首页 > 期刊投稿知识库 > 真空断路器操作过电压的研究论文

真空断路器操作过电压的研究论文

发布时间:

真空断路器操作过电压的研究论文

真空断路器操作过电压对电机产生的危害及其所采取的措施论文

[摘 要] 通过对真空断路器操作过电压的产生机理以及我国目前生产的保护设备的技术参数的分析计算,提出了真空断路器产生截波过电压对电机产生的危害及其所采取的措施,以及装设过电压保护器后对电机产生的影响,特别在电机回路中应用真空断路器时,除具有完善的保护措施外,还应注意一些其它问题,使真空断路器的优良性能得到充分发挥。

[关键词] 真空断路器 操作过电压 电机 回路 危害性 对策

近年来,真空断路器在电力系统中应用越来越广泛,由此而产生的一些问题也引起人们的关注。由于真空断路器在截流、重燃或三相断开时会产生操作过电压,其操作过电压幅值可以使电机等设备绝缘击穿,相间导体闪路,引起事故扩大,造成不应有的损失,人们逐渐认识到这种危害的严重性,于是开发出了多种用于限制真空断路器操作过电压的设备,如金属氧化物避雷器、阻容吸收器、组合式过电压保护器等产品,但由于选用不当或保护设备技术性能的不适用或未考虑被保护设备的特殊情况,运行时的事故仍时有发生。

1、真空断路器操作过电压对电机产生的危害

在真空断路器前后两侧均存在着电感、电容,电感则为电机的等效电感和导体及变压器的等效电感; 电容为导体对地及相间的等效电容、电机的等效电容等。真空断路器开断电机回路时产生截流过电压、多次重燃过电压及三相同时截流过电压等三种危害。

1、1截流过电压

由于真空断路器有良好的灭弧性能,当开断小电流时,真空电弧在过零前就会熄灭,由于电流被突然切断,其滞留于电机等电感绕组中的能量必然向绕组的杂散电容充电,转变为电场能量。对于电机和变压器,特别是空载或容量较小时,则相当于一个大的电感,且回路电容量较小,因此会产生大的过电压,特别是开断空载变压器时更危险。从理论上讲可以产生很高的过电压,但由于触头和回路中有一定的电阻产生损耗以及发生击穿,对过电压值有相当的抑制作用,但这种抑制作用是有限的,不能消除在切断小电流时出现的过电压。因此特别对感应负载在采用真空断路器作为操作元件时,应加装过电压保护设备。

1、2多次重燃过电压

多次重燃过电压是由于弧隙发生多次重燃,电源多次向电机电容进行充电而产生的。在真空断路器切断电流的过程中,触头的一侧为工频电源,另一侧为LC回路充放电的振荡电源,如果触头间的开距不够大,两个电压叠加后就会使弧隙之间发生击穿,断路器的恢复电压就会升高。如果触头开距增的不够大,就会发生第二次重燃,再灭弧,再重燃以致发生多次重燃现象,多次的充放电振荡,触头间的恢复电压逐级升高,负载端的电压也不断升高,致使产生多次重燃过电压,损坏电气设备。实验证明,电机匝间绝缘的损坏主要是由于真空断路器多次重燃引起的电压逐级升高造成的,特别是在切断电机的'启动电流时极易发生过电压。

1、3三相同时开断过电压

三相同时开断过电压是由于断路器首先开断相弧隙产生重燃时,流过该相弧隙的高频电流引起其余两相弧隙中的工频电流迅速过零,致使未开断相随之被切断,在其他二相弧隙中产生类似较大水平的截流现象,从而产生更高的操作过电压,所产生的过电压是加在相与相之间的绝缘上。在开断中小容量电机或轻负载情况下容易出现三相同时开断电压。

2、电机回路中应用真空断路器应采取的措施

由于电机绕组存在较大的电感量,以及绕组的匝间电容、对地电容和杂散电容的存在,相当于一个LC振荡回路,根据真空断路器操作过电压产生的机理,当切断小电流时容易产生过电压危害电机绝缘及回路电器设备,因此必须采取措施限制操作过电压,以保护电气设备能安全可靠地运行,同时扩大真空断路器的应用范围。目前国内采取的措施有装设金属氧化物避雷器(MOA)、三叉戟过电压保护器(TBP)、组合式过电压保护器(JPB)等,以上三种设备均采用氧化锌阀片作为主要元件,各保护设备的主要技术参数如表1所示。

式中,K为冲击系数,取K=1.15

对6kV电动机和6.3kV发电机,Us=15.9~16.6(kV)

对10kV电动机和10.5kV 发电机,Us=25.6~26.8(kV)

电机运行时的试验电压: Us′=1.5Ue

对6kV电机,Us′=9kV(有效值),冲击值Us″=12.7kV

对10kV电机,Us′=15kV(有效值),冲击值Us″=21.2kV

根据绝缘配合规程的要求,耐受电压水平最小应超出保护水平15%,同时由于在10kV及以下系统中不接地或经过消弧线圈接地,且当发生单相接地时,健全相电压升至线电压,并允许运行2h,这种情况下将使避雷器严重过热而损坏。从电机试验电压计算值及表中所列的保护水平看,MOA避雷器保护电机的水平最差,TBP和JPB虽好于MOA,但裕度太小,保护性能仍不理想,因此,当真空断路器产生操作过电压时,不能很好地保护电机。

目前有些厂家研制并生产了旨在限制真空断路器操作过电压危及电机绝缘的新产品RC阻容吸收器,它可使绝大多数电路的操作过电压降至电源电压峰值的2~2.5倍以下。目前有三种形式的RC保护器,即中性点直接接地的普通型RC保护器; 中性点不接地型RC保护器; 双路RC过电压保护。普通型RC保护器存在着当单相短路时电容电流过大导致馈电回路全部跳闸,特别对于有高频分量的场所,使得RC保护器电阻烧损; 不接地RC保护器虽然解决了因电容电流过大而跳闸以及烧电阻的问题,但对于相对地之间的高频振荡没有消除,使得事故发生率略高;双路RC过电压保护器既解决了对地电路中的高频振荡,又解决了对地电流过大和R-C装置电阻烧损问题。

但是不管哪种RC保护器,当它应用在不接地系统中时,按规程要求在电容电流不大于3~4A时,可带负荷运行2h,其RC回路中的电容无疑增大了回路的电容电流,如果超过或接近规程规定值则可能需要装设消弧线圈或接地电阻,增加了设备和投资,因此应对其进行正确分析和选用。

根据各厂家的资料,RC装置中电容量为0.1μF,电阻为100Ω,其容抗为Xc=1/ωC,ω=2πfn。其电容电流在10kV回路中为:

Ic=Ue/Xc=Ue2πfnC

=10×2×3.14×50×0.1

=0.32(A)

在6kV回路中电容电流为:

Ic=6×2×3.14×50×0.1=0.2(A)

从以上计算可知,每台RC装置的电容电流将达到0.2~0.32A之间。如果在一条母线上连接着5~10台RC装置,再加上电机回路的电容电流有可能超过规程规定的允许值,则在电机中性点必须装设消弧线圈或电阻以保护设备的安全运行。因此,在电机回路特别是在发电机回路中选择设备时,不仅要考虑电机回路的电容电流,同时要考虑分支回路的对地电容和用于保护真空断路器的RC装置的电容电流,这一问题往往被设计人员及厂家、运行管理人员所忽视。

3、发电机回路中应用真空断路器应注意的一些问题

目前生产的真空断路器大多数为普通配电型真空断路器,已有不少单位在一些中小水电机组、电机回路和企业小型机组中广泛采用,用户也感到比使用少油断路器简单、方便、无维护工作量、尺寸小、安装更换快等优点,也考虑了装设过电压保护装置。即使这样,在发电机回路中装设普通配电型真空断路器仍存在一些缺点和不足①发电机随着运行时间的延长,其绝缘水平逐渐下降,真空断路器的操作过电压与电机的绝缘水平配合几乎没有多少裕度; ②发电机回路断路器的技术性能要求比较严格,使用条件严酷,如切断直流分流标准要求发电机断路器切断直流分量值为大于60%或80%的额定开断电流,普通配电型真空断路器很难达到; ③由于发电机本身的电容量(水轮发电机大于汽轮发电机),加上较长的引出线及分支线产生的电容量,如果使用RC过电压保护器,还应加上保护器的电容量,使在发生单相接地时电容电流较大,就会引起不必要的跳闸或在中性点增加设备(如消弧线圈、接地电阻等),从而会引起断电保护复杂化。

在工程的初步设计阶段,重要的工作之一就是设备选型,为了选择合适的设备有必要对发电机的电容电流作出初步估算。计算发电机电容值有多个不同的公式,有些则需应用电磁计算的有关参数,在初步设计时应用受到一定的限制,因此可采用比较简单的美国GE公司的计算公式:

Cf=3KdSn/ √Un(1+0.08Un)

式中: Kd为对有阻尼的凸极电机取0.0317; Sn为发电机容量; Un为发电机额定电压。

求得发电机的电容后,可根据发电机的额定相电压Ux求得电机的电容电流: Icr=ωCfUx×10-6

式中: Ux为发电机额定相电压(V)。

通过对发电机回路电容电流的计算,以及其他条件,可确定发电机回路是否采用真空断路器,若采用真空断路器,采用何种限制操作过电压的措施,以及确定发电机中性点接地方式。

4、结语

通过对真空断路器操作过电压的产生机理以及我国目前生产的保护设备的技术参数的分析和计算,指出了在电机回路中装设真空断路器时,必须有完善的保护设备来限制真空断路器的操作过电压,更好地保护主设备,才能不断地扩大真空断路器的使用范围,使电力系统安全、可靠、经济地运行。特别是在发电机回路中使用真空断路器时,更要慎重,不可盲目使用,除具有完善的保护措施外,还要考虑其绝缘水平配合、发电机回路的电容电流、切断直流分量的要求等因素,使真空断路器的优良性能得到充分发挥。

参 考 文 献

1.王秀梅等.真空断路器.北京: 机械工业出版社.1983

2.电机工程手册.北京: 机械工业出版社.1997

3.张文渊.真空断路器合闸弹跳的危害性及对策.电气时代.2001(11)

4.谢书勇.在电网中运行的真空断路器的操作过电压.高压电器.1997(3)

5.穆建新.真空断路器在电机回路中的应用.中国农村水利水电.2001(6)

综述真空断路器存在的问题处理及预防措施论文

摘要:本文针对真空断路器在运行、检修中出现的问题进行分析。并提出了处理方法和预防措施。

关键词:检修故障预防处理

1断路器的工作原理

真空断路器利用真空中电流过零点时,等离子体迅速扩散而熄灭电弧,达到切断电流的目的。真空灭弧室是真空断路器的主要部件,开关寿命长短决定于触头的磨损和灭弧室真空度,真空度是真空断路器的重要技术指标。

2断路器真空泡真空度降低

2.1原因分析

2.1.1真空泡的材质或制作工艺存在问题,真空泡本身存在微小漏点。

2.1.2真空泡内波形管的材质或制作装配工艺存在问题,随着真空灭弧室使用时间的增长和开断次数的增多,其真空度逐步下降,下降到一定程度将会影响其开断能力和耐压水平。

