首页 > 期刊发表知识库 > 小学数学有关论文

小学数学有关论文

发布时间:

小学数学有关论文

:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

百度搜索第一个

呵呵,5年级学什么数学啊,也太简单了,没啥可写的,还论文。呵呵,你们领导这不难为人吗? 随便找一个,网上很多 把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。 (一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。因为1/10=1〈@①,3/10=3〉@②;可能是8吗?不可能。 因为1/ 8=125〉@①,3/8=375〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=111……=@①;3/9=1/3=1÷3=333……= @②。 计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。 @③=4/9 验证:4/9=4÷9=444…… @④=6/9=2/3 验证:2/3=2÷3=666…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。 循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。因为12/100=12〈@⑤,13/100=13〈@⑥。可能是98吗?不可能。 因为12/98≈1224〉@⑤,13/98≈1327〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。 12/99=12÷99=121212……=@⑤; 13/99=13÷99=131313……=@⑥。 验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。 @⑦=15/99=5/33,验算:5/33=5÷33=151515…… @⑧=18/99=2/11,验算:2/11=2÷11=181818…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。 现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。 附图{图} 实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。 二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。 还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。 附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。 附图{图} 验证:352/1125=352÷1125=312888…… 验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。 附图{图} 实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附图{图} 验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。 猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

快要毕业的小学老师?!

有关小学数学教学论文

1、谈谈计算教学的改革  2、小学数学数与计算教学的回顾与思考  3、小学数学教材结构的研究与探讨  4、小学数学应用题的研究(一)  5、改进教学方法培养创新技能  6、21世纪我国小学数学教育改革展望  7、面向21世纪的小学数学课程改革与发展  8、不拘一格育“鸣凤”使学生真正成为学习的主人  9、改革课堂教学的着力点  10、谈素质教育在小学数学教学中的实施  11、素质教育与小学数学教育改革  12、浅谈学生数学思维能力的培养  13、浅议表象积累与培养学生的思维能力  14、也谈学生创新意识培养  15、实施创新教学策略 培养学生创新意识  16、10以内加法整理和复习  17、改良“有余数除法计算”教法  18、给学生创新的时间和空间和谐愉悦  19、主动探索——一年级《统计》教学片断评析  20、小学数学教育--教师之家--教师培训

为您奉上一部分,请参考:  谈谈计算教学的改革  小学数学数与计算教学的回顾与思考  小学数学教材结构的研究与探讨  小学数学应用题的研究(一)  改进教学方法培养创新技能  21世纪我国小学数学教育改革展望  面向21世纪的小学数学课程改革与发展  不拘一格育“鸣凤”  使学生真正成为学习的主人  改革课堂教学的着力点  谈素质教育在小学数学教学中的实施  素质教育与小学数学教育改革  浅谈学生数学思维能力的培养  浅议表象积累与培养学生的思维能力  也谈学生创新意识培养  实施创新教学策略 培养学生创新意识  10以内加法整理和复习  改良“有余数除法计算”教法  给学生创新的时间和空间  和谐愉悦 主动探索——一年级《统计》教学片断评析  小学数学教育--教师之家--教师培训  教学策略A、B、C  面向21世纪的数学素质及其培养  能被3整除的数的特征  年、月、日  培养自学能力 推进素质教育  浅谈小学数学总复习的“步步反馈,逐层提高”法  入情才能入理 激情方能启思  实施“生活数学”教育 培养自主创新能力  数学作业批改中巧用评语  提高元认知水平 培养自学能力  “圆的面积”的教案  圆柱的认识  运用多媒体辅助教学 优化数学教学方法  组织课堂讨论 优化课堂教学

