首页 > 期刊投稿知识库 > eviews计量经济学论文

eviews计量经济学论文

发布时间:

eviews计量经济学论文

希望以上网站内容能帮到你

最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测

给你一篇我刚写的 呵呵 仅供参考 (需要的话给你电子版 QQ:309735313)关于我国城镇居民储蓄存款模型的计量经济分析 (我的姓名等信息就省略了啊 呵呵) 内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。 关键词:居民储蓄存款 实证分析 主要因素 一、问题的提出 1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。 二、文献综述 我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响: 1.收入因数 收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。 2.利息率 传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。 3.物价水平 物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。 4.收入分配 凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。 三、变量的选取及分析 目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。 由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。 四、数据及处理 本文模型数据样本为从1979-2002年。 年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数 1979 0.06368087 0.264869934 3.78 0.02 0.16 1980 0.08740586 0.220385089 5.04 0.059804 0.15 1981 0.07093626 0.104176446 5.4 0.024052 0.15 1982 0.08105586 0.139165412 5.67 0.01897 0.15 1983 0.09963501 0.093723563 5.76 0.015071 0.16 1984 0.13025584 0.245357008 5.76 0.027948 0.19 1985 0.15161502 0.184241122 6.72 0.08836 0.19 1986 0.17454542 0.280700971 7.2 0.060109 0.2 1987 0.2175453 0.167515864 7.2 0.072901 0.23 1988 0.17862152 0.219728929 7.68 0.185312 0.23 1989 0.2721202 0.199827095 11.12 0.177765 0.23 1990 0.32760614 0.123579703 9.92 0.021141 0.24 1991 0.31032443 0.163667824 7.92 0.028888 0.25 1992 0.3016907 0.228819425 7.56 0.053814 0.27 1993 0.3199061 0.311233327 9.26 0.131883 0.3 1994 0.42486435 0.397210898 10.98 0.216948 0.28 1995 0.44898036 0.261076104 10.98 0.147969 0.28 1996 0.40903477 0.198208003 9.21 0.060938 0.29 1997 0.30935015 0.127739779 7.17 0.007941 0.3 1998 0.25777978 0.108852141 5.02 -0.026 0.295 1999 0.21234608 0.134557035 2.89 -0.02993 0.3 2000 0.1239205 0.125688358 2.25 -0.01501 0.32 2001 0.24155306 0.14364071 2.25 -0.0079 0.33 2002 0.29897822 0.173106495 2.03 -0.01308 0.319 数据来源:各年份的《中国统计年鉴》 注:Y代表城镇居民储蓄率 X1代表城镇居民收入增长率 X2代表一年期储蓄利率 X3代表通货膨胀率 X4代表城镇居民基尼系数 五、模型及处理 基于以上数据,建立的模型是: Y=β1+β2X1+β3X2+β4X3+β5X4+u β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。 β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。 β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。 β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。 β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。 u是随机误差项。 对Y做回归 利用eviews最小二乘估计结果如下 Variable Coefficient Std. Error t-Statistic Prob. C -0.264646 0.045525 -5.813154 0.0000 X1 0.317426 0.175678 1.806864 0.0875 X2 0.024054 0.003688 6.523093 0.0000 X3 0.024476 0.205508 0.119099 0.9065 X4 1.127523 0.149318 7.551127 0.0000 R-squared 0.897971 Mean dependent var 0.234065 Adjusted R-squared 0.875298 S.D. dependent var 0.116109 S.E. of regression 0.041002 Akaike info criterion -3.360748 Sum squared resid 0.030260 Schwarz criterion -3.113901 Log likelihood 43.64860 F-statistic 39.60525 Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000 根据以上结果,初步得出的模型为 Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4. 1.经济意义的检验 该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。 2.统计检验 从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。 3.多重共线性的检验 从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到: Y=β1+β2X1+β3X2+β5X4+u Variable Coefficient Std. Error t-Statistic Prob. C -0.271487 0.041322 -6.570056 0.0000 X1 0.314787 0.113799 2.766177 0.0119 X2 0.024487 0.003178 7.704986 0.0000 X4 1.145280 0.137886 8.305987 0.0000 R-squared 0.897094 Mean dependent var 0.229740 Adjusted R-squared 0.881658 S.D. dependent var 0.115517 S.E. of regression 0.039739 Akaike info criterion -3.461967 Sum squared resid 0.031583 Schwarz criterion -3.265624 Log likelihood 45.54360 F-statistic 58.11739 Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000 从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。 因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4 4.异方差性检验 对新模型进行异方差性的检验,运用white检验,得到如下结果: White Heteroskedasticity Test: F-statistic 2.669433 Probability 0.054505 Obs*R-squared 11.50596 Probability 0.073942 Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。 5.自相关性的检验 从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d

关于我国城镇居民储蓄存款模型的计量经济分析 (我的姓名等信息就省略了啊 呵呵) 内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。 关键词:居民储蓄存款 实证分析 主要因素 一、问题的提出 1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。 二、文献综述 我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响: 1.收入因数 收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。 2.利息率 传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。 3.物价水平 物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。 4.收入分配 凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。 三、变量的选取及分析 目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。 由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。 四、数据及处理 本文模型数据样本为从1979-2002年。 年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数 1979 0.06368087 0.264869934 3.78 0.02 0.16 1980 0.08740586 0.220385089 5.04 0.059804 0.15 1981 0.07093626 0.104176446 5.4 0.024052 0.15 1982 0.08105586 0.139165412 5.67 0.01897 0.15 1983 0.09963501 0.093723563 5.76 0.015071 0.16 1984 0.13025584 0.245357008 5.76 0.027948 0.19 1985 0.15161502 0.184241122 6.72 0.08836 0.19 1986 0.17454542 0.280700971 7.2 0.060109 0.2 1987 0.2175453 0.167515864 7.2 0.072901 0.23 1988 0.17862152 0.219728929 7.68 0.185312 0.23 1989 0.2721202 0.199827095 11.12 0.177765 0.23 1990 0.32760614 0.123579703 9.92 0.021141 0.24 1991 0.31032443 0.163667824 7.92 0.028888 0.25 1992 0.3016907 0.228819425 7.56 0.053814 0.27 1993 0.3199061 0.311233327 9.26 0.131883 0.3 1994 0.42486435 0.397210898 10.98 0.216948 0.28 1995 0.44898036 0.261076104 10.98 0.147969 0.28 1996 0.40903477 0.198208003 9.21 0.060938 0.29 1997 0.30935015 0.127739779 7.17 0.007941 0.3 1998 0.25777978 0.108852141 5.02 -0.026 0.295 1999 0.21234608 0.134557035 2.89 -0.02993 0.3 2000 0.1239205 0.125688358 2.25 -0.01501 0.32 2001 0.24155306 0.14364071 2.25 -0.0079 0.33 2002 0.29897822 0.173106495 2.03 -0.01308 0.319 数据来源:各年份的《中国统计年鉴》 注:Y代表城镇居民储蓄率 X1代表城镇居民收入增长率 X2代表一年期储蓄利率 X3代表通货膨胀率 X4代表城镇居民基尼系数 五、模型及处理 基于以上数据,建立的模型是: Y=β1+β2X1+β3X2+β4X3+β5X4+u β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。 β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。 β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。 β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。 β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。 u是随机误差项。 对Y做回归 利用eviews最小二乘估计结果如下 Variable Coefficient Std. Error t-Statistic Prob. C -0.264646 0.045525 -5.813154 0.0000 X1 0.317426 0.175678 1.806864 0.0875 X2 0.024054 0.003688 6.523093 0.0000 X3 0.024476 0.205508 0.119099 0.9065 X4 1.127523 0.149318 7.551127 0.0000 R-squared 0.897971 Mean dependent var 0.234065 Adjusted R-squared 0.875298 S.D. dependent var 0.116109 S.E. of regression 0.041002 Akaike info criterion -3.360748 Sum squared resid 0.030260 Schwarz criterion -3.113901 Log likelihood 43.64860 F-statistic 39.60525 Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000 根据以上结果,初步得出的模型为 Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4. 1.经济意义的检验 该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。 2.统计检验 从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。 3.多重共线性的检验 从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到: Y=β1+β2X1+β3X2+β5X4+u Variable Coefficient Std. Error t-Statistic Prob. C -0.271487 0.041322 -6.570056 0.0000 X1 0.314787 0.113799 2.766177 0.0119 X2 0.024487 0.003178 7.704986 0.0000 X4 1.145280 0.137886 8.305987 0.0000 R-squared 0.897094 Mean dependent var 0.229740 Adjusted R-squared 0.881658 S.D. dependent var 0.115517 S.E. of regression 0.039739 Akaike info criterion -3.461967 Sum squared resid 0.031583 Schwarz criterion -3.265624 Log likelihood 45.54360 F-statistic 58.11739 Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000 从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。 因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4 4.异方差性检验 对新模型进行异方差性的检验,运用white检验,得到如下结果: White Heteroskedasticity Test: F-statistic 2.669433 Probability 0.054505 Obs*R-squared 11.50596 Probability 0.073942 Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。 5.自相关性的检验 从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d