2.1.3分体式真空断路器,如使用电磁式操作机构的真空断路器,在操作时,由于操作连杆的传动距离比较大,直接影响开关的同期、弹跳、超行程等机械特性,使真空度降低的速度加快。

2.2故障危害真空度降低将严重影响真空断路器开断过电流的能力,并导致断路器的`使用寿命急剧下降。

2.3处理方法①在进行断路器定期停电检修时,必须使用真空测试仪对真空泡进行真空度的定性测试,确保真空泡具有一定的真空度(真空度不能低于6.6×10-2Pa,制造厂新生产的真空灭弧室要求达到7.5×10-4Pa以下)。②当真空度降低时,必须更换真空泡,并做好行程、同期、弹跳等特性试验。③做好极限开断电流值的统计。在日常运行中,应对真空断路器的正常开断操作和短路开断隋况进行记录。当发现极限开断电流值l,达到厂家给出的极限值时,应更换真空灭弧室。

1=n1Ir+n2Ik;

式中:n1—正常开断次数;

Ir—厂家提供的断路器额定工作电流;

n2—短路开断次数;

Ik—l0kV母线最大开断电流。

2.4预防措施①当前真空断路器型号繁杂、生产厂家众多,产品质量分散性大,有的真空断路器无备品、备件,给维护与检修造成了一定的难度,所以,选用真空断路器时,应该选用质量信誉良好的厂家生产的成熟产品。②选用本体与操作机构一体的真空断路器。③运行人员应定期对真空断路器进行认真严格的巡视,应注意断路器真空泡外部是否有放电现象;特别是玻璃外壳真空泡,应对其内部表面颜色和开断电流时弧光的颜色进行目测判断,当内部表面颜色变暗或开断电流时弧光的颜色为暗红色时,真空泡的真空度基本上为不合格,应及时停电更换。④检修人员进行停电检修工作时,必须进行断路器同期、弹跳、行程、超行程、回路电阻等特性测试,以确保断路器处于良好的工作状态。⑤在现场检验灭弧室是否合格的最简便的方法是对灭弧室进行42kV的工频耐压试验。

3真空断路器分闸失灵

3.1故障现象①断路器远方遥控不能分闸;②就地手动不能分闸;③外部回路或设备故障时继电保护动作,但断路器不能分闸。

3.2原因分析①分闸操作回路断线;②分闸线圈断线;③操作电源电压降低;④分闸线圈电阻增加,分闸动能降低;⑤分闸顶杆变形,分闸时存在顶杆卡涩、不灵活现象,分闸动力降低;⑥分闸顶杆变形严重,分闸时卡死;⑦分闸顶杆动作,但不能可靠地打开分闸压板。

3.3故障危害断路器分闸失灵,会导致事故越级,扩大事故范围。

3.4处理方法①检查分闸回路是否断线;②检查分闸线圈是否断线;③测量分闸线圈电阻值是否合格;④检查分闸顶杆是否变形;⑤检查操作电压是否正常;⑥改铜质分闸顶杆为钢质,以避免顶杆变形;⑦调整分闸顶杆及铁芯的长度,保证动作可靠;⑧分闸线圈固定架应保证紧固,防止铁芯动作时分闸线圈固定架也随之上下窜动。

3.5预防措施①运行人员若发现分合闸指示灯不亮。应及时检查分合闸回路是否断线;②检修人员在停电检修时,应注意测量分闸线圈的电阻,并检查分闸线圈固定架螺丝是否紧固;③检查分闸顶杆是否变形;④如果分闸顶杆的材质为铜质应更换为钢质;⑤必须进行低电压分合闸试验,以保证断路器性能可靠。

4弹簧操作机构合闸储能回路故障

4.1故障现象①合闸后无法实现分闸操作;②储能电机运转不停IE,甚至导致电机线圈过拱损坏。 4.2原因分析①行程开关安装位置偏下,致使合闸弹簧尚未储能完毕,行程开关触点已经转换完毕,切断了电机电源,弹簧所储能量不够分闸操作;②行程开关安装位置偏上,致使合闸弹簧储能完毕后,行程开关触点还没有得到及时转换,储能电机仍处于工作状态;(3)行程开关或其接点损坏,储能电机不能停止运转。

4.3故障危害在合闸储能不到位的情况下,若线路发生事故,断路器不能分闸,将会导致事故越级,扩大事故范围。

4.4处理方法①调整行程开关位置,实现电机准确断电;②检修时应注意行程开关的动作情况,如行程开关损坏,应及时更换。

4.5预防措施运行人员在倒闸操作时,应注意观察合闸储能指示灯,以判断合闸储能情况;检修人员在检修工作结束后,应就地进行几次分合闸操作试验,以确定断路器处于良好状态。

5分合闸不同期、弹跳数值大

5.1原因分析①断路器本体机械性能较差,多次操作后,由于机械原因导致不同期、弹跳数值偏大;②分体式断路器由于操作杆距离较大,分闸力传到触头时,各相之间存在偏差,导致不同期、弹跳数值偏大;③合闸冲击刚性过大,致使动触头发生轴向反弹;④动触杆导向不良,晃动过大;⑤触头平面与中心轴垂直度不好,碰合时产生横向滑动等。

5.2故障危害如果不同期或弹跳大,会严重影响真空断路器开断过电流的能力,影响断路器的寿命,严重时能引起断路器爆炸。

5.3处理方法①在保证行程、超行程的前提下,通过调整三相绝缘拉杆的长度使同期、弹跳测试数据在合格范围内;②提高配件的加工精度,使绝缘支座与轴、换向器与钢销、轴等紧密配合,减小空程间隙;③加强装配工艺质量控制,提高装配工艺质量。在真空断路器装配过程中,注意安装合理,不使真空灭弧室受到额外的力;④调整导向管的位置,使灭弧室动触头的运动轨迹通过灭弧室的轴心,真空灭弧室动触头活动自如,无任何卡涩现象;⑤适度加大触头超程弹簧预压力。

通过采取以上措施,可以有效地控制真空断路器合闸弹跳。如果通过调整无法实现,则必须更换数据不合格相的真空泡,并重新调整到数据合格。

5.4预防措施由于分体式真空断路器存在诸多故障隐患,在更换断路器时应使用一体式真空断路器;定期检修工作时必须使用特性测试仪进行有关特性测试,及时发现问题,并解决问题。

6运行维护与检修试验

加强对10kV真空断路器的维护非常必要,维护中应做好以下几个方面的工作:

6.1在检修维护试验中,要测试开关的导电回路电阻、开关的机械特性、断口间的工频耐压试验,真空度试验,试验数据要满足厂家规定。断口间的工频耐压试验、真空度检验是检验真空管是否漏气的有效方法。

6.2在保护定检时,应对断路器做跳合闸试验,以检验开关在有故障时,断路器动作是否可靠。

6.3对断路器机构、传动轴等传动部位应注入一些润滑油,对紧固件要进行紧固确认等,以确保断路器传动灵活。

6.4开展真空度的测试工作。真空灭弧室真空度的测定主要有以下几种方法:

6.4.1观察法如果真空灭弧室的外壳是玻璃的,则可根据涂在玻璃内壁表面上的钡吸气剂薄膜颜色的变化来判断真空度:真空度良好时,吸气剂薄膜呈镜面状态;真空度变差时,吸气剂薄膜呈乳白色。这种用肉眼观察真空度的方法不太准确,只能作为参考。

6.4.2工频耐压法将真空断路器置于分闸状态下,在真空灭弧室的触头间加工频电压来判定真空度。如果真空灭弧室能耐受工频电压10秒以上,可认为真空度满足要求。如果随着电压升高,电流也增大,且超过5A,则认为真空度不合格。这种方法简单易行,现场使用方便。

6.4.3磁控放电法磁控真空度测试仪通常在触头之间施加一次或数次高压脉冲,脉冲宽度为数十到上百毫秒,磁场线圈中则通以同步脉冲电流,产生与高压同步的脉冲磁场来测量真空度。

对于真空度不满足要求,已接近或低于国家标准6.6×10-2Pa时,应及时进行真空灭弧室的更换,对于真空度有较大幅度降低,但仍在合格范围内的真空断路器,应适当缩短测试周期,并结合历次测量情况进行分析,判断真空度下降的趋势,据此决定真空断路器是否继续进行。

阻容保护把电阻R与电容C串联作为保护元件并联在负载进线端构成RC过电压抑制器。电容器既可以减缓过电压的上升陡度,又可以降低负载的波阻抗,因而降低截流过电压。电阻的作用是:当发生截流时,它的存在增加了高频放电电路的衰减系数,可减少重燃次数和降低多次重燃过电压,甚至可以有效的防止其发生。用RC抑制器来保护电动机等负载,效果最好。 非线性电阻保护 :采用普通避雷器与电容器并联,普通避雷器能限制过电压幅值,用电容器来减缓过电压上升陡度。采用金属氧化物避雷器,它采用ZnO压敏电阻,是无灭弧间隙的避雷器,具有半导体晶体管稳定的特性。在正常工作电压下阻值很大,电流很小,当电压增高至某一值后,阻值下降,呈现稳定特性。应当注意的是,采用金属氧化物避雷器作过电压保护,其型号要与系统电压相符,和电感负载或电容器组容量应匹配恰当。电感保护在真空断路器与电动机供电电缆之间串联电抗线圈(或饱和电抗器)与电阻并联组成的LR过电压抑制器,从而抑制过电压的上升陡度和峰值。

