线信号进行处理,来重建体内的结构信息,生成透视图象供医疗诊断参考,其核心算法的数学基础是二维Radon变换。继之而起的是基于三维Radon变换的核磁共振成像,在诊断效果和无伤害性方面更为优越。事实上,类似的方法也可以借助于声波、光波、电磁波在无损探伤、雷达侦察、射电望远镜探测、环境监测等多方面有广泛应用。 在科学研究中,我们经常遇到这样的问题:知道了某个事物的现在状态,希望了解它的过去,即通常所说的“恢复历史的本来面目。”这往往可以提为逆时反问题。当然,反问题研究不是历史学,它所研究的对象一般要满足某种类型的演化方程或数学模式。例如,通过远程测得的某次爆炸产生的辐射波,如何确定爆炸的位置和初始能量?这是波动方程的逆时反问题;又如,根据近来的温度变化能否确定过去某个时间的温度状态?这就成为热传导方程的逆时反问题。前面介绍了反问题的几种类型,它们在研究和应用上经常是相互联系的,分门别类只是为了叙述方便。另外,反问题与其它数学学科之间并没有一个严格的界限,而是互为补充,互相促进。反问题的研究起源于数理方程,其反演算法中包含了微分方程数值解法、最优化方法和概率统计等方面的许多思想和技巧。另一方面,反问题的研究也促进了人们对世界的认识,使得研究更全面、深化。一个著名的例子是反散射方法在孤立子发现中的作用:反散射问题是量子物理学研究中的一个问题,通过谱和谱函数在无穷远处的散射性态反推一维Schordinger方程的位势函数。它由前苏联数学家Gelfand和Levitan(1955年)一举解决。在此基础上引发了一系列突破性进展,最为著名的是利用这个结果Lax(1968年)得到了关于KDV方程的巧妙解法,从而发现了非线性方程中的孤立子现象。这是近代非线性科学研究的重要事件。 与正问题相比,反问题的研究起步较晚,发展还远不成熟。从本质上来说,反问题的研究的难度一般比相应的正问题要大。这是因为反问题的求解往往违背了物理过程的自然顺序,从而使正问题中的许多良好性质不再满足。这种现象在许多学科的研究中都是普遍存在的。比如说:曹雪芹创作了古典名著《红楼梦》,这是人所共知的,但是要从现存的史料和文物“碎片”来恢复这位伟大作家的人生经历和创作历程则是一件万分艰辛的事情,更何况这些“碎片”信息真伪交杂,且时有含混。反问题的研究也经常遇到类似的困难,这些困难体现在: 存在性:我们要求的反问题的解很可能不存在!无解的原因多种多样,可能是在定向设计中问题的提法不合理,也可能是探测时接收到的响应中含有假信息(噪音),将求解引入歧途。 唯一性:有的反问题的解虽然存在,却不唯一,有几个甚至无穷多个。这是因为收集到的信息不够,不足以确定解的性态。对大多数反问题(比如探测问题)来说,真正的解只有一个,这就要从许多解当中进行挑选,去伪存真,颇费周折。 稳定性:利用计算手段,由接收信息来反演物质的结构和特性是反问题研究的重要内容。可是实际的接收响应中不可避免地含有噪音,计算过程也有累积误差。这种微小的误差会不会导致反演结果面目全非?研究表明,相当多的反问题正是具有这样的病态性质!热传导方程的逆时反问题就是一个例子。热力学第二定律告诉我们,热传导是一个不可逆过程,它的反问题求解是高度病态的。为了解决温度的逆时反演,就不得不冒这种“差之毫厘,谬以千里”的危险。存在性、唯一性和稳定性,三者之一不满足就称为不适定性问题。用传统的眼光来看,这样的问题是不值得研究的。正是反问题的研究开阔了人们的视野,认识到这样的问题是大量存在的,而且有着重要的研究和应用价值。如果一个问题的解不存在、不唯一、不稳定,那么求解得到的结果可信吗?这是反演工作者必须面对的问题。解决的办法是有的!奠基性工作是由前苏联Tikonov等学者提出的解决线性不适定问题的正则化方法。方法的主要思想是:利用对解和数据误差的先验估计可以将问题的求解限定在某个较小范围内,对问题的提法进行适当的改造后,原本不适定的问题就可以转化为适定的最优化问题求解,而且先验估计表明在一定精度下用正则化方法求得的解是合理的。这比如猜谜:“后,打一人名”,无从猜起。如果限定“打《红楼梦》中一人名”,范围缩小了,可以用书中601个人物(有的书中没有交代姓名)逐一比较,最后选出最优的答案-“王夫人”。充分利用各种合理的先验信息对问题作适当形式的转换,是反问题求解的重要方法,在实际生产中经常要用到。拿地震波勘探为例,限于技术原因,地面接收的信号噪音很大,信息残缺不全,完全的反演是很困难的。为了满足生产的要求,必须尽最大可能恢复出地下的结构形态。这时,多种反演方法并用是一个可行的办法;如果在目的地有一口油井,那么可以把井下的信息作为局部约束来校正反演结果;为了计算的稳定性还必须使用一些特殊的数学技巧。这样得到的反演结果与资料解释人员的经验结合起来,可以对油田的决策与发展提供参考依据。