计量经济学eviews论文

计量经济学论文可以研究的问题有多种,期中比较简单的就是根据数据,建立方程,研究变量之间的关系,主要运用的工具就是计量经济学的初等知识和Eviews软件,思路、要求和注意事项我觉得这么说对你的帮助不大,所以给你一篇我的论文做参考,也许对你有帮助,如果你觉得看的不是很明白的话,可以再留言给我,我把什么思路等告诉你。计量经济学期末实验报告实验名称:大中城市城镇居民人均消费支出与其影响因素的分析姓 名:学 号:班 级: ()级统计学系()班指导教师:时 间:(上面是论文封皮)23个城市城镇居民人均消费支出与其影响因素的分析(题目)一、 经济理论背景近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。二、 有关人均消费支出及其影响因素的理论我们主要从以下几个方面分析我国居民消费支出的影响因素:①、居民未来支出预期上升,影响了居民即期消费的增长居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。②、商品供求结构性矛盾依然突出从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。三、 相关数据收集相关数据均来源于2006年《中国统计年鉴》:23个大中城市城镇居民家庭基本情况(表格)地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)北京 1.6 1.8 1865.1 1633.2 1187.9天津 1.4 2.0 2010.6 1889.8 939.8石家庄 1.4 2.0 1061.3 1010.0 722.9太原 1.3 2.2 1256.9 1159.9 789.5呼和浩特 1.5 1.9 1354.2 1279.8 772.7沈阳 1.3 2.1 1148.5 1048.7 812.1大连 1.6 1.8 1269.8 1133.1 946.5长春 1.8 1.7 1156.1 1016.1 690.2哈尔滨 1.4 2.0 992.8 942.5 727.4上海 1.6 1.9 1884.0 1686.1 1505.3南京 1.4 2.0 1536.4 1394.0 920.6杭州 1.5 1.9 1695.0 1464.9 1264.2宁波 1.5 1.8 1759.4 1543.2 1271.4合肥 1.6 1.8 1042.5 950.1 686.9福州 1.7 1.9 1172.5 1059.4 942.8厦门 1.5 1.9 1631.7 1394.3 998.7南昌 1.4 1.8 1405.0 1321.1 665.4济南 1.7 1.7 1491.3 1356.8 1071.4青岛 1.6 1.8 1495.6 1378.5 1020.7郑州 1.4 2.1 1012.2 954.2 750.3武汉 1.5 2.0 1052.5 972.2 853.1长沙 1.4 2.1 1256.9 1148.9 986.8广州 1.7 1.8 1898.6 1591.1 1215.1四、 模型的建立根据数据,我们建立多元线性回归方程的一般模型为:其中:——人均消费支出——常数项——回归方程的参数——平均每户就业人口数——平均每一就业者负担人口数——平均每人实际月收入——人均可支配收入——随即误差项五、实验过程(一)回归模型参数估计根据数据建立多元线性回归方程:首先利用Eviews软件对模型进行OLS估计,得样本回归方程。利用Eviews输出结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:08Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -1682.180 1311.506 -1.282633 0.2159X1 564.3490 395.2332 1.427889 0.1704X2 569.1209 379.7866 1.498528 0.1513X3 1.552510 0.629371 2.466766 0.0239X4 -1.180652 0.742107 -1.590947 0.1290R-squared 0.721234 Mean dependent var 945.2913Adjusted R-squared 0.659286 S.D. dependent var 224.1711S.E. of regression 130.8502 Akaike info criterion 12.77564Sum squared resid 308191.9 Schwarz criterion 13.02249Log likelihood -141.9199 F-statistic 11.64259Durbin-Watson stat 2.047936 Prob(F-statistic) 0.000076根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , ,从而初步得到的回归方程为:Se= (1311.506) (395.2332) (379.7866) (0.629371) (0.742107)T= (-1.282633) (1.427889) (1.498528) (2.466766) (-1.590947)F=11.64259 df=18模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。(二)处理多重共线性我们采用逐步回归法对模型的多重共线性进行检验和处理:X1:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:28Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 153.8238 518.6688 0.296574 0.7697X1 523.0964 341.4840 1.531833 0.1405R-squared 0.100508 Mean dependent var 945.2913Adjusted R-squared 0.057675 S.D. dependent var 224.1711S.E. of regression 217.6105 Akaike info criterion 13.68623Sum squared resid 994441.2 Schwarz criterion 13.78497Log likelihood -155.3917 F-statistic 2.346511Durbin-Watson stat 1.770750 Prob(F-statistic) 0.140491X2:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 1756.641 667.2658 2.632596 0.0156X2 -424.1146 347.9597 -1.218861 0.2364R-squared 0.066070 Mean dependent var 945.2913Adjusted R-squared 0.021597 S.D. dependent var 224.1711S.E. of regression 221.7371 Akaike info criterion 13.72380Sum squared resid 1032515. Schwarz criterion 13.82254Log likelihood -155.8237 F-statistic 1.485623Durbin-Watson stat 1.887292 Prob(F-statistic) 0.236412X3:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 182.8827 137.8342 1.326831 0.1988X3 0.540400 0.095343 5.667960 0.0000R-squared 0.604712 Mean dependent var 945.2913Adjusted R-squared 0.585888 S.D. dependent var 224.1711S.E. of regression 144.2575 Akaike info criterion 12.86402Sum squared resid 437014.5 Schwarz criterion 12.96276Log likelihood -145.9362 F-statistic 32.12577Durbin-Watson stat 2.064743 Prob(F-statistic) 0.000013X4:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:30Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 184.7094 161.8178 1.141465 0.2665X4 0.596476 0.124231 4.801338 0.0001R-squared 0.523300 Mean dependent var 945.2913Adjusted R-squared 0.500600 S.D. dependent var 224.1711S.E. of regression 158.4178 Akaike info criterion 13.05129Sum squared resid 527020.1 Schwarz criterion 13.15003Log likelihood -148.0898 F-statistic 23.05284Durbin-Watson stat 2.037087 Prob(F-statistic) 0.000096由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:X1、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:32Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -222.8991 345.9081 -0.644388 0.5266X1 289.8101 227.2070 1.275533 0.2167X3 0.517213 0.095693 5.404899 0.0000R-squared 0.634449 Mean dependent var 945.2913Adjusted R-squared 0.597894 S.D. dependent var 224.1711S.E. of regression 142.1510 Akaike info criterion 12.87276Sum squared resid 404138.2 Schwarz criterion 13.02087Log likelihood -145.0368 F-statistic 17.35596Durbin-Watson stat 2.032110 Prob(F-statistic) 0.000043X2、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:33Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 239.5536 531.1435 0.451015 0.6568X2 -27.00981 244.0392 -0.110678 0.9130X3 0.536856 0.102783 5.223221 0.0000R-squared 0.604954 Mean dependent var 945.2913Adjusted R-squared 0.565449 S.D. dependent var 224.1711S.E. of regression 147.7747 Akaike info criterion 12.95036Sum squared resid 436747.0 Schwarz criterion 13.09847Log likelihood -145.9292 F-statistic 15.31348Durbin-Watson stat 2.063247 Prob(F-statistic) 0.000093X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:34Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 331.7015 142.5882 2.326290 0.0306X3 1.766892 0.553402 3.192782 0.0046X4 -1.473721 0.656624 -2.244390 0.0363R-squared 0.684240 Mean dependent var 945.2913Adjusted R-squared 0.652664 S.D. dependent var 224.1711S.E. of regression 132.1157 Akaike info criterion 12.72634Sum squared resid 349091.0 Schwarz criterion 12.87445Log likelihood -143.3529 F-statistic 21.66965Durbin-Watson stat 2.111635 Prob(F-statistic) 0.000010由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。X1、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:37Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 193.6693 403.8464 0.479562 0.6370X1 89.29944 243.6512 0.366505 0.7180X3 1.652622 0.646003 2.558228 0.0192X4 -1.345001 0.757634 -1.775265 0.0919R-squared 0.686457 Mean dependent var 945.2913Adjusted R-squared 0.636950 S.D. dependent var 224.1711S.E. of regression 135.0712 Akaike info criterion 12.80625Sum squared resid 346640.3 Schwarz criterion 13.00373Log likelihood -143.2719 F-statistic 13.86591Durbin-Watson stat 2.082104 Prob(F-statistic) 0.000050X2、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:38Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 62.60939 489.2088 0.127981 0.8995X2 134.1557 232.9303 0.575948 0.5714X3 1.886588 0.600027 3.144175 0.0053X4 -1.596394 0.701018 -2.277251 0.0345R-squared 0.689658 Mean dependent var 945.2913Adjusted R-squared 0.640657 S.D. dependent var 224.1711S.E. of regression 134.3798 Akaike info criterion 12.79599Sum squared resid 343100.8 Schwarz criterion 12.99347Log likelihood -143.1539 F-statistic 14.07429Durbin-Watson stat 2.143110 Prob(F-statistic) 0.000046由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:Se= (142.5882) (0.553402) (0.656624)T= (2.326290) (3.192782) (-2.244390)F=21.66965 df=20(三).异方差性的检验对模型 进行怀特检验:White Heteroskedasticity Test:F-statistic 1.071659 Probability 0.399378Obs*R-squared 4.423847 Probability 0.351673Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/11/07 Time: 16:53Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 34247.50 128527.9 0.266460 0.7929X3 247.9623 628.1924 0.394723 0.6977X3^2 -0.071268 0.187278 -0.380548 0.7080X4 -333.6779 714.3390 -0.467114 0.6460X4^2 0.121138 0.229933 0.526841 0.6047R-squared 0.192341 Mean dependent var 15177.87Adjusted R-squared 0.012861 S.D. dependent var 23242.54S.E. of regression 23092.59 Akaike info criterion 23.12207Sum squared resid 9.60E+09 Schwarz criterion 23.36892Log likelihood -260.9038 F-statistic 1.071659Durbin-Watson stat 1.968939 Prob(F-statistic) 0.399378由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=30.1435,因为 < (5)= 30.1435,所以模型中不存在异方差。(四).自相关的检验由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平 =0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =1.543