高压断路器的控制毕业论文

沙角C电厂厂用电结线分析1 方案选择沙角C电厂(简称沙角C厂)有3台660MW机组,每台机组发出的电能都是经各自的主变压器升压至500kV,由500kV变电站进入广东省主网。发电机机端电压为19kV,主变压器为Yo/△接线,每台机有2台容量各为44MVA的△/Yo接线高压厂用工作变压器,2台高压厂用工作变压器各带一10kV机组段。全厂设1台容量为44MVA的高压厂用备用变压器及设高压厂用公用段10kV两段。厂用电接线如图1所示。对于这样一种结线,在工程谈判阶段业主和设计院曾就电厂的厂用电结线作了两个方案比较。方案一:全厂设高压厂用起动/备用变压器,而不设发电机开关;方案二:每台机装设发电机开关,而全厂只设1台容量较小的高压厂用备用变压器。方案二的优点是:a)机组正常起、停不需切换厂用电,只需操作发电机开关,厂用电可靠性高。b)机组在发生发电机开关以内故障时(如发电机、汽机、锅炉故障),只需跳开发电机开关,厂用电源不会消失,也不需切换,提高了厂用电的可靠性,同时减轻了操作人员的工作量和紧张度。这一点在沙角C厂的调试过程中,表现非常突出。同时对于国内大型机组采用一机只配一主操作员和一副操作员的值班方式非常有益。c)对保护主变压器、高压厂用工作变压器有利。对于主变压器、高压厂用工作变压器发生内部故障时,由于发电机励磁电流衰减需要一定时间,在发电机-变压器组保护动作切除主变压器高压侧断路器后,发电机在励磁电流衰减阶段仍向故障点供电,而装设发电机开关后由于能快速切开发电机开关,而使主变压器受到更好的保护,这一点对于大型机组非常有利。d)发电机开关以内故障只需跳开发电机开关,不需跳主变压器高压侧500kV开关,对系统的电网结构影响较小,对电网有利。方案一无上述优点。对于方案二,当时我们主要担心发电机开关价格昂贵,增加工程投资,以及发电机开关质量不可靠,增加故障机会。对于工程投资的比较是如果不装设发电机开关,按目前国内大型火力发电厂设计规程要求的2台600MW机组需配2台高压厂用起动/备用变压器的原则,沙角C厂则要配4台较大容量起动/备用变压器,且由于条件所限,起动/备用变压器的电源只能从沙角A厂220kV系统引接。因而,方案一需增加220kVGIS间隔4个,220kV电缆4根,220kV级的较大容量起动/备用变压器4台;方案二需增加33kV电缆1根,33kV级的较小备用变压器1台,发电机开关3台。方案一的投资可能超过方案二。对发电机开关质量问题,经调查了解,当时GEC-ALSTHOM公司法国里昂开关厂生产的空气断路器,额定电流33.7kA,额定开断电流180kA,这种断路器已供应美国、法国许多大型核电站使用,运行良好。因此,我们最终选择了方案二,并选用了GEC-ALSTHOM公司的PKG2C空气断路器。目前这种断路器经在沙角C厂多年的运行,上百次的动作,证明其性能良好。沙角C厂发电机开关的主要技术参数:型号灭弧介质额定电流额定电压额定频率额定对称开断电流额定不对称开断电流额定短路关合电流额定短时承受电流对地工频耐压雷电冲击耐压峰值额定开断时间额定负载下操作顺序正常操作压力最低操作压力 PKG2C压缩空气33.7kA21kV50Hz180kA340kA509kA275kA70kV/min170kV0.1sCO—30min—CO3.34MPa3.00MPa2 设计原则2.1 高压厂用工作变压器的容量设计GEC-ALSTHOM公司对高压厂用工作变压器容量的设计原则为:a)带单机负荷的一半,加1台电动给水泵再加公用厂用负荷的一半;b)提供单机辅助负荷一半,再加2台电动给水泵。2.2 备用变压器容量设计备用变压器的容量选择同高压厂用工作变压器容量。2.3 10kV厂用电系统运行方式的设计由于受备用变压器容量所限,备用变压器在同一时间内只能带1段10kV公用段及1段10kV机组段,因此要求在正常情况下公用段尽量由某2台正常运行机组的高压厂用工作变压器各带1段。同时为防止不同机组的10kV段ü��枚尾⒘校�诟骰�榛�槎沃凉�枚蔚牧�缈�厣嫌械缙�账�?br>2.4 10kV厂用电源事故切换10kV厂用电源事故切换采用自动慢切换,当正在向1段10kV公用段供电的10kV机组段由电压继电器判断为失压,且保护是反应非10kV母线段上故障时,在确认10kV机组段进线开关已跳开后,将会起动自动慢切换,经5s延时,将备用变压器低压侧10kV开关合上,从而恢复该机组段和原由它供电的公用段的供电。当保护是反应10kV母线段上故障时,则不起动自动慢切换。自动慢切换是采用传统的中间继电器和时间继电器通过硬接线来实现的。虽然备用变压器下接10kV公用段A和10kV公用段B,但由于备用变压器容量有限,在同一时间内备用变压器只能带1段公用段,从备用变压器来的10kV公用段A进线开关和10kV公用段B进线开关之间有电气闭锁,防止2个开关同时合上。同样,虽然各机组的10kV机组段各段与相应的10kV公用段各段都有联络断路器连接,但为防止正常情况下不同机组的10kV机组段通过10kV公用段并列,相互之间设有闭锁,防止同一时间2台机的10kV机组段向同一10kV公用段供电。正常情况下,厂用电源的手动切换及由备用变压器供电转为正常供电时厂用电的短时并列供电,要通过手动经同期装置进行,并经200ms延时自动跳开另一开关。由上可知,由于备用变压器受容量及上述运行方式的限制,在事故情况下只能向1段公用段及当时向该公用段供电的机组段供电,因而事故情况下后备电源只能保证机组50%的负荷。而且,如果当时该机组段未带1段公用段,则后备电源将不能向机组提供厂用电源。如果该机组又失去全部厂用电,则需要靠柴油机组来保障机组的安全。因此,该种接线对柴油机组要求较高,而目前沙角C厂使用的柴油机组质量较好,经受了很多次起动的考验。由上可见,备用变压器主要是作为全厂的1个由系统来供电的用于机组停机或停机后的安全电源,且对其中的1台机组起不到提供后备电源的作用。3 厂用电系统电压等级及切换3.1 厂用电系统电压等级目前沙角C厂厂用电有3个电压等级:10kV电压,3kV电压,380V电压。其中10kV系统、3kV系统为中阻接地,380V系统为不接地系统。380V的照明用电和其他需要中性点接地的380V/220V系统,采用△/Yo的变压器来产生。3.2 各级电压的切换10kV系统如前所述有电源自动慢速切换。3kV系统机组2段之间、3kV系统公用2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。380V系统机组锅炉、汽机、除尘各有2段,公用段也有2段,2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。4 开关设备型式10kV系统开关全部采用真空开关,型号HWX。3kV系统的进线开关采用真空开关,馈线采用F-C回路,型号HMC1172。380V系统的进线开关采用空气开关,接触器、熔断器。5 结束语沙角C厂厂用电结线采用装设发电机开关的接线型式,机组正常启停不需要切换厂用电,在遇到发电机开关以内的故障如发电机、汽轮机、锅炉故障时,只须跳开发电机开关,不需要切换厂用电,厂用电扰动小,可靠性提高,减轻运行人员的工作量,特别是故障情况下的工作量,给运行人员带来极大便利,受到电厂运行人员欢迎。尤其是机组在调试过程中,大部分的机组跳机都是来自锅炉和汽机,这一点在沙角C厂表现非常突出。沙角C厂调试过程中上百次的跳机绝大部分都是锅炉和汽厂调试过程中上百次的跳机绝大部分都是锅炉和汽机引起的。沙角C厂由于后备电源作用较组的正确起动要求较高,应选用高可靠起动的柴油机。目前,沙角C厂厂用电结线的缺点是由于只有1台备用变压器且自动投入只对带公用段的机组,而使第3台机的10kV段不能得到后备电源,降低了该台机厂用电的可靠性。在装设发电机出口开关下采用2台机组和1台后备变压器,该台备用变压器容量大于或等于1台高压厂用变压器的容量,或改善备用电源自动切换回路或设专门备用段较为合适。目前台山电厂的评标方案就是采用前一方案的。

随着现代科学技术的发展,知识的更新越来越快,企业要适应环境及市场的变化,就要不断提高学习能力,学习型组织正是顺应这一需要产生并发展起来的。下面是我为大家推荐的奥鹏 教育 论文,供大家参考。

奥鹏教育论文 范文 一: 高压开关技术

摘要

随着我国电力事业的迅速发展,人们对于电力系统可靠性和安全性的要求越来越高。电力设备正朝着大型化、自动化和智能化的方向发展。高压开关是电力系统中最重要的控制和保护设备,在电网中的作用至关重要,其故障带来的后果是十分严重的。一旦电力系统发生故障,即使只引起生产设备短暂的停止工作,也会造成巨大的损失。

本论文所要研究的高压开关技术,了解高压开关的发展现状及未来几年的发展趋势,以及国内、外高压开关发展情况,及高压开关的结构、工作原理、电气特性等;结合工作实际分析其常见故障;结合工作实际通过故障分析结果给出相应的解决方案。

关键词:断路器;负荷开关; SF6;操动机构;弹簧

1 绪论

1.1 高压开关的发展现状与趋势

电力系统是一个很大的实时工作系统。它的发电、变电、输电、用电是在同一瞬间完成的,随着电力系统的覆盖范围越来越广、电力机组的容量越来越大、供用电及电力 系统安全 性要求越来越高,需要电力系统能够用很完备的自动控制方式来协调。要让先进的控制系统最终能够实现控制,配备较为新型的断路器、组合电器是提高运行可靠性的重要 措施 之一。

高压开关设备是主要用于关合与开断正常或故障电路、或用于隔离高压电源的电器,它的发展很迅猛。目前,开关产品已从初期的油断路器、空气开关,进入到了真空断路器和SF6断路器及其成套设备(GIS)为主的新时代;设备电压等级也从交流12kv、40.5kv提升到750kv,并正在向1100kv特高电压等级发展;机械加工从最基础的工艺手段发展到具有适合规模化、专业化生产的大型数控机床、加工中心、柔性生产线及专用工艺装备;产品性能从仅能满足近距离机械连锁操作,向可以远距离、无人值守的自动遥控、遥测操作发展;产品灭弧机理、灭弧室结构设计研发更为科学、先进,也更安全可靠;产品实现了真正意义上的计算机辅助设计,产品主要技术性能越来越进步、完善。

随着电力系统对配电系统的质量和可靠性要求的提高,对高压开关设备的性能要求也越来越高。为了满足当今社会对高质量产品的需求许多研究、设计和生产部门做了大量的卜作;另外,基础理论,材料技术、生产工艺、加工工艺和新技术的应用,也使得高压开关设备的技术水平有了很大的进步。这些综合起来大概有以下7个因素:

(1)环保。六氟化硫气体由于其优良的绝缘和灭弧性能,日前在高压电器中得到了广泛的应用,全球生产的六氟化硫气体约50%用于电力行业其中80%用于高压开关设备。但由于1997年《京都议定书》的签署使各国在逐步停止或减少六氟化硫电器的使用,日前尚未找到合适的替代气体,六氟化硫气体在电器生产中仍然有着其不可替代的作用。

(2)新介质、新材料的应用。对于户外产品而言,环境适应性能的提高(污秽,湿热,高海拔,盐雾和大气污染)是至关重要的,因此耐紫外线、强度高和自洁型的新型有机绝缘材料也在户外产品中得到广泛的应用,比如新型的户外环氧树脂、户外硅橡胶、聚氨醋、陶瓷等新型材料等等;另外,金属防腐技术也是高压开关厂家重点研究的课题。

真空断路器由于其优良的灭弧性能和少维护、免维护的特点,尤共是小型化、低重燃的真空灭弧室的应用,在户外配电断路器中所占比例越来越高。

(3)免维护。目前免维护产品(15一20年使用周期)的研究与开发是高压电器生产厂家的目标和方向。目前,用于六氟化硫断路器/重合器的弹簧操动机构可以做到2000次到500。次,用于真空断路器/重合器的弹簧操动机构基本上可以做到1000次机械稳定性,电磁操动机构(含永磁操动机构)可以做到5000次机构寿命,基本可以满足大多数用户的需求。但是控制永磁操动机构的电容器、蓄电池和电子设备的使用寿命只能达到7年左右与设备本体的要求并不匹配。