除了前面提到的不适定性以外,反问题的研究与应用还经常面临非线性的困扰。即使正问题是线性的,它的反问题也往往表现为非线性,这为反演的研究和计算带来了很多麻烦。为了求解非线性反问题,通常要线性化后反复进行正、反演迭代,在高维情况下将导致十分巨大的计算量。我们知道,一个效率低下的算法在生产应用中将导致时间和人力、物力的极大浪费。所以反问题的计算效率也是一个非常重要的课题。它要求计算数学工作者从实际应用出发,充分研究问题的性质和特点,构造出精巧、快速的算法以适应生产的需要。反演问题有着特殊的困难,它向我们提出了许多在认识论、方法论中富有挑战性的课题,深化了对客观现象的理解。反问题的研究确有它独立的价值。 反问题研究的兴起不过是近几十年的事情,它主要的研究对象是涉及与探测、识别和设计有关的应用问题。实际生产的迫切需求是推动这一学科迅速发展的原动力。1987年,以“反问题、反演方法和数据反演计算”为主要内容的专题杂志Inverse Problems创刊,标志着反问题的研究走向独立和成熟。世界上每年都举行各种形式的反问题研讨会,得到了数学、物理、工程技术等多方面专家的响应。需要指出的是,在国外对反问题研究的资助不仅来自于科研和工业部门,还得到了国防部门的有力支持。我国的反问题研究自八十年代初由冯康先生首倡,在实际问题的推动下,先后在中国科学院、哈尔滨工业大学、山东大学、中山大学、南京大学以及石油等工业部门多家单位取得相当数量的理论和实际应用成果。近四十年来计算技术的飞速发展大大增强了数学工作者在自然科学、社会科学和工程技术等广阔领域的参与能力,反问题正是在这样的背景下应运而生的交叉性学科。它的生命力源于实际应用的迫切需求和反演工作者卓有成效的工作。反问题的出现为传统数理方程的研究开辟了新的疆域,也为数学家参与实际生活提供了新的切入点。应该看到,反问题的开展程度与工业和国防的现代化、科学技术在产品中的含量有着密切的关系。我们期待着这一新兴学科在国内能够健康地发展起来,为国家的经济建设作出它应有的贡献。
Complexity of Partial Inverse Assignment Problem and Partial Inverse Cut Problem, 《RAIRO Operations Research》,35, Robust Partial Inverse Network Flow Problems, 《Journal of Chinese University, Applied Mathematics》,16(2), 美国基金行业公司治理的独立性及对中国基金监管的启示,《国际金融研究》,2001年第7期,合作者:李仲翔、汪寿阳风险价值的完全参数方法及其在金融市场风险管理中的应用,《系统工程理论与实践》,21,2001,合作者:马超群、徐山鹰Scheduling with generalized batch delivery dates and earliness penalties, 《IIE Transactions 》32 (8) ,Inverse problems of submodular functions on digraphs, 《Journal of Optimization Theory and Applications》 104: (3) , 2000, co-authors: Cai M, Li Y,A Class of Generalized Multiprocessor Scheduling Problems, 《Systems Science and Mathematical Sciences》,13(4) , 具有交货期窗口的排序问题的复杂性,《系统工程理论、方法与应用》,9(1),异时排序问题的算法复杂性,《应用数学与计算数学学报》, 13(2), 西方金融机构的风险管理和金融监管,《南开管理杂志》,4, 2000, 合作者:李仲翔The complexity analysis of the inverse center location problem, 《Journal of Global Optimization》, 15: (2), 1999,co-authors: Cai MC, Zhang JZInverse polymatroidal flow problem, 《Journal of Combinatorial Optimization》 3(1), 1999 , co-authors: Cai MC, Li YJ
要看你是毕业用论文还是职称用论文。后者的话,是什么级别等,综合性因素对比出来会更符合情况。