关于我国城镇居民储蓄存款模型的计量经济分析 (我的姓名等信息就省略了啊 呵呵) 内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。 关键词:居民储蓄存款 实证分析 主要因素 一、问题的提出 1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。 二、文献综述 我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响: 1.收入因数 收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。 2.利息率 传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。 3.物价水平 物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。 4.收入分配 凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。 三、变量的选取及分析 目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。 由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。 四、数据及处理 本文模型数据样本为从1979-2002年。 年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数 1979 0.06368087 0.264869934 3.78 0.02 0.16 1980 0.08740586 0.220385089 5.04 0.059804 0.15 1981 0.07093626 0.104176446 5.4 0.024052 0.15 1982 0.08105586 0.139165412 5.67 0.01897 0.15 1983 0.09963501 0.093723563 5.76 0.015071 0.16 1984 0.13025584 0.245357008 5.76 0.027948 0.19 1985 0.15161502 0.184241122 6.72 0.08836 0.19 1986 0.17454542 0.280700971 7.2 0.060109 0.2 1987 0.2175453 0.167515864 7.2 0.072901 0.23 1988 0.17862152 0.219728929 7.68 0.185312 0.23 1989 0.2721202 0.199827095 11.12 0.177765 0.23 1990 0.32760614 0.123579703 9.92 0.021141 0.24 1991 0.31032443 0.163667824 7.92 0.028888 0.25 1992 0.3016907 0.228819425 7.56 0.053814 0.27 1993 0.3199061 0.311233327 9.26 0.131883 0.3 1994 0.42486435 0.397210898 10.98 0.216948 0.28 1995 0.44898036 0.261076104 10.98 0.147969 0.28 1996 0.40903477 0.198208003 9.21 0.060938 0.29 1997 0.30935015 0.127739779 7.17 0.007941 0.3 1998 0.25777978 0.108852141 5.02 -0.026 0.295 1999 0.21234608 0.134557035 2.89 -0.02993 0.3 2000 0.1239205 0.125688358 2.25 -0.01501 0.32 2001 0.24155306 0.14364071 2.25 -0.0079 0.33 2002 0.29897822 0.173106495 2.03 -0.01308 0.319 数据来源:各年份的《中国统计年鉴》 注:Y代表城镇居民储蓄率 X1代表城镇居民收入增长率 X2代表一年期储蓄利率 X3代表通货膨胀率 X4代表城镇居民基尼系数 五、模型及处理 基于以上数据,建立的模型是: Y=β1+β2X1+β3X2+β4X3+β5X4+u β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。 β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。 β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。 β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。 β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。 u是随机误差项。 对Y做回归 利用eviews最小二乘估计结果如下 Variable Coefficient Std. Error t-Statistic Prob. C -0.264646 0.045525 -5.813154 0.0000 X1 0.317426 0.175678 1.806864 0.0875 X2 0.024054 0.003688 6.523093 0.0000 X3 0.024476 0.205508 0.119099 0.9065 X4 1.127523 0.149318 7.551127 0.0000 R-squared 0.897971 Mean dependent var 0.234065 Adjusted R-squared 0.875298 S.D. dependent var 0.116109 S.E. of regression 0.041002 Akaike info criterion -3.360748 Sum squared resid 0.030260 Schwarz criterion -3.113901 Log likelihood 43.64860 F-statistic 39.60525 Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000 根据以上结果,初步得出的模型为 Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4. 1.经济意义的检验 该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。 2.统计检验 从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。 3.多重共线性的检验 从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到: Y=β1+β2X1+β3X2+β5X4+u Variable Coefficient Std. Error t-Statistic Prob. C -0.271487 0.041322 -6.570056 0.0000 X1 0.314787 0.113799 2.766177 0.0119 X2 0.024487 0.003178 7.704986 0.0000 X4 1.145280 0.137886 8.305987 0.0000 R-squared 0.897094 Mean dependent var 0.229740 Adjusted R-squared 0.881658 S.D. dependent var 0.115517 S.E. of regression 0.039739 Akaike info criterion -3.461967 Sum squared resid 0.031583 Schwarz criterion -3.265624 Log likelihood 45.54360 F-statistic 58.11739 Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000 从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。 因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4 4.异方差性检验 对新模型进行异方差性的检验,运用white检验,得到如下结果: White Heteroskedasticity Test: F-statistic 2.669433 Probability 0.054505 Obs*R-squared 11.50596 Probability 0.073942 Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。 5.自相关性的检验 从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d

