缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。
现在有很多网站专门提供范文的,都是按学科分类的,很容易找。你直接百度搜论文范文就可以找到相关网站
现在有很多网站专门提供范文的,都是按学科分类的,很容易找。你直接百度搜论文范文就可以找到相关网站
可以直接在知网搜索医学统计这个关键词,查看这个方向的论文。医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。
是统计学中关于广义矩估计的文章,很权威,作者是广义矩估计的创始人Lars Peter Hansen
可以多看一些资料,然后去学习一下人家的论文是怎么写的?通过借鉴,然后但是千万不要抄袭,如果抄袭的话,那基本上就没有用了
二、统计教育的改革(一) 统计专业课程建设问题专业建设考虑的是应当培养什么样的人才和怎样培养这样的人才。专业建设的核心问题是课程设置和规范课程内容。课程设置主导学生的知识结构,培养统计理论人才应当设置较多的数学课程,目的是让学生能对各种统计方法有较深刻的理性认识;培养应用统计人才应当设置较多的相关应用领域的专业课程,目的是让学生如何能将统计方法正确地运用到相关领域。例如培养从事经济管理的统计人才,在课程设置上至少应当包括四方面的知识:(1)经济理论课程,让学生了解经济活动的主要进程和基本规律;(2)研究社会经济问题主要统计方法,包括常用的统计数据搜集方法,统计数据处理方法和分析方法;(3)适用电脑技术,让学生初步掌握运用电脑进行统计数据处理和分析的基本理论和技能;(4)有关统计理论和统计实践中的前沿性问题,目的不在于要学生真正掌握这些问题,而是让学生了解统计理论和统计实践的前沿发展动态,启迪学生的科学思维能力。(二) 教学方法和教学手段的改革统计教学方法和教学手段改革中,有两个焦点问题:一是如何激发学生学习统计学的兴趣;二是应用什么教学手段来达到较好的统计教学效果等。充分运用现代教育技术、教学手段,更新教学方法,促使教育技术、教学手段和教学方法有机结合。 改灌输式教学为启发式教学,特别注重教育多样化和多层次性,不仅让学生掌握如何搜集、整理数据的技术,还要教学生读懂数字背后的事实。学会按照具体与抽象、动态与静态、个体与总体、绝对与相对、一般与特殊、演绎与归纳等不同的思维方式分析问题和解决问题。注重利用一题多解与一题多变,开拓学生的发散思维。 改单向接受式的教学为双向互动式教学,以案例分析与情景教学开启学生的思维闸门,使学生更形象、快捷的接受知识,发挥其独立思考与创造才能,培养学生创造性思维能力。 构建以课堂、实验室和社会实践多元化的立体教育教学体系。在传授和学习已经形成的知识的同时,加强实践能力锻炼,提高学生的动手能力和创新能力。只有将统计学的方法结合实际进行应用,找到应用的结合点,才能使统计学获得最大的生命力。(三)统计学与计算机教学相结合教材要与统计软件的应用相结合。现在许多教材都是内容与软件分家,现在计算机已非常普及,无论是高校、高职和中专,培养出来的学生不会用统计软件分析数据,不管哪一个层次,都已说不过去。统计学是一门应用的方法型学科,统计学应从数据技巧教学转向数据分析的训练。统计学与计算机教学有机地合为一体,让学生掌握一些常用统计软件的使用。除了要培养学生搜集数据、分析数据的能力外,还要培养学生处理大量数据的能力,即数据挖掘的能力。(四)教学与实际的数据分析相结合统计的教学不能只停留在课本上,案例教学与情景教学应成为统计课程的重要内容。统计教学和教材增加统计实际案例,通过计算机对大量实际数据进行处理,可以在试验室进行,亦可在课堂上进行讨论,这样学生不仅理解了统计思想和方法,而且锻炼和培养了研究和解决问题的能力。(五)要有一批能用电脑、网络来教学的新型教师电脑、网络的出现,不仅改变了教学的手段,还深深地影响着教学的内容,因为它影响着经济、生活的发展和需求。语文(中文、外文)、数学、计算机、专业知识是一个统计人才必备的素质,它们之间不是分离的,而是要尽可能结合在一起来进行教学,各管各教一套的办法已不适应现代化教育教学的需要,现代教育特别注重教育信息技术中的多媒体、网络化、社会化和国际化、多样化和多层次,有了电脑、网络,必需要更新,要培养出一批能用电脑、网络来教学的新型教师,以便培养出新型的21世纪的人才。[参考文献][1] 贺铿关于统计学的性质与发展问题 中国统计,[2] 袁卫国外统计高等教育发展的趋势及对我国统计教育改革的思考中国统计,[3] 习勤关于统计教育创新的思考 中国统计,
请问你的教育学论文找到了吗,我现在也是急求,你还有吗,可以给我参考一下吗