数学学报 数学年刊A辑 应用数学学报 计算数学 数学进展 数学研究与评论 系统科学与数学 数学物理学报 应用概率统计 工程数学学报 应用数学 数学杂志 高校应用数学学报A辑 模糊系统与数学 高等学校计算数学学报 数学季刊 工科数学(改名为:大学数学) 数学的实践与认识 纯粹数学与应用数学 运筹学学报 数学教育学报 都是忙着发论文的人。
数学学报 数学年刊A辑 应用数学学报 计算数学 数学进展 数学研究与评论 系统科学与数学 数学物理学报 应用概率统计 工程数学学报 应用数学 数学杂志 高校应用数学学报A辑 模糊系统与数学 高等学校计算数学学报 数学季刊 工科数学(改名为:大学数学) 数学的实践与认识 纯粹数学与应用数学 运筹学学报 数学教育学报 都是忙着发论文的人啊~~
在检索数学出来的结果当中,显示有数学的实践与认识、数学通报、应用数学和力学、数学学报、应用数学、数学杂志、数学教育学报、应用数学学报等等。。。由于还没很好的归纳,只显示其中一部反。
算sci三区。数学进展杂志分三个区,其中SCI是第三区,他上面就有许多纯数学进展的内容。数学进展创刊于1955年,是由中国科学技术协会主管、由中国数学会主办、北京大学数学科学学院承办的综合性数学刊物,主要刊登纯粹数学和应用数学方面的综述文章和创造性学术论文。数学进展期刊是SCI收录的期刊,这个期刊是目前数学界的顶级期刊之一,很多纯数学领域的研究成果都发表在这个期刊上。普通的学生想要在数学进展上发表一篇文章是很困难的,通常只有数学领域的权威专家或者顶级研究者才有可能在这上面发表文章。
我国被SCI检索的期刊名称 2005-12-5 1 北京科技大学学报(MMM英文版) 2 材料科学技术(英文版) 3 大气科学进展(英文版) 4 代数集刊(英文版) 5 地球物理学报 6 地质学报、土壤圈(英文版) 7 分析化学 8 钢铁研究学报(英文版) 9 高等学校化学学报 10 高等学校化学研究(英文版) 11 高分子科学(英文版) 12 高分子学报 13 高能物理与核物理 14 固体力学学报(英文版) 15 光谱学与光谱分析(中文) 16 红外与毫米波学报(中文) 17 化学学报 18 计算数学(英文版) 19 结构化学 20 科学通报(英文版) 21 理论物理通讯(英文版) 22 力学学报(英文版) 23 生物化学与生物物理进展 24 生物化学与生物物理学报 25 生物医学与环境科学(英文版) 26 世界胃肠病学杂志(英文版) 27 数学年刊B辑(英文版) 28 数学物理学报(英文版) 29 数学学报(英文版) 30 无机材料学报 31 无机化学学报 32 武汉工业大学学报(材料科学英文版) 33 物理化学学报 34 物理学报 35 物理学报—海外版 36 稀土学报(英文版) 37 稀有金属(英文版) 38 稀有金属与材料工程 39 应用数学和力学(英文版) 40 有机化学 41 植物学报(英文) 42 中国海洋工程(英文版) 43 中国化学(英文版) 44 中国化学工程学报(英文版) 45 中国化学快报(英文版) 46 中国科学A辑(英文版) 47 中国科学B辑(英文版) 48 中国科学C辑(英文版) 49 中国科学D辑(英文版) 50 中国科学E辑(英文版) 51 中国文学(英文版) 52 中国物理快报(英文版) 53 中国药理学报 54 中国有色金属学报(英文版) 55 中华医学杂志(英文版) 56 自然科学进展(英文版)
SCI是国际通用的综合性的学术bai检索工具,因此,SCI所检索的期刊是非常多的,涵盖的专业范围也是比较广,我国被SCI检索的期刊名称1 北京科技大学学报(MMM英文版) 2 材料科学技术(英文版) 3 大气科学进展(英文版) 4 代数集刊(英文版) 5 地球物理学报 6 地质学报、土壤圈(英文版) 7 分析化学 8 钢铁研究学报(英文版) 9 高等学校化学学报 10 高等学校化学研究(英文版) 11 高分子科学(英文版) 12 高分子学报 13 高能物理与核物理 14 固体力学学报(英文版) 15 光谱学与光谱分析(中文) 16 红外与毫米波学报(中文) 17 化学学报 18 计算数学(英文版) 19 结构化学 20 科学通报(英文版) 21 理论物理通讯(英文版) 22 力学学报(英文版) 23 生物化学与生物物理进展 24 生物化学与生物物理学报 25 生物医学与环境科学(英文版) 26 世界胃肠病学杂志(英文版) 27 数学年刊B辑(英文版) 28 数学物理学报(英文版) 29 数学学报(英文版) 30 无机材料学报 31 无机化学学报 32 武汉工业大学学报(材料科学英文版) 33 物理化学学报 34 物理学报 35 物理学报—海外版 36 稀土学报(英文版) 37 稀有金属(英文版) 38 稀有金属与材料工程 39 应用数学和力学(英文版) 40 有机化学 41 植物学报(英文) 42 中国海洋工程(英文版) 43 中国化学(英文版) 44 中国化学工程学报(英文版) 45 中国化学快报(英文版) 46 中国科学A辑(英文版) 47 中国科学B辑(英文版) 48 中国科学C辑(英文版) 49 中国科学D辑(英文版) 50 中国科学E辑(英文版) 51 中国文学(英文版) 52 中国物理快报(英文版) 53 中国药理学报 54 中国有色金属学报(英文版) 55 中华医学杂志(英文版) 56 自然科学进展(英文版)