(4)小型化。目前,复合绝缘技术、气体绝缘技术和小型化真空灭弧室的使用,使得户外配电设备的尺寸和重量与以前相比大幅度减小。同时,电子测量控制设备的发展,使电流传感器和电容式分压器在高压电器产品中的应用成为可能,进一步减小了高压电器的体积。

(5)组合电器。户外配电开关设备的使用过程中,经常需要多种高压电器同时使用,因此许多厂家经常将两种以上的电器产品组合使用,如断路器一隔离开关组合电器、负荷开关一隔离开关组合电器、负荷开关一熔断器组合电器等等,一方而降低了成本,另一方面方便了用户的安装和使用。

(6)最优人机关系。将操动简便可靠、电动遥控操动、清晰的状态指不融人到开关的设计中,同时模块化的设计,插接式安装方式,二次系统现场总线使得现场快速安装成为可能,同时免维护开关设备和自动监测系统极大的减少了运行人员的工作量。新型的控制器及配网自动化系统可以将开关的状态即时传送到运行管理人员的电脑上,以及四遥系统的实现大大减少了运行人员的工作量。

(智能化。高压开关设备的翎能化是“十五”时期装备工业集传统的机械装置与电子产品、电子技术相结合的机电一体化新一代产品,钾能化既是一个个体又是一个系统。迄今为止,智能化只是一个泛指,相关行业并无一个规范的术语和定义。对于一个元件来讲,可以理解是按照智能化的要求植人一个或多个元素或者功能,如传感器、通讯接日等;对于开关成套设备,如配电设备、开关柜等,则可理解是对一个系统的综合要求,诸如自动化、远动化、四遥、在线监测等。

1.2 国外高压开关的发展情况

世界上高压开关的生产主要集中在欧洲几大公司(如西门子、ABB、Alston等)和日本几大公司(如三菱、东芝、日立等),它们的产品基本上代表了世界发展水平。2004年法国Alston公司研制出了采用真空和SF6复合式灭弧室的145kv等级的高压断路器,降低了高压断路器的外形尺寸和操作功,提高开断能力,增强电气特性,缩短燃弧时间。日本东芝公司生产的GIS封闭式组合电器紧实小型化,防止环境污染,操作安全,维护方便。德国西门子公司在生产传统高压开关的同时研制出第二代热膨胀灭弧室和双向运动触头系统,对提高产品操作寿命有很大的益处。随着紧凑型高压开关设备的兴起,欧洲几大公司如ABB、西门子、Alston都竞相推出此类产品,它比起普通空气绝缘开关设备可节省占地面积60%,又比GIS节省大量费用。这些公司共有的特点是产品更新换代快,研究费用的投入比例较大,并且建立了强大的试验研究基地,这也是我国和他们之间最大的差距。

1.3 我国高压开关的发展情况

国内开关产品生厂商主要分布在东部沿海地区和陕西、甘肃、河北、河南等中西部地区;其中包括国内知名的“五大开”大型国有企业,即北京开关厂、平顶山天鹰集团有限责任公司、西安高压开关厂、上海华通开关厂、沈阳高压开关有限责任公司。还有很多如天水长城开关厂等中型国有企业、新兴民企、及合资企业。

我国高压开关行业经过50年的发展已建立了品种齐全、参数性能与国际接轨的产品体系,这些产品在品种、性能、质量、数量及生产能力等方面,基本可以满足我国电力工业发展和城乡电网建设与改造要求,不少产品已达到国际先进水平。我国在20世纪70年代末开始引进法国MG公司500kv SF6瓷柱式气体断路器设计制造技术,80年代又引进了日本三菱和日立公司500kv SF6气体断路器和封闭式组合电器(GIS)的设计制造技术。目前国产500kv气体断路器已在电网中大量使用,500kv封闭式组合电器在大型电站、变电所运行,110kv、220kv和330kv封闭式组合电器也在电网中大量使用。随着我国城市电网建设速度加快,封闭式组合电器将得到大量的运用,但相比国外产品,国产封闭式组合电器和气体断路器在可靠性、密封性和运行业绩方面还存在较大的差距,零部件的质量问题比较突出,配套能力差,在很大程度上制约了我国高压开关电器的发展。

在我国输配电系统中,60年代使用多油断路器、空气断路器,技术较落后,1968年华光电子管厂研制出第一只运用于商品化的真空开关管,但由于各种原因与国外的产品质量相差甚远。70年代初,我国开始引进第一台SF6断路器。经过20多年的努力发展,现在我国的电力系统中高压开关设备几乎全部使用SF6断路器和真空断路器。

目前我国以40kV电压等级为界,40kV以上高压开关全部使用SF6断路器,40kV以下以真空断路器为主。SF6断路器分为两种结构,一种为罐式,目前在电网中运行的252kV,363kV,550kV罐式SF6断路器已有数百台,它以其优良的环境适应能力,系统配套性和高运行可靠性得到用户的认可。另一种为瓷柱式,它可以通过灵活串接方式获得任意电压额定值,加之低成本,使其在500kV以下的超高压领域显示出优势。

真空开关广泛应用于40kV以下电压等级的电网内,分为真空断路器和真空接触器两种。目前我国110kV双断真空断路器已研制成功,它是由单断口真空断路器串接而成。真空接触器则主要用于中、低压配电系统中。

1.4 本论文的主要工作

本文首先介绍的是选题背景,高压开关的发展现状及未来几年的发展趋势,以及国内、外高压开关发展情况,提出目前我国高压开关发展的不足之处。.介绍所研究高压开关的结构、工作原理、电气特性等;结合工作实际分析其常见故障;结合工作实际通过故障分析结果给出相应的解决方案。

结论

电气事故的发生往往是从电气设备某一元件的故障开始,对事故发生的现象作出及时、准确的判断,采取有效科学合理的处理 方法 防止引发一系列的故障,通过此次论文对高压开关的结构、工作原理、电气特性等更进一步了解,能让学到的理论知识应用到实际中去分析其常见故障,提高事故处理速度、提高工作效率。

参考文献

[1] 林莘.现代高压电器技术[M].北京:机械工业出版社,2002.

[2] Lin Xin,Geng Zhen-xin,Xu Jian-yuan,etc.Effects of series Reactor on Short-circuit

Current and Transient Recovery Voltage[J].

[3] 徐国政,张节容.高压断路器原理和应用.北京:清华大学出版社,2000.

[4] 刘介才.工厂供电[M].北京:机械工业出版社,2003.

[5] 刘介才.供配电技术[M].2版.北京:机械工业出版社,2005.

奥鹏教育论文范文二:奥鹏网络教育 毕业 论文

摘 要

本文对解决大多数小学生 英语口语 水平较差的研究课题,结合本人在英语教学中的实践过程,给出了详细的实验 报告 。本文的假设是:学生的口语水平能够用各种活动加以提高。专门设计的三个星期的课堂教学实践活动证实了这个假设。

在实验过程中使用了分析法、原因分析法和问卷调查等理论方法验证了这个假设。

关键词: 学生;英语口语;多种活动;提高

1、自我简介

我已经有十年英语教学。在我的教学 经验 ,我遇到了这样的问题,我的大多数学生的英语说的不自由,那就是,他们有一个低水平的英语口语。学生在阅读和写作方面做的很好,但不重视口语。此外,他们没有兴趣,忽视了英语口语的重要性。如果这个问题不能得到妥善的解决,他们会厌烦 学习英语 。我希望我能解决这个问题,困扰了我这么长的时间,通过研究利用我的知识和教学理论运用到教学实践。

2、问题

我的问题是,我的大多数学生英语口语水平较差。

3、问题分析

作为一个英语老师,我发现的问题是,我的大多数学生不能讲英语流利而正确地。他们不能自由地表达自己。它是通过我的教学经验,确定。问题是,我希望我可以在我的项目解决。

我迫切需要的是找到这个问题的答案,因此我会解决它帮助我的学生有效地说话。在我的教学中,该问题被发现一个非常严重的。

3.1分析方法

这个问题已经困扰我很长时间。我咨询了有关它的一些同事。他们给了我很多有价值的建议。

在某些方面,我们发现有三个方面可以考虑提高:首先,我要把英语作为一种语言,不只是一个问题。第二,在我的课堂口语活动,我一直关注而不是交流阅读。第三,我的 教学方法 很简单。

3.2原因分析

3.2.1老师的身边

我已经有三年的英语老师。从我的教学经验,我发现我没有花很多时间来强调英语口语的重要性。在口语课上,我没有为我的学生准备许多合适的材料和良好的活动。有时为了节省时间,我常导致他们先读,但忽略了各种各样的活动。我通常会安排他们读对话机械录音机后或直接显示透明度。我注意到我的学生获得好成绩。所以我的学生认为英语口语是不重要的和他们在笔试成绩比较。

3.2.2学生一边

学生经常有测验。他们知道哪些方面可以得到高分。印记就是他们努力工作,而且他们的父母希望。所以他们只是做听力和写作实践,无论是在学校还是在家里。英语口语是被忽视的。他们应该意识到,他们可以互 相学 习,互相帮助,特别是在说话。

3.2.3设施的教室和学校

村里的学校有设备差,我们没有计算机教学。我们可以使用黑板和粉笔,这有点难画者的关注比现代设备。此外,在我的班上有多少学生(45),我觉得很难照顾好他们

3.2.4。语言环境和考试系统

学生们每天面对自己的母语,他们只能在课堂练习英语,和他们的父母不会讲英语。他们认为中国的一切,不在英国,他们的英语口语是脆弱的,他们也可能在考试中获得高分,因为它不涉及英语测试。

3.3问卷调查

因为我的大多数学生不重视英语课堂口语,我设计了一份调查问卷,对他们。根据我的日常问题,旨在找出问题在我的口语课的三个主要问题,尤其是小学生。他们太年轻,了解它的重要性。我选择了所有学生的不同层次来完成我的调查。下课后。学生们给了我答案。

通过数据分析,我发现大多数学生喜欢的课堂活动,32%的人认为他们的英语口语是非常困难的,25%的学生认为这是重要的。

我检查了我的问题,科学地看它是否是合理的。我和我的同事们讨论的问题。同时,我的工作,我的项目时间表。

4。项目目标

我的项目的目的是提高学生的英语口语水平。

5。项目假设

这是假设,学生的英语口语水平可以增加通过更好的设计活动

6。项目的理由

6.1的小学英语教学的重要性

我发现在小学英语口语教学,可为 儿童 学习英语的未来更坚实的基础。如果英语可以说的更流利的学生更合适,语法的pupils'application会致富,然后瞳孔会增强信心,这是教育目标的英语教学在小学。

6.2对工作组的工作的重要性

小组的工作,对工作在课堂上是非常重要的。它有助于沟通。每一组由不同层次的学生,学生可以帮助那些最落后。每一组是由以不同个性的学生互动。

根据这个,在英语口语课堂中的不同活动的设计是很重要的。这是由一些不同类型的活动。这些都是由不同的运动装,从控制活动控制活动的自由交流的一半。不同类型的活动,也适用于在不同水平的学生。初学者受益而先进的学生可以发现交际活动更收获更多的控制活动。

6.3教师的作用

英语教授C.E.埃克斯利认为:―一个教训是不是浇注学习到酒瓶子空的被动。最成功的课是学生,不是老师,做工作的更大的一部分。―语言教师最常见的故障是说得太多。他试图使教学替代学习,从而防止班学习。‖

我发现自己在扮演不同的角色在不同阶段的类。我有更大的控制权,在演示阶段,往往作为一个示范。在实习阶段,我希望是一个组织者,指挥和监控。在生产时,更多的情况是学生定向,教师起到刺激和辅助作用。一种校正的作用是贯穿于这三个阶段,但时机,?的方式和重点可能不同,在每一个阶段。

我鼓励他们更积极地参与课程,鼓励他们表达自己的意见,英国人常。作为一名教师,我不必纠正学生错误立即,同侪团体咨询,检查和互相帮助。?