最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测

计量经济学结课论文eviews

实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3289.18 3139 2225.701979 2 3581.26 3208 2376.341980 3 3782.17 3334 2522.811981 4 3877.86 3488 2700.901982 5 4151.25 3582 2902.191983 6 4541.05 3632 3141.761984 7 4946.11 3669 3350.951985 8 5586.14 3815 3835.791986 9 5931.36 3955 4302.251987 10 6601.60 4086 4786.051988 11 7434.06 4229 5251.901989 12 7721.01 4273 5808.711990 13 7949.55 4364 6365.791991 14 8634.80 4472 7071.351992 15 9705.52 4521 7757.251993 16 10261.65 4498 8628.771994 17 10928.66 4545 9374.34资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =(-0.252) (0.672) (0.781) (7.433) 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为7.433,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =(-2.922) (4.427) (14.533) 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为1.2085,资金的边际产出为0.8345,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于0.05,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = (-1.172) (2.217) (9.310) 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =(0.313)(-2.023)(8.647) 可以看出,模型4中劳动力弹性 =-1.01161,资金的产出弹性 =1.0317,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =(0.581)(2.267)(10.486) 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布

论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。下面按论文的结构顺序依次叙述。题目(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。署名(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。引言(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。材料方法(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。实验结果(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据、不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。讨论(六)论文——讨论是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。结论(七)论文——结语或结论论文的结语应写出明确可靠的结果,写出确凿的结论。论文的文字应简洁,可逐条写出。不要用“小结”之类含糊其辞的词。参考文献(八)论文——参考义献这是论文中很重要、也是存在问题较多的一部分。列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。一篇论文中几乎自始至终都有需要引用参考文献之处。如论文引言中应引上对本题最重要、最直接有关的文献;在方法中应引上所采用或借鉴的方法;在结果中有时要引上与文献对比的资料;在讨论中更应引上与论文有关的各种支持的或有矛盾的结果或观点等。