如何在小学数学教学中对学生进行学习兴趣的培养 [关键词]:小学数学教学 学生 学习兴趣在现代教育教学过程中,如何培养学生,使他们成为品学兼优、志存高远的学生,是一个在相当长的时间内都必须存在的话题。而在数学教育教学过程中,对低年级的学生进行学习兴趣的培养,就显得特别敏感和重要。该怎么做?仁者见仁,智者见智。作为一名数学教师,根据多年的教育教学经验,我认为要切实做到:一、在教学过程中,教师要联系实际,引发学生的学习兴趣众所周之,小学生的思维能力受年龄特点、思维特点等所限制,认识感知实际知识需要一个过程。因而,培养其兴趣,就显得尤其重要,特别是抽象的数学问题,更是如此。那么,如何就其特点,结合实际,引发兴趣,为他们搭建认知的桥梁,就显得极其重要了。二、积极营造良好的学习环境,培养学生的学习兴趣在学生成长和发展的过程中,学习环境的直接或间接影响力是不可忽视的,为他们营造一个良好的学习环境是无可非议的。营造一个良好的学习环境,首先,应从教师的自身做起,教师要主动参与其中;其次,要做好学生的思想工作,正确引导他们认识学习的重要性,领悟到自己不仅是学习的主人,更是终身学习的主人;最后,可以通过自办班级学习报、定期办好黑板报、组织学生写好数学日记、开展好数学兴趣小组的活动、实施“超市式”数学作业、定期开展优秀作业展、组织学生参加各类数学竞赛、做好培优补差工作等形式,为学生创建一个平等、和谐、民主、愉快的学习氛围,使学生产生浓厚的学习兴趣。三、主动创设操作性情境,调动学生的学习兴趣根据小学生好动、好奇的心理特点,在小学数学课堂教学中,教师可以组织一些以学生活动为主,对一些实际问题通过让学生自己动手测量、演示或操作,使学生通过动手动脑获得学习成效,既能巩固和灵活运用所学知识,又能提高操作能力,培养创新精神,调动学生的主动参与能力和兴趣。四、合理创设游戏性情境,提高学生的学习兴趣根据数学学科特点和小学生年龄特点,设置游戏性情境,把新知识寓于游戏活动之中,通过游戏使学生产生对新知识的求知欲望,让学生的注意力处于高度集中状态,在游戏中得到知识,发展能力,提高学习兴趣。例如,在课堂训练时,组织60秒抢答游戏。教师准备若干组数学口答题,把全班学生分为几组,每组选3名学生作代表。然后由教师提出问题,让每组参赛的学生抢答,以积分多为优胜,或每答对一题奖励一面小红星,多得者为优胜。学生就能在游戏中,精神高度集中,在不知不觉中学到不少有用的知识,体验成功的快乐,有力地提高了学生的学习兴趣。五、获取成功喜悦,让学生体验学习兴趣任何人都渴望成功。成功会给学生在学数学时心理求知的厚动力,在数学教学中,要给每个学生创造出更多的表现的机会,充分利用“低、小、全、快”的方法,阶段型的开放学生的梯级思维。由浅显的问题入手,引导学生对习题作出正确的解答。学生经过对问题的独到见解或创造性的思维取得一次次的好成绩,并为获取的成功渐进式地感到高兴和骄傲,让他们感受到成功的喜悦。最终让学生明白只要开启心智就有希望,就能成功。如果失败了,就会加倍努力,直到成功为止。因此,教师在设计提问、板书、作业时要因人而异,分层次地提出切合不同学生的不同要求,使每个学生都有成功的希望,从而获得成功的体验,提高他们学习动机和学习兴趣。综上所述,通过“引发—培养—调动—提高”学生的学习兴趣,一次或多次的成功体验,会成为学生学习动机和激发兴趣的“激活剂”。

太多了, 谈谈计算教学的改革 小学数学数与计算教学的回顾与思考 小学数学教材结构的研究与探讨 小学数学应用题的研究(一) 改进教学方法培养创新技能 21世纪我国小学数学教育改革展望 面向21世纪的小学数学课程改革与发展 不拘一格育“鸣凤” 使学生真正成为学习的主人 改革课堂教学的着力点 谈素质教育在小学数学教学中的实施 素质教育与小学数学教育改革 浅谈学生数学思维能力的培养 浅议表象积累与培养学生的思维能力 也谈学生创新意识培养 实施创新教学策略 培养学生创新意识 10以内加法整理和复习 改良“有余数除法计算”教法 给学生创新的时间和空间 和谐愉悦 主动探索——一年级《统计》教学片断评析 小学数学教育--教师之家--教师培训 教学策略A、B、C 面向21世纪的数学素质及其培养 能被3整除的数的特征 年、月、日 培养自学能力 推进素质教育 浅谈小学数学总复习的“步步反馈,逐层提高”法 入情才能入理 激情方能启思 实施“生活数学”教育 培养自主创新能力 数学作业批改中巧用评语 提高元认知水平 培养自学能力 “圆的面积”的教案 圆柱的认识 运用多媒体辅助教学 优化数学教学方法 组织课堂讨论 优化课堂教学 ---------以上更新日期为17(来自同下) 重视学生获取知识的思维过程 小论文巧算圆的面积 倒推转化巧拿硬币 联系生活实际提高课堂效率 数学教学中如何调动学生的学习积极性 根据心理学的理论进行计算法则教学 简单应用题教学再探 创设情境,培养学生创造个性 数学教学中培养学生创造思维能力 启动学海搁浅之舟—— 转化数学学习后进生的体会 学生“四会”能力的培养 联系实际,强化操作,努力优化数学教学 重视学法指导,培养自学能力 让生活问题走进数学课堂教学,培养学生问题意识 主动探究发展能力 创新教育中学生创新能力的培养 构建数学生活的美好乐园——数学“研究性学习”理论的实践与思索 营造探究氛围一例 实施创新教育 培养创新人格 课堂纯真 《9和几的进位加法》教学设计 信息技术与小学数学课程整合的研究与实践 运用CAI技术,优化素质教育 合理运用学具 提高数学课堂教学效率 略谈“问题解决”与小学数学教学 渗透数学思想方法 提高学生思维素质 引导学生参与教学过程 发挥学生的主体作用 优化数学课堂练习设计的探索与实践 实施“开放性”教学促进学生主体参与 数学练习要有趣味性和开放性 “五、四、三自主式学法指导”教学模式初探 引导学生主动参与教学活动 改进几何初步知识教学的初步探索 多媒体课件在优化课堂教学中的功能及其策略研究 创新从习惯抓起 培养学生的创新意识要处理好的几个关系 让学生在数学学习中获得持续发展 小学数学创新学习的实验与研究 小学数学课题教学中学生创新意识的培养