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of The computational efficiency ( the convergence, stability, accuracy, ) should be proved and illustrated by nontrivial numerical Papers describing only variants of existing methods, without adding significant new computational properties are not of 计算与应用数学杂志在计算与应用数学的所有领域中发表具有高科学价值的原创论文。 该杂志的主要兴趣在于描述和分析解决科学或工程问题的新计算技术的论文。 同样,改进现有方法和算法的分析,包括有效性和适用性,也很重要。 计算效率(例如收敛性,稳定性,准确性等)应通过非平凡的数值示例来证明和说明。 仅描述现有方法的变体而未添加显着的新计算属性的论文并不引起人们的兴趣。The Journal of Computational and Applied Mathematics is a peer-reviewed scientific journal covering computational and applied It was established in 1975 and is published biweekly by E The editors-in-chief are Yalchin Efendiev (Texas A&M University), Taketomo Mitsui (Nagoya University), Michael Kwok-Po Ng (Hong Kong Baptist University), Fatih Tank (Ankara University), and Luc Wuytack (University of Antwerp) According to the Journal Citation Reports, the journal has a 2017 impact factor of [1]《计算与应用数学杂志》是一本经过同行评审的科学期刊,涵盖计算和应用数学。 它成立于1975年,由Elsevier每两周出版一次。 主编是Yalchin Efendiev(得克萨斯农工大学),Takemomo Mitsui(名古屋大学),Michael Kwok-Po Ng(香港浸会大学),Fatih Tank(安卡拉大学)和Luc Wuytack(安特卫普大学)。 根据《期刊引证报告》,该期刊的2017年影响因子为883。[1][1] "Journal of Computational and Applied Mathematics" Journal P Web of Science (Science ) E Impact factor:632 (2017) Frequency:Biweekly
小学数学期刊有。数学学报,应用数学学报,计算数学,数学进展,数学研究与平均,系统科学与数学,数学物理学报,工程数学学报。应用数学,数学杂志,高等应用数学学报,模糊系统与数学,运筹学学报等
《应用数学进展》是一本关注应用数学领域最新进展的国际中文期刊,主要刊登数学的各种计算方法研究,数学在统计学、计算机等方面应用的学术讠仑文和成果评述。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在为了给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论应用数学领域内不同方向问题与发展的交流平台,壹品优 代xie代发一体化。
《应用数学学报》是由中国科学院主管,中国数学会、中国科院数学与系统科学研究院主办的中国一流的学术刊物,创刊于1976年。本是中国数学界的权威刊物,在国际上也有一定的影响。