计量经济学论文可以研究的问题有多种,期中比较简单的就是根据数据,建立方程,研究变量之间的关系,主要运用的工具就是计量经济学的初等知识和Eviews软件,思路、要求和注意事项我觉得这么说对你的帮助不大,所以给你一篇我的论文做参考,也许对你有帮助,如果你觉得看的不是很明白的话,可以再留言给我,我把什么思路等告诉你。计量经济学期末实验报告实验名称:大中城市城镇居民人均消费支出与其影响因素的分析姓 名:学 号:班 级: ()级统计学系()班指导教师:时 间:(上面是论文封皮)23个城市城镇居民人均消费支出与其影响因素的分析(题目)一、 经济理论背景近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。二、 有关人均消费支出及其影响因素的理论我们主要从以下几个方面分析我国居民消费支出的影响因素:①、居民未来支出预期上升,影响了居民即期消费的增长居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。②、商品供求结构性矛盾依然突出从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。三、 相关数据收集相关数据均来源于2006年《中国统计年鉴》:23个大中城市城镇居民家庭基本情况(表格)地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)北京 1.6 1.8 1865.1 1633.2 1187.9天津 1.4 2.0 2010.6 1889.8 939.8石家庄 1.4 2.0 1061.3 1010.0 722.9太原 1.3 2.2 1256.9 1159.9 789.5呼和浩特 1.5 1.9 1354.2 1279.8 772.7沈阳 1.3 2.1 1148.5 1048.7 812.1大连 1.6 1.8 1269.8 1133.1 946.5长春 1.8 1.7 1156.1 1016.1 690.2哈尔滨 1.4 2.0 992.8 942.5 727.4上海 1.6 1.9 1884.0 1686.1 1505.3南京 1.4 2.0 1536.4 1394.0 920.6杭州 1.5 1.9 1695.0 1464.9 1264.2宁波 1.5 1.8 1759.4 1543.2 1271.4合肥 1.6 1.8 1042.5 950.1 686.9福州 1.7 1.9 1172.5 1059.4 942.8厦门 1.5 1.9 1631.7 1394.3 998.7南昌 1.4 1.8 1405.0 1321.1 665.4济南 1.7 1.7 1491.3 1356.8 1071.4青岛 1.6 1.8 1495.6 1378.5 1020.7郑州 1.4 2.1 1012.2 954.2 750.3武汉 1.5 2.0 1052.5 972.2 853.1长沙 1.4 2.1 1256.9 1148.9 986.8广州 1.7 1.8 1898.6 1591.1 1215.1四、 模型的建立根据数据,我们建立多元线性回归方程的一般模型为:其中:——人均消费支出——常数项——回归方程的参数——平均每户就业人口数——平均每一就业者负担人口数——平均每人实际月收入——人均可支配收入——随即误差项五、实验过程(一)回归模型参数估计根据数据建立多元线性回归方程:首先利用Eviews软件对模型进行OLS估计,得样本回归方程。利用Eviews输出结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:08Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -1682.180 1311.506 -1.282633 0.2159X1 564.3490 395.2332 1.427889 0.1704X2 569.1209 379.7866 1.498528 0.1513X3 1.552510 0.629371 2.466766 0.0239X4 -1.180652 0.742107 -1.590947 0.1290R-squared 0.721234 Mean dependent var 945.2913Adjusted R-squared 0.659286 S.D. dependent var 224.1711S.E. of regression 130.8502 Akaike info criterion 12.77564Sum squared resid 308191.9 Schwarz criterion 13.02249Log likelihood -141.9199 F-statistic 11.64259Durbin-Watson stat 2.047936 Prob(F-statistic) 0.000076根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , ,从而初步得到的回归方程为:Se= (1311.506) (395.2332) (379.7866) (0.629371) (0.742107)T= (-1.282633) (1.427889) (1.498528) (2.466766) (-1.590947)F=11.64259 df=18模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。(二)处理多重共线性我们采用逐步回归法对模型的多重共线性进行检验和处理:X1:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:28Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 153.8238 518.6688 0.296574 0.7697X1 523.0964 341.4840 1.531833 0.1405R-squared 0.100508 Mean dependent var 945.2913Adjusted R-squared 0.057675 S.D. dependent var 224.1711S.E. of regression 217.6105 Akaike info criterion 13.68623Sum squared resid 994441.2 Schwarz criterion 13.78497Log likelihood -155.3917 F-statistic 2.346511Durbin-Watson stat 1.770750 Prob(F-statistic) 0.140491X2:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 1756.641 667.2658 2.632596 0.0156X2 -424.1146 347.9597 -1.218861 0.2364R-squared 0.066070 Mean dependent var 945.2913Adjusted R-squared 0.021597 S.D. dependent var 224.1711S.E. of regression 221.7371 Akaike info criterion 13.72380Sum squared resid 1032515. Schwarz criterion 13.82254Log likelihood -155.8237 F-statistic 1.485623Durbin-Watson stat 1.887292 Prob(F-statistic) 0.236412X3:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 182.8827 137.8342 1.326831 0.1988X3 0.540400 0.095343 5.667960 0.0000R-squared 0.604712 Mean dependent var 945.2913Adjusted R-squared 0.585888 S.D. dependent var 224.1711S.E. of regression 144.2575 Akaike info criterion 12.86402Sum squared resid 437014.5 Schwarz criterion 12.96276Log likelihood -145.9362 F-statistic 32.12577Durbin-Watson stat 2.064743 Prob(F-statistic) 0.000013X4:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:30Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 184.7094 161.8178 1.141465 0.2665X4 0.596476 0.124231 4.801338 0.0001R-squared 0.523300 Mean dependent var 945.2913Adjusted R-squared 0.500600 S.D. dependent var 224.1711S.E. of regression 158.4178 Akaike info criterion 13.05129Sum squared resid 527020.1 Schwarz criterion 13.15003Log likelihood -148.0898 F-statistic 23.05284Durbin-Watson stat 2.037087 Prob(F-statistic) 0.000096由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:X1、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:32Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -222.8991 345.9081 -0.644388 0.5266X1 289.8101 227.2070 1.275533 0.2167X3 0.517213 0.095693 5.404899 0.0000R-squared 0.634449 Mean dependent var 945.2913Adjusted R-squared 0.597894 S.D. dependent var 224.1711S.E. of regression 142.1510 Akaike info criterion 12.87276Sum squared resid 404138.2 Schwarz criterion 13.02087Log likelihood -145.0368 F-statistic 17.35596Durbin-Watson stat 2.032110 Prob(F-statistic) 0.000043X2、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:33Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 239.5536 531.1435 0.451015 0.6568X2 -27.00981 244.0392 -0.110678 0.9130X3 0.536856 0.102783 5.223221 0.0000R-squared 0.604954 Mean dependent var 945.2913Adjusted R-squared 0.565449 S.D. dependent var 224.1711S.E. of regression 147.7747 Akaike info criterion 12.95036Sum squared resid 436747.0 Schwarz criterion 13.09847Log likelihood -145.9292 F-statistic 15.31348Durbin-Watson stat 2.063247 Prob(F-statistic) 0.000093X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:34Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 331.7015 142.5882 2.326290 0.0306X3 1.766892 0.553402 3.192782 0.0046X4 -1.473721 0.656624 -2.244390 0.0363R-squared 0.684240 Mean dependent var 945.2913Adjusted R-squared 0.652664 S.D. dependent var 224.1711S.E. of regression 132.1157 Akaike info criterion 12.72634Sum squared resid 349091.0 Schwarz criterion 12.87445Log likelihood -143.3529 F-statistic 21.66965Durbin-Watson stat 2.111635 Prob(F-statistic) 0.000010由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。X1、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:37Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 193.6693 403.8464 0.479562 0.6370X1 89.29944 243.6512 0.366505 0.7180X3 1.652622 0.646003 2.558228 0.0192X4 -1.345001 0.757634 -1.775265 0.0919R-squared 0.686457 Mean dependent var 945.2913Adjusted R-squared 0.636950 S.D. dependent var 224.1711S.E. of regression 135.0712 Akaike info criterion 12.80625Sum squared resid 346640.3 Schwarz criterion 13.00373Log likelihood -143.2719 F-statistic 13.86591Durbin-Watson stat 2.082104 Prob(F-statistic) 0.000050X2、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:38Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 62.60939 489.2088 0.127981 0.8995X2 134.1557 232.9303 0.575948 0.5714X3 1.886588 0.600027 3.144175 0.0053X4 -1.596394 0.701018 -2.277251 0.0345R-squared 0.689658 Mean dependent var 945.2913Adjusted R-squared 0.640657 S.D. dependent var 224.1711S.E. of regression 134.3798 Akaike info criterion 12.79599Sum squared resid 343100.8 Schwarz criterion 12.99347Log likelihood -143.1539 F-statistic 14.07429Durbin-Watson stat 2.143110 Prob(F-statistic) 0.000046由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:Se= (142.5882) (0.553402) (0.656624)T= (2.326290) (3.192782) (-2.244390)F=21.66965 df=20(三).异方差性的检验对模型 进行怀特检验:White Heteroskedasticity Test:F-statistic 1.071659 Probability 0.399378Obs*R-squared 4.423847 Probability 0.351673Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/11/07 Time: 16:53Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 34247.50 128527.9 0.266460 0.7929X3 247.9623 628.1924 0.394723 0.6977X3^2 -0.071268 0.187278 -0.380548 0.7080X4 -333.6779 714.3390 -0.467114 0.6460X4^2 0.121138 0.229933 0.526841 0.6047R-squared 0.192341 Mean dependent var 15177.87Adjusted R-squared 0.012861 S.D. dependent var 23242.54S.E. of regression 23092.59 Akaike info criterion 23.12207Sum squared resid 9.60E+09 Schwarz criterion 23.36892Log likelihood -260.9038 F-statistic 1.071659Durbin-Watson stat 1.968939 Prob(F-statistic) 0.399378由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=30.1435,因为 < (5)= 30.1435,所以模型中不存在异方差。(四).自相关的检验由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平 =0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =1.543