专业的医学网络数据库有:中国生物医学文献数据库(CBM)、美国国立医学图书馆、荷兰医学文摘数据库(EMBase)、美国化学文摘(CA)、国际药文摘(IPA)、美国国立医学图书馆毒理学数据库(TOXLINE)。常用的检索网络有:中国知网(CNKI)、维普网、万方数据库、超星电子图书馆、中文科技期刊数据库(NSTL)、国家科技图书文献中心、中国药学文献、以及你所在大学的图书馆、google、soopat、uspto、道客巴巴、豆丁网、小木虫、读秀账号网、免费资源网、科学引文索引、Elsevier science、CDER、FDA、SFDA等,这些都是比较好用的网站,大部分都是免费的。以Pubmed搜索为例:1、打开电脑上的浏览器,然后再浏览器地址界面里输入百度主页的地址(当然,如果大家能够将Pubmed数据库的网址默写出来也可以直接将地址输入到浏览器地址框里),因为这里不允许贴地址,所以就不放地址出来,大家按照后面流程获取。2、在百度搜索框里输入Pubmed关键词,然后点击搜索按钮进行搜索,这里就可以看见搜索结果的前几个网站就是Pubmed网站的地址。3、选择一个网站进入,然后进入到Pubmed网站主页,点击搜索框下面的Advance按钮进入到高级搜索界面。4、进入高级搜索界面之后,点击搜索界面的All filed选择搜索范围,可以选择各种各样的范围进行搜索。5这里选择title和Date两个范围进行搜索,在title后面的输入框里输入想要搜索的文献的关键词,第二行选择文献发表的时间,如果需要更多的范围限制的话,可以点击第二行后面的+号按钮添加搜索范围限制。6、在搜索框里填写关键词的同时,上面的搜索框里会将整个搜索表达式展示出来,这里显示的是:(IT[Title]) AND ("2014"[Date - Publication] : "3000"[Date - Publication])7、完成上述步骤之后,然后点击下面的Search按钮展示出搜索结果,跳转到搜索结果界面,在搜索框里展示了刚刚出现的检索表达式,下面就是搜索出来的文献。
看懂医学文献中的统计图通常并不需要大堆的统计知识(读者们大多不是统计专业啊)。如果只是想看懂数据,那么弄懂一些基本的统计概念和一些常用词汇如 significance,P-value等等,就应该足以看懂大部分的数据图。这些基本概念可以在网上如wiki很容易的查到。稍微系统一点的,可以看看类似于C以及其他几个线上教学网站的生物统计学的初级介绍课程(大部分是英文,但也有中文的)。除非个人兴趣或者专业方向要求,个人觉得并不一定需要全面学习统计课程。因为题主没有说明是做什么图,做数据和统计类的图。
全文的中心思想是什么 figure legend:基本上能把图表的中心思想,各个panel是什么描述清楚 正文result中哪些地方应用了这个图,如(Figure1a blablabla):这个就是作者从这些数据里得到了什么结论,支持哪个假设神马的;偷懒的话看result里的小标题 具体到每个图表的话,x axis,y axis是神马(注意某些作者会通过改变y axis的来达到视觉上dramatic,striking的效果,在比较前后panel的时候要注意),sample和control分别是神马,有没有significant之类的;偷懒的话就看下那些和control有significant difference
正确的统计学分析一定要建立在明确的研究目的和研究设计的基础之上,那些事先没有研究目的和研究设计,事后找来一堆数据进行统计分析都是不可取的。 在医学论文的撰、编、审、读过程中经常遇到的问题是研究的题目与课题设计、论文内容不符,包括文章的方法解决不了论文的目的、文章的结果说明不了论文的题目、文章的讨论偏离了论文的主题;还有是目的不明确、设计不合理。如题目过小,论文不够字数,而一些无关紧要的变量指标或结果被分析被讨论;又如题目过大,论文的全部内容不足以说明研究的目的,使论文的论点难以立足。 所以,合理明确的论文题目或目的以及研究设计方案是撰、编、审、读者应当关注的首要问题。此外,样本含量是否满足,抽样是否随机,偏倚是否控制等,也是不可忽视的问题。2、建好分析用的数据库建好数据库是正确统计分析的前提和基础,甚至决定了论文分析结果的成败。对于编、审、读者来讲,一般由于篇幅的限制,往往得不到数据库数据,而只有作者在数据库数据基础上经统计描述计算后给出的诸如各指标均数 x、标准差 s 或中位数 M、百分位数 Px 的“二手”数据,或将研究对象小或特征属性分组,清点各组观察单位出现的个数或频数的频数表数据等。 无论是否能够得到数据库数据,作者在统计分析过程中一定依据数据库数据进行计算,得出结果。如果对“二手”数据或频数表数据的结果等存在疑惑,编辑、审稿专家或读者有权要求作者提供数据库数据以检查其完整性、准确性和真实性,确保研究数据的质量。假若在投稿须知中对数据库数据作出必要的要求,无疑对于保证刊物的发表质量有着积极的意义