6.4的学生的作用

在我的课堂上我把学生为中心。我想让他们觉得学习英语很快乐。如果他们想学的更好,他们必须开口练习很多次。因此,在课堂上他们应该参加活动。他们必须在听力和口语,培养良好的习惯。他们可以互相学习,互相帮助。

所以学生必须实践的真实情况,如在家里除了上课。老师和他的同事,父母必须尽可能帮助他们。

.5材料的角色在教学

给他们一些准备的材料,如照片,卡片,透明度,调查问卷和口语练习。这具有明显的优势:我要准备学生练习英语口语的一些材料,确保他们都非常接近学生的日常学习和生活,甚至一些学生感兴趣的话题。

7。项目实施

这是假设,学生的英语口语可提高设计更好的活动。此外,他们可以更有效地学习 英语单词 。我的这部分的研究是在四月七日进行的2013–march6 2013。以下是教学方法。我将在我的课堂教学。

7.1介绍主题

我的这部分的研究是在3月/ 6进行。/ 2013 - 2013年四月七日。

我选择了PEP小学英语书,3单元有多少?新的口服活性的新任务是设计提供学生有机会说英语的目的和自由地。在我的班上有四十五个学生。因为它是一个大类,我必须用控制练习,除此之外,我可以利用半控制和无法控制的练习。尤其是最后一个是我的目标。

7.2原则

以下是教学方法,我将我的课堂教学。

1)在学习新的知识我可以选择控制和半控制活动。我可以监控所有的类。所以他们可以看清楚在开始。他们自信的第一讲英语。

2)鼓励所有的时间我的学生。语法教学是语言学习者非常重要。

3)安排多种对工作组的工作,对学生很有帮助。

A.控制演习

本部分强调模仿和背诵。

1)模仿阅读----有两种方式:读一本书或不读一本书。

2)阅读----其规则训练的语调和说话。这是口语的基础上。它的发音,形状的领带,和意义。我可以选择所有的类,组的工作,对工作和单。

3)代换练习:机械变化,用不同的词和 短语 在句相同的部分的变化。

B.半控制练习

1)意义替换练习:它需要理解的响应。

2)要求根据事实而看着图片回答:回答,对象和行动;或回答的对话与文本。

3)看,说我可以用一组图片。它在特定的主题,所以你可以扩大词汇量。

4)复述课文----我引导学生回忆对话文本。不要硬记盲目。我能给你的照片,并概述了草案,关键词。

无控制的练习

它能模仿现实生活。它并不集中于特定语言程序(一般现在时,为什么的问题)。为了表达他们的想法,学习者可以使用各种语言形式。信息差是最重要的运动。程序的实践是填补和理解。

1)角色扮演----对工作或工作组。我能给你的实际情况和角色扮演。

2)跨越信息鸿沟——这两个学生。每个人都得到一条信息,说他们不知道对方。他们把事实通过沟通。其材料是日常生活或两个不同的图片的形式。其要求填写或找到相同和不同的两张图片。

3)玩游戏——这是很平常的口语活动形式。学生在小学非常喜欢玩游戏。它能激励他们在课堂上。

4)自我报告----每个人都报告他们的身体,年龄,学习用品等,尽可能。这是一个很好的方式表达自己的想法。

7.3教学计划

在我的项目中,我有许多的活动要尝试在三周。这些活动如下。

1周活动1多少?

这项活动是基于在PEP小学英语(书3)3单元

让我们的谈话让的实践

目的:使用 句子 模式‖多少……你知道吗?我能看见……‖流利。

视觉教具:艾米和吴一凡面具,放风筝,照片,录音,录音机

说明:综合控制,半控制和上课不能控制活动

步骤1:热身

互相问候。

步骤2:介绍

1)表明有一些图画,问他们是什么?―当学生说他们的书籍,继续问:―你能看见多少本书?―引导学生回答:―我能看见……‖的书。

2)显示与笔苹果等图片,用同样的方法练习提问和回答。

3)显示图片和四个绿色的铅笔和黑色钢笔迅速,然后消失。问:―你能看到多少支铅笔?―如果学生给出不同的答案,老师给他们的答案:我能看到四个绿色的铅笔。黑色的是一笔。

4)表明,六个苹果和一个香蕉,十只大熊猫和熊,八只狗和一只猫来实践―……一个是..―显示十一个风筝和一个黑色的鸟最后,问―你能看见多少只风筝?学生的回答之后,老师说:―让我们数一数!1,2,3,……11.那么,黑色的是一只鸟。真的。如此多的风筝!让我们飞吧,好吗?―

步骤3:实践

1)(书打开。)看艾米和吴一凡之间的对话,听录音。

2。让学生们的行为和吴一凡和风筝。

结论

目前的研究主要是基于项目,我从三月到四月,旨在提高我的学生说的能力。一个月前,我决定在我大部分的学生英语口语水平较差的问题。我使用的分析方法,分析原因,找出问题的原因,为问卷调查。我还制定了具体的研究目标和研究假设。然后我做了一些可能的解决方案。接下来我实现我的项目,我做了很大的改进,并得到了去研究自信。实施三周的项目后,我发现70%的学生取得了进步,他们想讲英语,在学校或课外。有些学生能说出漂亮。一些薄弱的学生喜欢与学生谈话的顶部。我想用问题的分析方法是适用的,问题的目标是现实的,这个假设是可证明的,项目有一个坚实的基础。现在我很高兴,我的问题已经解决了。通过研究,我得到了很多好处。我的教学研究会,会越来越深。这将使我完美的教学的漫长的过程

工具书类

1。顾曰国,2007,实际工程设计中,外语教学与研究出版社

2。顾曰国,2007,英语语言教学法,外语教学与研究出版社

3张颖。小学英语的教学方法。外语教学与研究出版社,2001

4吴振。口语:繁殖。外语教学与研究出版社,2002。

5。C. E.埃克斯利,J. M.埃克斯利:基本英语书两,1997

电气自动化实习报告一.实习目的生产实习是教学与生产实际相结合的重要实践性教学环节。在生产实习过程中,可以培养我们观察问题、解决问题和向生产实际学习的能力和方法为目标。培养我们的团结合作精神,牢固树立我们的群体意识,即个人智慧只有在融入集体之中才能最大限度地发挥作用。通过这次生产实习,使我在生产实际中学习到了电气设备运行的技术管理知识、电气设备的制造过程知识及在学校无法学到的实践知识。在生产实践中体会到了严格地遵守纪律、统一组织及协调一致是现代化大生产的需要,也是我们当代大学生所必须的,从而近一步的提高了我们的组织观念。我们在实习中了解到了工厂供配电系统,尤其是了解到了工厂变电所的组成及运行过程,使我开阔了眼界、拓宽了知识面,为学好专业课积累必要的感性知识,为我们以后在质的变化上奠定了有力的基础。通过生产实习,对我们巩固和加深所学理论知识,培养我们的独立工作能力和加强劳动观点起了重要作用。入厂主要安全注意事项1.防火防爆2、防尘防毒3、防止灼烫伤4.防止触电5.防止机械伤害6.防止高处坠落7.防止车辆伤害8.防止起重机械伤害9.防止物体打击 。.设备内作业须知:1.在各种储罐,槽车,塔等设备以及地下室,或是其他密闭场所内部进行工作均属于设备内作业2.设备上与外界连通的管道,孔等均应与外界有效的隔离3.进入设备内作业前,必须对设备内进行清洗和置换4.应采取措施,保持设备内空气良好5.作业前30分钟内,必须对设备内气体采取采样分析,采样应 有代表性6.进入不能达到清洗和置换要求的设备内作业时,必须采取相应的防护措施 7.在容器内工作时因照明良好,照明用电应小于等于36V的防 爆型灯具8.多工种,多层次交叉作业应采取互相之间避免伤害的措施,并且搭设安全梯或是安全平台,比要时由监护人用安全绳栓作业人员进行施工9.设备内作业必须有专人监护,并应有入抢救的措施及有效保 护手段化工生产特点的简要介绍:此次工厂生产以精对苯二甲酸(PTA)为原料,相对分子量为166.13,结构式HOOC[C6H4]COOH,在常温下是白色粉状晶体,无毒易燃,若与空气混合在一定限度内遇火即燃烧;故我的车间处于一级防爆区内(聚合电仪)。高纯度对苯二甲酸PTA与乙二醇(EG)缩聚得到聚对苯二甲酸乙二醇酯(PET),还可以与1,4-乙二醇或1,4-环己烷二甲酸反应生成相应的酯,主要用于生产聚酯。而聚酯纤维是合成纤维最主要的品种,在世界合成纤维总产量中占将近80%的比例,。乙二醇 对二甲苯作原料,用直接催化法方式合成聚酯。最终产品:涤纶长丝、涤纶短丝、低弹丝、高弹丝、差别化和功能化纤维及涤纶短纤维产品,化工生产的特点是1、原料,半成品,成品多分为易燃易爆或是有毒物 2、生产工艺多为高温,高压或是底温高压 3、生产的连续性强,自动化程度高 4、工业三废多,影响环境.实习过程2、组织参观 在实习开始时,我们对实习单位的参观,以便了解其概况。在实习期间,我们还到其它有关车间去进行专业性的参观,获得了更加广泛的生产实践知识,和更加准确理解了工厂的运作模式。参观中我们着重了解了先进的设计思想和方法、先进工艺方法、先进工装、先进设备的特点以及先进的组织管理形式等。3、车间实习 我们在车间实习是生产实习的主要方式。我们按照实习计划在指定的车间进行实习,通过观察、分析计算以及向车间工人和技术人员请教,圆满完成了规定的实习内容。4、理论与实际的结合 为了能够更加深入的进行车间实习,在实习过程中,我们结合了所学的书本知识与实习的要求,将理论与实际进行了完美的结合,也更加的促使我们不断地进行学习与研究。5、实习日记 在实习中,我们们每天的工作、观察研究的结果、收集的资料和图表、所听报告内容等均记入到了实习日记中以备以后翻阅。实习内容 (一)学习和了解变电所的主要结构种类和常规型变电所设备选型。(二)学习和了解变电所的主要部件的生产技术资料,包 括:各种技术标准,图纸,专用设备说明书等。(三)了解变各类变频器主要技术要求以及使用。常规型变电所设备选型(a)、设备的选择配置应力求小型化,要保证技术先进、工作性能稳定可靠,质量有保证且售后服务跟得上。(b)、所内应采用两台主变,要求节能且有载调压型,一般采用S10或SZ10型变压器,变压器容量要根据电力负荷情况而定,但两台主变容量比不应超过1∶3,阻抗电压、变比、接线组别应相同,误差不超过 5%,为以后变压器并列运行提供条件。(c)、所用变采用1~2台S10-50kVA/35/0.4kV直配变,装在35kV进线外侧或35kV母线上,所用变采用跌落熔断器控制。(d)、高压断路器应采用SF6断路器,35kV断路器采用LW8-35型,10kV断路器采用LW3-10型。(e)、35kV进线采用双回,为环网工程做好准备。(6)35kV母线使用LGJX-120铝绞线,采用单母线不分段接线,10kV母线采用分段接线,出线4~6回为好。(f)、无功补偿容量按主变容量的10%~15%而定,采用BWF-200-1W型电容器,电压为星形接线。(g)、避雷措施:35kV线路采用避雷线,所内采用避雷针和避雷器两种。避雷针使用镀锌圆钢焊接,装设在所区的4个角;避雷器采用金属氧化物避雷器,35kV侧装在母线上,10kV侧装在出线处。(h)、所内隔离开关操作机构上应设"五防"闭锁,由人工或由计算机综合自动化系统实现"五防"。(i)控制、保护、测量部分采用计算机综合自动化管理系统。部分设备简介 均速管流量传感器(以下简称均速管)是基于皮托管测速原理发展而来的一种差压流量传感器。均速管与差压变送器、显示仪表配套使用,可实现对圆管、矩形管道中的液体、气体或蒸汽流量进行测量。均速管可广泛应用与电力、石油、化工、轻纺等行业由于其压力损失小,安装维修简便,特别适合大口径管道流量的测量。起动器(又称软起动器,电机软起动器)软启动器是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。电磁阀电磁阀是用来控制流体的方向的自动化基础元件,属于执行器;通常用于机械控制和工业阀门上面,对介质方向进行控制,从而达到对阀门开关的控制。变频器实习期间主要接触到西门子、 富士、 安川 、丹拂斯等。我们知道交流电动机的同步转速表达式位:n=60 f(1-s)/p (1)式中 n———异步电动机的转速; f———异步电动机的频率;s———电动机转差率;p———电动机极对数。由公式可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。变频器原理:利用二极管的单通性整流将交流变为直流;再用逆变块产生所需要频率的交流。而逆变块主要也是利用二极管的通断实现将直流变为交流,其频率大小由通断变化快慢决定,从而实现频率改变。变频器控制方式低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。U/f=C的正弦脉宽调制(SPWM)控制方式电压空间矢量(SVPWM)控制方式矢量控制(VC)方式直接转矩控制(DTC)方式矩阵式交—交控制方式 .实习感悟生产实习是培养高素质工程技术人才的一个重要实践性教学环节,是将学校教学与生产实际相结合,理论与实践相联系的重要途径。其目的是使我们通过实习在专业知识和人才素质两方面得到锻炼和培养,从而为毕业后走向工作岗位尽快成为业务骨干打下良好基础。通过生产习,使我们了解和掌握了变电所的主要结构、生产技术和工艺过程;使用的主要工装设备;产品生产用技术资料;生产组织管理等内容,加深对变电所的工作原理、设计、试验等基本理论的理解。使我们了解和掌握了变电所的工作原理和结构等方面的知识。为进一步学好专业课,从事这方面的研制、设计等打下良好的基础。在这次生产实习过程中,不但对所学习的知识加深了了解,更加重要的是更正了我们的劳动观点和提高了我们的独立工作能力等。