答:我有用stata做计量实证分析的时间序列论文,数据是最近两个月的,有需要可以考虑。

计量经济学经济学论文题目

对我国城乡居民收入差距的剖析\x0d\x0a经济增长质量评价研究\x0d\x0a对**国际旅游收入的预测与分析\x0d\x0a旅游产业区域竞争力评价分析\x0d\x0a++省农业产业增长与结构调整研究\x0d\x0a++省居民消费行为研究\x0d\x0a++省经济增长模式与结构调整路径研究\x0d\x0a城市化对泛珠三角区域经济增长的影响研究\x0d\x0a市场化对泛珠三角区域经济增长的影响研究\x0d\x0a城市化对泛珠三角区域居民消费的影响研究\x0d\x0a市场化对泛珠三角区域居民消费的影响研究\x0d\x0a科技体制改革对泛珠三角区域经济增长的影响研究\x0d\x0a产出增加效益对泛珠三角区域经济增长的影响研究\x0d\x0a投入节约效益对泛珠三角区域经济增长的影响研究\x0d\x0a外商直接投资对海南旅游业的影响分析\x0d\x0a++旅游产业对海南经济发展的贡献分析\x0d\x0a++旅游经济发展水平与旅游资源禀赋影响研究\x0d\x0a++旅游增长和房地产投资的相关性分析\x0d\x0a++城乡居民的经济收入与旅游消费关系的定量分析\x0d\x0a++旅游业的评价及旅客满意度调查\x0d\x0a++各市县旅游经济差别研究\x0d\x0a城镇居民消费状况研究\x0d\x0a大学生心理问题问卷分析\x0d\x0a大学生电脑需求分析\x0d\x0a++国际旅游产业结构分析\x0d\x0a++旅游收入分析\x0d\x0a++经济发展长期趋势分析\x0d\x0a++各市县经济效益分析\x0d\x0a农民人均收入和支出因素分析 \x0d\x0a农民家庭收入影响因素分析\x0d\x0a. 证券投资的影响因素分析\x0d\x0a中国人口年龄结构变化与养老问题研究\x0d\x0a对我国投资与经济增长相互关系的研究\x0d\x0a区域产业竞争力分析\x0d\x0a工业企业科技竞争力综合评价\x0d\x0a居民消费结构变动分析\x0d\x0a上市公司财务状况的综合评价研究\x0d\x0a关于企业投资项目的绩效评价研究\x0d\x0a试论层次分析法在新农村建设评价中的应用\x0d\x0a关于改善统计学专业就业问题的教育取向研究\x0d\x0a试论企业盈利预测及其可靠性分析\x0d\x0a上市公司盈利预测的可靠性和离散性的统计分析\x0d\x0a关于企业内部绩效统计评价的探讨\x0d\x0a试论投入产出技术在经济结构统计中的应用\x0d\x0a旅游经济动向预测方法的探析

出生活1978年,

我国旅游经济的因素分析我国旅游业发展状况分析我国居民消费增长模型我国经济增长与周期波动我国经济增长对能源消耗的依赖公共投资取向与经济增长分析三大产业的发展与城镇居民家庭消费支出餐饮业区域市场潜力的影响因素分析资本结构主要影响因素的再探析国债发行规模的计量经济分析工资收入差异分析城镇人均收入与人均通讯消费分析影响居民消费水平的因素分析影响就业人数的因素的计量分析影响大学生就业问题的因素分析影响股价指数的因素分析影响我国电力产量的因素分析影响中国汽车产量的多因素分析私家车拥有量的计量分析我国汽车需求的因素分析

对我国经济增长的因素分析

关于教育对中国经济增长作用的计量分析

关于司机年龄与发生车祸次数关系的分析

改革开放以来商品零售价格指数(RPI)变化因素分析

固定资产投资对GDP的影响

关于GDP与其他经济因素关系的计量分析

吉尼系数影响因素的计量分析

我国旅游经济的因素分析

试探交通运输发展与国民经济的关系

我国1978-1997年的财政收入和国民生产总值的计量分析

我国经济增长对能源消耗的依赖

投资额与生产总值和物价指1

外商直接投资(FDI)对我国经济影响的实证分析

影响居民消费水平的因素分析

我国人均GDP与消费的计量分析

有关我国居民储蓄影响因素的计量分析

新中国出口的影响因素分析

影响股价指数的因素分析

影响居民消费水平的主要因素分析

我国消费的影响因素分析

中国能源需求影响因素实证分析

中国经济增长与周期波动

中国旅游业发展状况分析

中国城市居民消费计量分析

对上市公司利用新四项计提进行盈余管理的实证研

对影响人身保险保费收入诸因素的计量分析

餐饮业区域市场潜力的影响因素分析

FDI对中国经济增长的影

城镇居民住房面积的多因素分析

关于影响我国南方几省市农业总产值因素的实证分析

关于国内旅游需求的计量经济学分析报告

如何提高农业产值和农民人均收入水平

宏观经济政策对中国经济周期波动的影响分析

三大产业的发展与城镇居民家庭消费支出

上市公司财务预警模型设计与分析

货币政策有效性分析

外资利用与我国进出口贸易关系的实证分析

我国采矿业龙头企业利润因素分析

我国农民收入影响因素的回归分析

2021计量经济学论文

城乡收入差距的因素分析 大学生手机预期消费的计量经济模型 第二产业国内生产总值对固定资产投资的影响分析 第二产业GDP形成的因素分析 各因素对高新技术区发展的影响 基于Hedonic模型的成都住宅价格影响因素分析 关于自筹资金对基本建设投资资金的影响 关于中国旅游发展的分析 关于GDP与固定资产投资的计量经济模型分析 国内工业固定资产和劳动就业人数对工业产值的影响 倒“U”曲线及顶点分析 金融发展与经济增长的关系 失业率对中国国内生产总值的影响 人力资本和实物资本对企业利润的影响分析 人力资本投入与GDP 实证库兹涅茨倒U曲线中国实现 农村剩余劳动力转化途径与农民收入增加的关系分析 农村居民收入影响因素分析 利率及收入对货币供应量的影响 我国房地产行业的生产函数模型 我国改革开放后通货膨胀的因素分析 我国房地产市场影响因素分析 我国居民储蓄影响因素的实证分析 我国居民收入对储蓄存款的影响 适度扩大M2能提高我国GDP 四川省农民收入结构分析 四川省居民消费水平影响因素的分析 影响农民收入的因素分析 信息时代的城镇对比 影响国内私人汽车拥有量的几个重要因素分析 影响成都市机动车总数因素的定量分析 影响我国国内过夜旅游者人数因素的计量分析 影响电信业务收入的主要因素的分析 影响货币需求的因素分析 用误差校正模型研究季度M1需求 政府对公共卫生事业的投资与国民经济增长关系的计量分析 由弹性价格货币模型论中国汇率和利率的联动性 中国资本外逃的成因解释与计量分析 中国的菲利普斯曲线 中国城乡人口流动趋势分析 中国外汇储备的影响因素分析 中国校正失业变化率条件下的奥肯定律检验 菲利普斯曲线的验证 对我国经济增长的因素分析 恩格尔系数模型检验 地区人均收入影响因素的计量分析 成都市投资额影响因素的实证分析 关于司机年龄与发生车祸次数关系的分析 固定资产投资对GDP的影响 改革开放以来商品零售价格指数(RPI)变化因素分析 关于GDP与其他经济因素关系的计量分析 关于教育对中国经济增长作用的计量分析 吉尼系数影响因素的计量分析 我国经济增长对能源消耗的依赖 我国旅游经济的因素分析 投资额与生产总值和物价指1 外商直接投资(FDI)对我国经济影响的实证分析 试探交通运输发展与国民经济的关系 我国1978-1997年的财政收入和国民生产总值的计量分析 影响居民消费水平的因素分析 影响居民消费水平的主要因素分析 新中国出口的影响因素分析 有关我国居民储蓄影响因素的计量分析 我国消费的影响因素分析(经济2班) 我国人均GDP与消费的计量分析 影响股价指数的因素分析 中国经济增长与周期波动 中国能源需求影响因素实证分析 中国旅游业发展状况分析 中国城市居民消费计量分析 FDI对中国经济增长的影1 城镇居民住房面积的多因素分析 对影响人身保险保费收入诸因素的计量分析 餐饮业区域市场潜力的影响因素分析 对上市公司利用新四项计提进行盈余管理的实证研 关于国内旅游需求的计量经济学分析报告 关于影响我国南方几省市农业总产值因素的实证分析 三大产业的发展与城镇居民家庭消费支出 上市公司财务预警模型设计与分析 宏观经济政策对中国经济周期波动的影响分析 如何提高农业产值和农民人均收入水平 货币政策有效性分析 私家车拥有量的计量分析 四川省居民消费水平的多因素分析 我国采矿业龙头企业利润因素分析 我国财产保险市场发展的因素分析 外资利用与我国进出口贸易关系的实证分析 我国国债挤出效应的实证分析 我国农民收入影响因素的回归分析 影响保费收入的因素分析 我国汽车需求的因素分析 影响GDP增长的经济因素分析 影响人身保险保费收入的重要因素分析 影响我国农业总产值因素的实证分析 影响寿险保费收入的因素分析2 影响四川省房地产业发展的因素分析 影响中国汽车产量的多因素分析 中国经济增长的影响因素实证分析 中国城镇居民2003年可支配收入分析 资本结构主要影响因素的再探析 在校学生总数变动的多因素分析 运用OLS法对参数估计 中国上市公司现金股利的影响因素分析 中国农业总产值问题的计量分析 GDP与进出口总额的计量分析 城市住房均衡价格供求模型 城镇集体单位固定资产投资对国内生产总值的影响分析 城镇人均收入与人均通讯消费分析 NBA球员薪金问题 北京城市居民消费函数模型分析 北京市城镇居民消费函数模型 成都市05年度住宅市场定价模型 北京市城镇居民消费模型 北京市居民消费函数模型(巫君荣杨三冠等) 店铺租金的确定 对成都市房地产市场的实证考察 对影响某高校研究生录取线的爽因素分析 对外贸易与四川经济增长关系实证分析 工业产值与能源耗量的实证分析 发展中国家货币需求模型 固定资产投资对贵州GDP影响分析 固定资产投资的计量经济学模型 工资收入差异分析 房地产价格因素分析 货币政策与GDP的回归分析. 关于封闭式基金价格问题 关于社会商品零售总额的案例分析 开放经济下储蓄、投资与贸易余额关系的研究 我国财政收入与部分支出结构 四川省居民消费结构计量分析请采纳答案,支持我一下。