有关小学数学论文题目

为什么米、分米、厘米的进制是100?

数学历史 数学的美 数学的用处

创设情境,培养学生创造个性;构建数学生活的美好乐园;精彩不容“错”过;上“活”概念课,灵动新课堂;“小情境”成就“大课堂”;让数学“压力”变成“魅力”;让数学中的“错”更精彩;如何让学生在快乐中学数学;兴趣,开启智慧的大门;追求和谐之美 塑造数学魅力;数学课让学生“动”起来。

小学数学深度学习论文标题可以定《如何向四十分钟要质量——课堂管理的学问》、《如何提高孩子学习数学的兴趣——针对中差生的教学策略》论文选题要注意以下因素要进行文献梳理,这一部分至关重要,原创性是对论文的基本要求,如果忽略了这点,很有可能自己的研究题目已经被别人研究过,破坏了论文的原创性,尽量找到所有权威来源的相关文献,一方面可避免上述的问题,找到最适合自己的选题。然后要确定选题,不要太模糊,范围太大,就经验而言,选题越小,越容易做,更加适合学生的把握,曾经的指导老师告诫我们,论文的写作目的不是要做出多么伟大的学术贡献,而在训练学生的学术修养和学术研究能力。

小学数学有关论文选题

学术堂整理了十个毕业论文题目供大家进行参考:  1、小学数学教师几何知识掌握状况的调查研究  2、小学数学教师教材知识发展情况研究  3、中日小学数学“数与代数”领域比较研究  4、浙江省Y县县域内小学数学教学质量差异研究  5、小学数学教师教科书解读的影响因素及调控策略研究  6、中国、新加坡小学数学新课程的比较研究  7、小学数学探究式教学的实践研究  8、基于教育游戏的小学数学教学设计研究  9、小学数学教学中创设有效问题情境的策略研究  10、小学数学生活化教学的研究

(1)思维导图在小学数学中的运用探究(2)小学数学教学有效性的提升策略分析(3)小组合作学习在小学数学中的应用研究(4)小学数学教学中渗透数学思想的探索如需资料,可M我

为您奉上一部分,请参考:  谈谈计算教学的改革  小学数学数与计算教学的回顾与思考  小学数学教材结构的研究与探讨  小学数学应用题的研究(一)  改进教学方法培养创新技能  21世纪我国小学数学教育改革展望  面向21世纪的小学数学课程改革与发展  不拘一格育“鸣凤”  使学生真正成为学习的主人  改革课堂教学的着力点  谈素质教育在小学数学教学中的实施  素质教育与小学数学教育改革  浅谈学生数学思维能力的培养  浅议表象积累与培养学生的思维能力  也谈学生创新意识培养  实施创新教学策略 培养学生创新意识  10以内加法整理和复习  改良“有余数除法计算”教法  给学生创新的时间和空间  和谐愉悦 主动探索——一年级《统计》教学片断评析  小学数学教育--教师之家--教师培训  教学策略A、B、C  面向21世纪的数学素质及其培养  能被3整除的数的特征  年、月、日  培养自学能力 推进素质教育  浅谈小学数学总复习的“步步反馈,逐层提高”法  入情才能入理 激情方能启思  实施“生活数学”教育 培养自主创新能力  数学作业批改中巧用评语  提高元认知水平 培养自学能力  “圆的面积”的教案  圆柱的认识  运用多媒体辅助教学 优化数学教学方法  组织课堂讨论 优化课堂教学

为什么米、分米、厘米的进制是100?

有关小学数学的论文题目

小学生的数学论文的题目 谢

为您奉上一部分,请参考:谈谈计算教学的改革小学数学数与计算教学的回顾与思考小学数学教材结构的研究与探讨小学数学应用题的研究(一)改进教学方法培养创新技能21世纪我国小学数学教育改革展望面向21世纪的小学数学课程改革与发展不拘一格育“鸣凤”使学生真正成为学习的主人

为什么米、分米、厘米的进制是100?

数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷5,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效

  • 索引序列
  • 小学数学有关论文
  • 有关小学数学教学论文
  • 有关小学数学论文题目
  • 小学数学有关论文选题
  • 有关小学数学的论文题目
  • 返回顶部