高压断路器论文参考文献

横看成岭侧成峰,远近高低各不同.

摘要:概述了断路器操动机构的分类,分析了CY3型液压机构运行中的问题,提出了处理其常见问题的方法,阐述了应用于CY3液压机构的故障诊断系统。展望了永磁操动机构的发展动态。 0 断路器操动机构 断路器由三部分组成:断路器本体、操动机构、电源。作为断路器主要部件的断路器本体,它的功能是切断负载或短路电流。按其灭弧所采用的介质来分,可分为油断路器,真空断路器和SF6断路器。操动机构的功能是通过电动方式或手动方式实现断路器触头的开合及满足触头开合特性的各种要求。因此,虽然操动机构在断路器总造价中占较低的比率,但其在断路器的开合特性起着至关重要的位置。电源部件的功能是为断路器以电动方式开合提供足够的能源。 就真空断路器而言,目前真空技术已很“成熟”,世界上已经有了可断开100kA短路电流的真空断路器。因此,对配电网开关设备而言,人们关心的技术参数,已不是它的开断容量,而更主要的是关注高可靠性和免维护设计。而对于真空断路器而言,就目前的制造水平,包括我国自行设计和生产的产品,真空灭弧室的可靠性已经达到相当高的水平,它的平均无故障时间已可达到25年,然而在实际运行中,配电网开关设备的可靠性却并不乐观,远远低于真空无弧室已达到的可靠性水平。统计资料表明:设备故障中有70%~90%以上为操动机构的机械故障。传统的真空断路器,其操动机构主要是电动弹簧机构和电磁操动机构。对于机械电动弹簧机构,它所暴露出来的缺点是机械结构十分复杂,零件数量多,且要求加工精度高,制造工艺复杂,成本高,产品的可靠性不易保证。对于电磁操动机构,其结构复杂程度和工作可靠性比电动—弹簧储能机构要有所改善,但其致命的问题是合闸线圈消耗功率太大,要求配置价格昂贵的蓄电池组,以及电磁机构结构笨重,动作时间较长。因此想依靠这两种操动机构的改进,来提高断路器的可靠性和免维护水平,以及实现开关设备的自动化、运动化和智能化。这种设想是难以实现的。 从国外的产品发展趋势看,10kV以下的真空断路器还是以采用电磁机构为主,而10kV以上的真空断路器以采用电动弹簧机构为主。随着真空断路器的迅速发展,对配套使用的弹簧操动机构有了更高的要求。早先的电磁操动机构,因合闸功率大、合闸速度低等逐渐被弹簧操动机构取代。CT8是我国开发研制的第一代弹簧操动机构产品,在此基础上,衍生出CT10、CT12等弹簧操动机构,得到了广泛的推广使用。20世纪70~80年代,我国还没有适合于真空断路器使用的长寿命弹簧操动机构。1992年以后发展了几种长寿命弹簧操动机构,我国开发第二代CT17、CT19等新一代弹簧操动机构。它们的输出特性与真空断路器的反力特性有较好的匹配,输出功能满足大容量真空断路器的要求,机械寿命已达到30000次。多数真空断路器用的操动机构(包括电磁机构和弹簧机构)是集中布置的,即机构被设计成独立的元件,自成一体,这样做便于操动机构的集中生产,有利于保证产品质量。 1 CY3型液压机构工作原理 110,220 kV的少油断路器均采用CY3型液压操动机构,其液压部份如图1所示。贮压筒上部充以高压氮气,贮压筒下部充以航空油。由于氮气贮存了大量能量,于是航空油便成了具有操作能量的压力油,通过油路进入液压操动机构部分,控制断路器的分、合闸。在运行中,由于油渗漏或操作中使用了一定量的压力油,使贮压筒中活塞下移,氮气空间变大,压强降低,此时利用活塞杆下移触动微动开关2YJ,使之闭合,接通油泵启动回路,油泵便将油通过油路注入贮压筒下部,使活塞上移,于是恢复了氮气的压强,亦即恢复了压力油的压强,当活塞杆上移过程中离开微动开关 1YJ时,1YJ断开,断开油泵启动回路,停止打油。图1中微动开关3YJ是重合闸闭锁开关,4YJ是合闸闭锁开关,5YJ是分闸闭锁或自动分闸开关,分别接于相应的二次回路部份。2 CY3型液压机构运行中存在的问题分析及处理 2.1 油泵启动频繁 (1)故障现象;断路器的液压机构在没有任何操作的情况下,规程规定油泵电机每天启动的次数一般不得超过25次。我公司部分变电站多次出现CY3型液压机构油泵电机启动频繁的故障,最多达到70次/天。 (2)原因分析;根据统计资料发现,油泵电机启动频繁问题具有一定的规律性,也就是夏季问题开始暴露,秋、冬季又趋于正常,这是由于液压油的温度过高导致密封圈的性能下降引起的,所以一定要注意保证机构箱的通风良好,加强设备的巡视。其主要原因有: ①管路接头有漏油处; ② 一、二级阀钢珠密封不严,从泄油孔中渗油; ③油泵出口的高压逆止阀有可能不严; ④如果机构在分闸状态,油泵也启动频繁,这说明合闸的二级阀钢珠密封不严 ⑤ 放油阀关闭不严; ⑥工作缸活塞密封圈密封不好; ⑦液压油内有杂质,卡滞在各密封圈部位,导致密封不好。 (3)处理方法 ①处理漏油、渗油部位,更换全部密封圈; ②检查工作缸活塞连杆,如果存在纵向划痕,根据情况进行更换或用细砂纸轻轻打磨至光滑; ③对液压油进行过滤或更换; 2.2 液压系统不能正常建压 (1)故障现象;断路器在分闸操作后再度合闸操作时,油泵电机长时间打压,压力升不到停泵压力。 (2)原因分析,主要原因有: ①油泵内各高压密封圈损坏或球阀密封不良,滤油器有脏物堵塞,影响油通过; ②高压放油阀没有复位,高压油直接放到油箱中; ③油泵低压侧有空气; ④油泵大修后,柱塞在组装时没有注入适量液压油或柱塞杆及珠塞座没有擦干净,柱塞间隙配合过大,吸油阀钢珠不复位;一、二级阀密封不严,可能存在阀口磨损或球托翻倒;。 (3)处理方法 ①清洗滤油器及油泵;更换全部密封圈; ②检查高压放油阀是否复位,如损坏应更换; ③多次打压排出油泵内空气;应重新组装各级分、合闸阀。 2.3 液压操动机构压力异常升高或异常降低 (1)故障现象;断路器在运行中出现压力异常,严重时导致高压闭锁分、合闸或压力降低至零位。 (2)压力异常升高原因分析 ①微动开关1YLJ(1CK)失灵,使储压罐活塞杆超过1YLJ位置时,电机电源无法切断,继续打压; ②储压罐密封圈损坏或者罐壁有磨损,液压油进入储气罐; ③压力表失灵或存在误差; ④中间继电器“粘住”,其触点断不开;接触器卡滞,电机始终处于运转状态。 (3)压力异常降低原因分析 ①压力表失灵或存在误差; ②机构箱内有大量漏油处,阀体被油中脏物“垫起”或胶圈损坏(此时油泵会连续运转); ③如储压罐连杆在正常停止位置而压力继续降低,则是压力罐焊缝处可能存在渗漏现象; ④氮气缸上单向逆止阀密封不严漏气或储压罐活塞杆头部两个密封圈损坏,使氮气进入油中。 (4)处理方法 信息请登陆:输配电设备网 ①检查微动开关、压力表、中间继电器、接触器,如损坏应更换,对微动开关触点进行打磨; ②检查储压罐,如罐体损坏应更换;更换全部密封圈; 2.4 故障现象;压力低于重合闸或合闸闭锁值 (1)油压远低于重合闸闭锁值,接近合闸闭锁值。 (2)原因分析:CY3型液压操动机构在运行中,当室外温度发生较大变化时,由于氮气的热胀冷缩(航空油的热胀冷缩系数极小,可以忽略不记)现象,使氮气压强随温度变化而变化,即使压力油压随着变化,此时活塞杆几乎不会上下移动。微动开关2YJ的位置是在常温(25℃)下调整好的,在零下10℃时,氮气压强下降2.92 MPa。该装置设定油泵启动值为27.3 MPa,停泵值为27.9 MPa,假设温度降低35℃,则油压降低到24.38 MPa,油泵才能启动打油,但此 时的油压远低于重合闸闭锁值,接近合闸闭锁值,对设备的安全运行构成威胁。 (3)改进措施;设备制造厂在解决这个问题时,采用在贮压筒下部安装一个发热器,但在实际运行中,天气冷时发热器由于长期频繁加热,容易烧毁,实用价值不是很大。建议采用下述两种方法消,效果较好。 ①文献[1]采取消用微动开关2YJ控制油泵启动,改用接在油路上的压力开关1YK控制;取消用微动开关1YJ控制油泵停运,改用接在油路上的压力开关2YK控制。在实际应用中,由于油路压力开关1YK、2YK的启停参数具体设定时,控制系统的滞后较大,并受扰动的因素较多易造成压力异常,故采用2YJ和1YK,1YJ和2YK串联的方式控制油泵的启停,提高了油压控制系统的可靠性。 ②根据文献[1]对贮压筒进行改造,如图2所。在贮压筒上部加装一个调压活塞贮压筒顶部改用密封盖板密封,密封盖板与贮压筒用加密封垫螺栓联接,在调压活塞与密封盖板之间加一个调压弹簧,其空间充灌润滑脂(注意要保留一定空间)。调压弹簧对调压活塞作用的压强值为原装置油泵停运时的油压值,即调压弹簧的弹力选择为调压活塞截面积与原装置油泵停运时的油压值的乘积。 当由于装置油渗漏或断路器操作中使用了一定体积的压力油时,活塞同样正常向下移动。为保证油泵能正常打油补充,此措施可以在油压下降时,由于调压活塞两边压差的作用,调压活塞向下运动,压缩氮气体积,提高氮气压强,保证了油压基本恒定。当环境温度改变时,氮气压强改变,调压活塞亦能上、下运动自动调节氮气压强,保证油压基本恒定。 润滑脂主要用来作为调压活塞与贮压筒内壁间的密封,防止氮气泄漏,当运行时间过长,调压弹簧弹力降低时,可拆开密封盖板更换调压弹簧。使用该改进装置,任何情况下油压基本恒定,提高了断路器运行中的安全可靠性。 3 永磁操动机构的发展概况 自1989年英国曼彻斯特大学系统与能量组为GEC公司设计了第一台永磁操动机构模型起,永磁操动机构就成了世界各国开发的热点。永磁操动机构的显著优点是:结构简单零部件少,可靠性高及操作能耗小。当其与真空断路器配合使用,组成自动重合器系统,应用于变电站(开关柜)和柱上开关,使配电网的可靠性和自动化程度有很大提高。在欧洲市场已出现以电池作为操作能源,可10年免维护的永磁操动机构及控制系统。上世纪末,国际上永磁操动机构的发展概况大致如下: ABB Calor Emag开关设备公司,在1997年开发了一种新型利用永磁操动机构的VM1型真空断路器。操动机构是永磁方形双线圈结构,仅用7个活动元件代替了由数百个零件组成的传统结构。在10万次操作寿命中不需维修,是传统操动机构的3倍。目前VM1真空断路器的额定电压为12175和24kV,额定电流为2000~3150A,额定开断电流为25~50kA。 英国IPEC公司的永磁操动机构采用圆粒形双线圈结构,并且把永磁体由静铁芯移到了动铁芯。 荷兰Holec 公司的MMS型真空断路器采用的永磁操动机构其特点是:合闸、合闸保持和分闸的磁路是分开的,只有合闸位置靠永磁体保持,机构的终止位置是分闸位置,分闸操作仅靠开关触头的弹簧力和分闸弹簧力,通过合闸线圈使之释放能量。它的短路开断电流为31.5kA,分合闸时间偏差不超过1ms。 国内在近一、二年里,一些高等院校、研究机构及从事高压断路器产品开发制造的公司,正开展永磁操动机构的研制,也已开发出了一些初级阶段的产品,还未形成系列化产品,性能也很不稳定。 根据专家的估计,国际上这一领域内系统的理论还远未成熟,还有许多实验研究工作要做。国内的理论及实验研究工作还刚刚起步。因此这种使用新材料、新工艺及新原理,使真空断路器的磁力驱动装置实现低能耗,高可靠性的永磁操动机构的研究发展前景及市场前景将是十分宽阔的。 传统的电动弹簧操动机构及电磁操动机构,由于它们的结构复杂,可靠性低,能耗大,成为提高真空断路器的可靠性和提高其免维护水平的障碍。同时,由于断路器是实现配电网控制的关键电气设备,因而传统操动机构也制约了配电网自动化,运动化和智能化的发展。 而永磁操动机构比传统操动机构,其结构大为简单,合、分闸能耗大大降低,从而能极大的提高了真空断路器的运行可靠性和免维护水平,并为配电网实现自动化、运动化、智能化提供了必要的技术条件。 参考文献: 1. 王明俊,于尔铿,刘广一,配电系统自动化及其发展,中国电力出版社,1998.1 2. 张冠生,电器学,机械工业出版社,1980.11 作者简介:周志敏(1957-),男,高级工程师,主要从事高压电气设备试验及检测工作