一、 研究的目的要求 税收是我国财政收入的基本因素,也影响着我国经济的发展。取得财政收入的手段有多种多样,如税收、发行货币、发行国债、收费、罚没等等,而税收则由政府征收,取自于民、用之于民。经济是税收的源泉,经济决定税收,而税收又反作用于经济,这是税收与经济的一般原理。这几年来,中国税收收入的快速增长甚至“超速增长”引起了人们的广泛关注。科学地对税收增长进行因素分析和预测分析非常重要,对研究我国税收增长规律,制定经济政策有着重要意义。。 改革开放以来,中国经济高速增长,1978-2008年的31年间,国内生产总值从3645.2亿元增长到314045亿元,一跃成为世界第二大经济体。随着经济体制改革的深化和经济的快速增长,中国的财政收支状况也发生了很大的变化,中央和地方的税收收入1978年为519.28亿元,到2008年已增长到54223.79亿元,31年间平均每年增长16.76%。税收作为财政收入的重要组成部分,在国民经济发展中扮演着不可或缺的角色。为了研究影响中国税收增长的主要原因,分析中央和地方税收收入的增长规律,以及预测中国税收未来的增长趋势,我们需要建立计量经济模型进行实证分析。 影响税收收入的因素有很多,但据分析主要的因素可能有:①从宏观经济看,经济整体增长是税收增长的基本源泉,而国内生产总值是反映经济增长的一个重要指标。②公共财政的需求,税收收入是财政收入的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算支出所表现的公共财政的需求对当年的税收收入可能会有一定影响。③物价水平。我国的税制结构以流转税为主,以现行价格计算的GDP等指标和经营者的收入水平都与物价水平有关。④税收政策因素。我国自1978年以来经历了两次大的税制改革,一次是1984~1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。税制改革对税收增长速度的影响不是非常大。因此,可以从以上几个方面,分析各种因素对中国税收增长的具体影响。 为了全面反映中国税收增长的全貌,我们选用“国家财政收入”中的“各项税收”(即税收收入)作为被解释变量,反映税收的增长;选择“国内生产总值”(即GDP)作为经济整体增长水平的代表;选择“财政支出”作为公共财政需求的代表;选择“商品零售价格指数”作为物价水平的代表。另外,由于财税体制的改革难以量化,而且从数据上看,1985年以后财税体制改革对税收增长影响不是很大,在此暂不考虑税制改革对税收增长的影响摘之文库,你可以去看下。

本科计量经济学论文

计量经济学实验教学在发挥学生实际操作能力这一方面起到了关键的作用。那么,本科计量经济学如何教学呢?

一、目前计量经济学实验教学过程中存在的问题

计量经济学是集经济学、数学、统计学的综合性学科,强调理论基础、实践操作和统计软件运用三者的有机结合,是一门应用性较强的课程。大多数教师在计量经济学试验教学过程中,缺乏完整的实验教学计划和实验指导书,不利于培养的学生综合能力。而且,实施素质教育的重点是培养学生的创新精神和实践能力。随着经济理论的发展和完善进步,计量经济学研究的是现实经济问题,因此必须以对经济现象的深入认识为基础,必须在经济理论下进行。但是,目前在实验教学过程中,普遍存在以下一些共性的问题。

(一)教学层次不明确,满足不了不同层次的需求当前,计量经济学教学中普遍存在重理论体系学习、轻实际应用能力培养的通病。教师在授课中对数学推导和数学知识讲授较多,而实验课程相对简单,且理论方法教学与经济问题实例分析、软件教学相分离。因此,计量经济学的实验教学环节与理论方法教学内容的衔接、理论与实践的课时安排、实验项目设计、软件能力培养等方面的试验教学环节严重脱节。有些学校由于教学条件和设施较差,特别是缺少经验丰富的试验师资力量,在计量经济学教学中,只进行理论教学,在教学内容和时间衔接方面经常脱节。这种教学模式的教学效果不是很好,导致理论和实验成为独立而不易协调的两个教学过程,学生运用软件的实际操作训练相对薄弱,达不到实验教学与理论教学相结合的目的。由于计量经济学已形成了一个庞大的学科体系,通常被人们分为理论计量经济学与应用计量经济学,并根据内容深度分为初级、中级和高级计量经济学课程。现在各层次教学的分工与衔接往往存在问题。实验教学常常被当成理论教学的附属品,试验方法与实例的结合不够。在计量经济学的教材和课程讲授中,结合实例分析和应用较少,许多学生学习完这门课程之后,不知道如何用于解决实际问题,很快就将所学习的内容遗忘了。