一种USB电源开关的设计 摘要: 设计了一种低导通损耗的USB电源开关电路。该电路采用自举电荷泵为N型功率管 提供足够高的栅压,以降低USB开关的导通损耗。在过载情况下,过流保护电路能将输出电流限 制在0.3 A。 关键词: USB开关;自举电荷泵; N型功率管;过流保护 1引言 通用串行总线(Universal Serial Bus)使PC机 与外部设备的连接变得简单而迅速,随着计算机以 及与USB相关便携式设备的发展,USB必将获得 更广泛的应用。由于USB具有即插即用的特点,在 负载出现异常的瞬间,电源开关会流过数安培的电 流,从而对电路造成损坏。 本文设计的USB电源开关采用自举电荷泵,为 N型功率管提供2倍于电源的栅驱动电压。在负载 出现异常时,过流保护电路能迅速限制功率管电流, 以避免热插拔对电路造成损坏。 2 USB开关电路的整体设计思路 图1为USB电源开关的整体设计。其中,VIN 为电源输入,VOUT为USB的输出。在负载正常的情 况下,由电荷泵产生足够高的栅驱动电压,使 NHV1工作在深线性区,以降低从输入电源(VIN 到负载电压(VOUT)的导通损耗。当功率管电流高于 1 A时,Current-sense输出高电平给过流保护电路 (Current-limit);过流保护电路通过反馈负载电压 给电荷泵,调节电荷泵输出(VPUMP),从而使功率管 的工作状态由线性区变为饱和区,限制功率管电流, 达到保护功率管的目的。当负载恢复正常后,Cur- rent-sense输出低电平,电荷泵正常工作。 3 电荷泵设计 图2为一种自举型(Self-Boost)电荷泵的电路 原理图。图中,Φ为时钟信号,控制电荷泵工作。初 始阶段电容,C1和功率管栅电容CGATE上的电荷均 为零。当Φ为低电平时,MP1导通,为C1充电,V1 电位升至电源电位,V2电位增加,MP2管导通。假 设栅电容远大于电容C1,V2上的电荷全部转移到 栅电容CGATE上。当Φ为高电平时,MN1导通,为 C1左极板放电,V1电位下降至地电位,V2电位下 降,MP2管截止,MN2管导通,给电容C1右极板充 电至VIN。在Φ的下个低电平时,V1电位升至电源 电位,V2电位增加至2VIN,MP2管导通,VPUMP电 位升至2VIN-VT。 自举电荷泵不需要为MN2和MP2提供栅驱 动电压,控制简单[1],但输出电压会有一个阈值损 失。图3是改进后的电荷泵电路图,Φ1和Φ2为互 补无交叠时钟。由MN2、MN5、MP3、MP2和电容 C2组成的次电荷泵为MN4、MP4提供栅压,以保证 其完全关断和开启。当Φ1为低电平时,MP1导通, 电位增加,此时,V3电位为零,MP4导通,V2上的电 荷转移到栅电容CGATE上,VPUMP电位升高。当Φ1为 高电平时,MP2导通,为C2充电,V4电位上升至电 源电位,V3电位随之上升,MP3导通,VPUMP电位继 续升高。MN3相当于二极管,起单向导电的作用。 在VPUMP电压升高到VIN+VT以后,MN3隔离V3 到电源的通路,保证V3的电荷由MP3全部充入栅 电容。这样,C1和C2相互给栅电容充电,若干个时 钟周期后,电荷泵输出电压接近两倍电源电压[2]。 在电荷泵输出电压升高的过程中,功率管提供的负 载电流逐渐上升,避免在容性负载上引起浪涌电流 4 过流保护电路设计 当出现过载和短路故障时,负载电流达到数安 培,需要精确的限流电路为功率管和输入电源提供保 护。对于MOS器件,只有工作在饱和区时的电流容 易控制。限流就是通过反馈负载电压,调节电荷泵输 出电压来实现的。图4是限流电路的原理图。 N型功率管NHV的源与P型限流管MP6的 栅相接,N型功率管NHV的栅与P型限流管MP6 的源相接。从而达到控制功率管栅源压降的目的。 当负载电流超过1 A时,电流限信号(VLIMIT)为高 电平,MN7导通,栅电荷经MP6流向地,栅电压减 小,功率管工作在饱和区。C1、C2为电荷泵电容值, 在一个时钟周期T内,由电荷泵充入的栅电荷为: Q=VIN×C1+VIN×C2(1) 当功率管栅压稳定时,电荷泵充入的栅电荷等 于限流管放掉的栅电荷。限流管泄放电流为: IL=QT=VIN×C1+VIN×C2T(2) 由VGS(NHV)=VSG(MP6)(3) 得功率管和限流管的电流关系: 5 仿真结果与讨论 图5为负载正常情况下负载输出电压和功率管 电流的仿真波形。电源电压为5 V,C1、C2电容值为 1 pF,时钟周期为40μs,NHV和MP6宽长比的比值 为300,功率管的并联个数为1×103。采用0.6μm 30 V BCD工艺,在典型条件下,用HSPICE对整体电 路仿真。由波形可以看出,在1 ms内,负载输出电压 逐渐上升,功率管电流没有过冲,启动时间为1.7 ms。 3 ms后,功率管完全开启,为负载提供电源。 表1为限流电路工作时功率管的平均栅电压和 平均电流。图6为USB开关启动8 ms后负载短路 到恢复正常的仿真结果。USB开关在负载正常情 况下启动,8 ms后负载短路,负载电流过冲到3.1 A。当过流保护电路工作后,过流保护电路将电流 限制在0.3 A,保护了USB端口。16 ms后,负载恢 复正常,电源开关重新启动. 图6 USB开关在启动、限流和恢复正常过程中,电荷泵 输出电压、负载输出电压和功率管电流的仿真波形 Fig.6 Simulation waveforms of charge pump output volt- age,power switch output voltage and power tran- sistor current during startup, current-limit and normal operation 6结论 本文设计了一种满足USB规范的电源开关。 一种结构简单的自举电荷泵为N型功率管提供栅 驱动电压,以降低开关的导通损耗。精确的限流电 路针对过载和短路故障,对输入电源提供保护。仿 真结果表明,在负载短路瞬间,限流电路能够有效地 减小过冲电流,并能把电流限制在0.3 A,达到保护 USB端口的目的。 参考文献: [1] PARK S, JAHNS T M. A self-boost charge pump to- pology for a gate drive high-side power supply [J]. IEEE Tans Power Electronics, 2005, 20 (2): 300- 307. [2] DI CATALDO G, PALUMBO G. Double and triple charge pump for power IC: dynamic models which take parasitic effects into account [J]. IEEE Trans Circ and Syst. 1993, 40 (2): 90-100.