(二)理论教学层次模糊,没有实验教学层次感无论是面对专业知识较为薄弱的本科生,还是已经具备一定基础的研究生,计量经济实验教学均采用相似的教学方式和教学思维。即任课教师先讲理论和方法,最后留点时间来讲案例解析和软件使用,或者根本就不讲软件,也不进行上机操作,或者直接放羊式地让学生上机操作。这样就很难让学生通过实验操作去发现新问题,得到新启示。这样的'实验教学也很难发挥出学生的自主性和兴趣。实验教学层次感没有得到体现,使得理论学习和实践学习相脱离,学生不能很好地消化所学知识。

(三)实验课程设计机制不完善自主性试验方案的设计,试验材料的准备,试验进程和实验时间的自主安排是实验课程设置不可缺少的环节。然而,目前我们要求学生上交的实验报告,是结合教材上已有案例为基础,没有把撰写试验课程论文作为课程考核的重要部分,也没有将课程考核方式改为课堂测试、上机操作、论文写作三者形式相结合,并分别赋予70%、10%、20%的权重进行综合评定期末成绩。再加之实验教学报告,导致学生只需简单的模仿,甚至是抄袭,完全背离了最初的实验教学目的。

二、计量经济学开放式实验教学目的、要求及内容安排

(一)开放式实验教学的目标和基本要求即原理验证性实验与研究设计性实验相结合。开放式实验不仅使学生通过自己具体实验、实际操作来帮助学习、巩固书本知识,加深对概念、规律的深刻理解,更重要的是试验中的困难磨炼学生的意志。开放式实验是调动学生学习积极性、主动性,培养学生实验技能、发展学生创造精神的有效途径。同时,也能丰富理论教学课堂内容,吸引学生参与积极性。计量经济学的试验教学为现实中经济问题的研究提供坚实的理论基础和完整的分析工具。开放式实验可以群策群力,结合教材和教学研制教具、学具与仪器,密切教材与教学实际,适合教材多变性,是解决仪器不足的有效途径。因此,计量经济学实验教学的目标,在于通过实验教学使得教师能够:

(1)编制好试验教学计划和软件使用说明书,为学生进行自主开放式试验操作创造条件。

(2)将学生进行分组,形成多个研究小组,一般由6-8人组成,每组制定一个负责人负责小组日常的学习管理,查找资料,上机时间安排以及撰写试验报告等,使得学生形成团队精神,相互帮组和启迪,更好地来解决实际问题。

(3)详细安排好每次试验内容。一般给每个小组指定一个与所讲内容相关的研究课题,往往是现实的社会热点经济问题,可以引起他们研究的兴趣,让学生参阅已有的实际建模报告和分析报告,使学生受到启发做到心中有数,并在教师的指导下完成实验课程。

通过教师试验教学,学生可以受益并能够:

(1)熟练使用各种软件,比如EViews、SPSS、SAS或者Statistics等。

(2)运用所学的计量经济学理论方法,构建各因素之间关系的计量经济模型,了解和掌握建立计量经济模型的过程和要求。

(3)掌握利用统计软件进行数据处理、参数估计和检验,培养学生研究和实际工作的能力,提高学生的综合素质。

(4)认真完成模型的参数估计和各类检验,建立完整的计量经济模型。开放式试验教学模式不同于普通的试验教学模式,它对任课教师提出了更高的教学要求,重点介绍计量经济方法、计算结果的统计与经济意义分析,详细介绍计算机软件操作步骤,帮助学生理解计算结果,学会计算操作。教师要认真编写好试验教学大纲、试验教学计划和软件指导说明书。计量经济学实验是将计量经济学理论应用于实践的重要环节,是理论教学的延续。教师在讲授相关理论与方法的同时,要注重培养学生动手处理实际问题的能力,提高学生运用计量经济学知识的素质。

(二)高效开放式实验教学内容的调整和选择从培养应用型人才的实际出发,对计量经济学试验教学内容加以调整和选择,必须以理论教学内容为基础,以统计软件为工具,其教学内容的选择,根据理论教学的内容,结合统计软件学习过程的阶段性特点,合理制定实验内容。一般来说,分为选做和必做两类。其中,实验内容必做对应经济学各专业本科《计量经济学》的基本内容,即必须进行的实验项目。在条件许可的情况下,教师最好根据学校的实际情况,编写适应本校学生的试验指导书。指导书内容不求内容的深度和全面,适用最好。对某些已经先期开设了统计软件基础课程的专业,实验项目的作用在于对所学过的知识进行简单回顾,因此确定为“选做”项目。在具体的实验教学过程中,教师可根据各专业的具体情况,对试验内容实现变革式的改编,进行适当的割舍和学时上的调整。

三、开放式实验教学的时间安排与考核方式

(一)开放式实验教学的时间安排在教学时间安排上,理论教学和实验教学应统筹规划,由任课教师自主根据理论教学的进度来合理安排实验教学时间,合理安排课程讲授的先后顺序,优化课程结构,并按照“少而精”的原则安排教学内容。根据我们的经验,试验课程安排在每一章节理论课程授完之后马上进行,结合理论课程给出设计性的试验,提高学生的综合应用能力和实际分析能力。即每章的理论教学完成之后,紧接一次实验教学,由教师结合例题讲授和演示理论方法的软件实现,安排学生完成布置的案例分析。而教师则对各个单项的操作练习进行即时的现场讲解和点评。这种实践型试验教学模式有利于学生加深对理论知识的理解和掌握。

(二)开放式实验教学的考核评价方式开放式实验教学实验成绩由实验报告、实验考勤、实验操作抽查三部分构成。评价成绩具体由实验报告来体现,学生在完成每一个实验后根据上机操作结果写出相应的实验报告。教师可根据每个小组日常的实验工作量和实验报告质量,评定实验报告成绩。每个小组要选择一个针对理论教学的研究课题。这些研究课题往往是现实的社会经济问题。计量经济学课程的最终成绩由三个部分组成,即理论知识考试成绩、上机实验考试成绩和实验报告成绩。上机操作是对教师指定的案例进行操作和分析,并解决相关实际问题,对研究过程进行阐述,并接受教师和同学的提问。这种考核方式有助于考查学生对计量经济理论、方法的理解程度和应用能力,也培养了学生的口头表达能力。而且,采用这种考核方式学生不易作弊,从而能够较准确地判断学生的实际操作能力。

四、结论

计量经济学实验教学在发挥学生实际操作能力这一方面起到了关键的作用。而开放式的实验教学模式的实施,能够进一步发挥学生的主观能动性和探索性。开放式试验教学这种不局限于“计量经济学”专业基础理论的教学模式,真正做到了以学为主,是培养跨学科、宽口径的实践型、创新型专业人才的必由之路。通过实验教学的实施,学生形成了一定的运用计量模型分析和解决实际经济问题的习惯或能力。通过开放式试验教学模式改革,可以建立培养学生定量分析能力的机制,能有效提高本科计量经济学的教学质量和学习效率。开放式试验教学模式既可以保证学生能够深入理解知识,并能够使学生进一步掌握计量经济学的基本理论和方法,进而可以培养学生发现问题、思考问题和运用计量经济学方法分析问题的能力。开放式试验教学能够建立专门机制支持教师在传授书本知识的过程中积极探索培养学生定量分析动手能力的方法,利于提高学生的综合素质。

  • 索引序列
  • eviews计量经济学论文
  • 计量经济学eviews论文
  • 计量经济学结课论文eviews
  • 计量经济学经济学论文题目
  • 2021计量经济学论文
  • 返回顶部