ZW7-40.5型户外高压真空断路器,是龙源电力研究所受国家电力公司的委托组织该产品主要由真空灭弧室、电流互感器、传动机构及电磁(或电动机储能弹簧)操

升降压斩波电路仿真研究毕业论文

当 S1 开路时,存储在电感器中的能量通过 D1 维持通过负载的电流,同时 C1 也向负载放电。S1 以高频开关,开关的占空比定义了输出电压。当 S1 闭合时,直流输入电压施加到输出滤波电感器 L1,电流通过电感器流入输出电容器 C1 并流向负载。

电容器可以是电解电容,钽电容或陶瓷电容。使用低ESR的电容。当使用电解电容器时,应在靠近IN的地方放置两个额外的优质陶瓷电容器。 对于大多数应用,建议使用1µH至10µH的电感器,其直流电流额定值至少比最大负载电流高25%。 为了获得更高的效率,请选择一个直流电阻较低的电感器。 电感值越大,纹波电流越小,输出纹波电压越低,但物理尺寸越大,串联电阻越大,饱和电流越小。 确定电感器值的一个好的规则是允许电感器纹波电流约为最大负载电流的30%。

六种斩波电路原理分析1、降压斩波电路图1:降压斩波电路(Buck Chopper)原理图及波形图如上图1:降压斩波电路原理图及波形图所示,图中V为全控型器件,选用IGBT;D为续流二极管。由图1中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。负载电压的平均值为:式中ton为V处于通态的时间,toff为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。由此可知,输出到负载的电压平均值UO最大为Ui,若减小占空比α,则UO随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。2、升压斩波电路图2:升压斩波电路(Boost Chopper)原理图及波形图如上图2:升压斩波电路原理图及波形图所示,电路也使用一个全控型器件V。由图2中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为Ui*I1*ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量为(UO-Ui)*I1*toff。当电路工作于稳态时,一个周期T内电感L1积蓄的能量与释放的能量相等,即:上式中的T/toff≥1,输出电压高于电源电压,故称该电路为升压斩波电路。3、升降压斩波电路图3:升降压斩波电路(Boost-Buck Chopper)原理图及波形图如上图3:升降压斩波电路原理图及波形图所示,电路的基本工作原理是:当可控开关V处于通态时,电源Ui经V向电感L1供电使其贮存能量,同时C1维持输出电压UO基本恒定并向负载供电。此后,V关断,电感L1中贮存的能量向负载释放。可见,负载电压为上负下正,与电源电压极性相反。输出电压为:若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压4、Cuk斩波电路图4:Cuk斩波电路原理图如上图4:Cuk斩波电路原理图所示,电路的基本工作原理是:当可控开关V处于通态时,Ui—L1—V回路和负载R—L2—C2—V回路分别流过电流。当V处于断态时,Ui—L1—C2—D回路和负载R—L2—D回路分别流过电流,输出电压的极性与电源电压极性相反。输出电压为:若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。5、Sepic斩波电路图5:Sepic斩波电路原理图如上图5:Sepic斩波电路:原理图所示,电路的基本工作原理是:可控开关V处于通态时,Ui—L1—V回路和C2—V—L2回路同时导电,L1和L2贮能。当V处于断态时,Ui—L1—C2—D—R回路及L2—D—R回路同时导电,此阶段Ui和L1既向R供电,同时也向C2充电,C2贮存的能量在V处于通态时向L2转移。输出电压为:若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。6、Zeta斩波电路图6:Zeta斩波电路原理图如上图6所示:Zeta斩波电路原理图所示,电路的基本工作原理是:当可控开关V处于通态时,电源Ui经开关V向电感L1贮能。当V处于断态后,L1经D与C2构成振荡回路,其贮存的能量转至C2,至振荡回路电流过零,L1上的能量全部转移至C2上之后,D关断,C2经L2向负载R供电。输出电压为:若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。

所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极伏安特性的可靠出发区域之内。4) 应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。2-18 IGBT、GTR、GTO和电力MOSFET的驱动电路各有什么特点?IGBT驱动电路的特点是:驱动电路具有较小的输出电阻,IGBT是电压驱动型器件,IGBT的驱动多采用专用的混合集成驱动器。GTR驱动电路的特点是:驱动电路提供的驱动电流有足够陡的前沿,并有一定的过冲,这样可加速开通过程,减小开通损耗;关断时,驱动电路能提供幅值足够大的反向基极驱动电流,并加反偏截止电压,以加速关断速度。GTO驱动电路的特点是:GTO要求其驱动电路提供的驱动电流的前沿应有足够的幅值和陡度,且一般需要在整个导通期间施加正门极电流,关断需施加负门极电流,幅值和陡度要求更高,其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。电力MOSFET驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。2、晶闸管对触发脉冲的要求是 要有足够的驱动功率 、 触发脉冲前沿要陡幅值要高 和 触发脉冲要与晶闸管阳极电压同步。1.晶闸管两端并联R、C吸收回路的主要作用有哪些?其中电阻R的作用是什么?答:R、C回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。R的作用为:使L、C形成阻尼振荡,不会产生振荡过电压,减小晶闸管的开通电流上升率,降低开通损耗。、8、指出下图中①~⑦各保护元件及VD、Ld的名称和作用。答:①星形接法的硒堆过电压保护;②三角形接法的阻容过电压保护;③桥臂上的快速熔断器过电流保护;④晶闸管的并联阻容过电压保护;⑤桥臂上的晶闸管串电感抑制电流上升率保护;⑥直流侧的压敏电阻过电压保护;⑦直流回路上过电流快速开关保护;VD是电感性负载的续流二极管;Ld是电动机回路的平波电抗器;9、为使晶闸管变流装置正常工作,触发电路必须满足什么要求?答:A、触发电路必须有足够的输出功率;B、触发脉冲必须与主回路电源电压保持同步;C、触发脉冲要有一定的宽度,且脉冲前沿要陡;D、触发脉冲的移相范围应能满足

电力毕业论文断路器的结论

电力是社会日常生活不可或缺的能源动力,电力系统以及系统的自动化研究在我国的科研领域意义非凡,而我国的电力系统自动化目前还多倾向配电自动化。下面是我为大家整理的电力系统自动化 毕业 论文,供大家参考。

电力系统自动化毕业论文 范文 一:电力系统中电气自动化运用

摘要:在电力系统中应用电子自动化技术,不仅能够有效节省系统的成本投入,提高系统的工作效率,还能够有效提高电力系统的安全性能。在实际工作中,电力系统的工作人员要对电气自动化技术引起重视,对目前电气自动化技术的应用进行清晰把握,从而为保证电力系统的良性运行做出贡献。

关键词:电气自动化技术;电力系统;控制技术;仿真技术;智能技术;安全监控技术

随着经济建设速度的加快,我国电力系统得到了很大的发展。在电力系统中,传统的应用模式伴随数字技术的发展已经表现出了一定的不适应性。而在电力系统中应用电子自动化技术,不仅能够有效节省系统的成本投入,提高系统的工作效率,还能够有效提高电力系统的安全性能。本文将对电力系统控制技术的发展要求进行分析,探讨电子自动化在电力系统中的应用情况,研究电子自动化的发展趋势,希望为我国电力系统的发展提供帮助。

1电力系统对控制技术的要求

1.1信息化要求

随着科学技术的发展,电力系统对于信息化的要求越来越迫切。对于电力系统来说,为了保证系统运行的稳定性,同时实现良好的经济效益,因此在电力系统控制方面需要更高的安全性和稳定性。而信息技术的发展为电力系统提供了良好的控制平台。在电力系统中,电气自动化控制技术依托信息化的发展,在机器的自动化运行方面实现了非常重大的突破。可见良好的信息化技术和智能化水平对于提高电力系统的运行效率、保证系统的运行稳定具有非常重要的作用。

1.2安全性要求

电力行业是我国支柱性产业,对国民经济具有非常重要的作用。保持电力系统的稳定性是促进我国各个行业良好发展的基础保障。而伴随目前社会各行业对于电力应用的依赖程度进一步提高,如何保证电力系统的安全性和可靠性已经成为了非常重要的课题。为了满足电力系统对于安全性的要求,电力系统要能够具有较好的维护功能以及非常简便的操作性,同时在电力系统发生故障时,系统自身要能够对故障做出迅速的诊断。而在电力系统中,应用电力自动化控制技术能够有效地提高电力系统对于安全性的要求,简化系统的操作难度,对系统产生的故障能够进行及时的诊断和处理,从而保证电力系统的安全性。

2电气自动化在电力系统中的应用分析

2.1电力系统中应用电气自动化的技术目前,电气自动化技术已经在电力系统中得到了广泛的应用。具体来说,在电力系统中电气自动化技术的应用主要包括以下方面:

2.1.1电气自动化中的仿真技术。电气自动化仿真技术对于电力系统的良性运行具有重要作用。仿真技术能够为电力系统管理大量的数据信息,并根据数据信息提供逼真数据模拟操作环境,同时仿真技术还能够通过多项控制技术来实现同时、同步操作。对电力系统中出现的故障,仿真技术能够通过有效的模拟来对故障进行分析和判断,从而有效提高电力系统的运行效率。目前,在新的电力系统中,仿真技术被广泛应用于设备测试方面,并取得了非常好的测试效果。

2.1.2电气自动化中智能技术。智能技术是比较先进的研究成果,特别是对具有较复杂关系的非线性系统进行控制时,智能系统具有非常好的控制效果。电力系统通过智能技术能够有效提高系统的控制灵活度,同时通过网络信息化技术,能够实现数据信息的实时传递,从而有效提高了系统发现故障的速度,并能够及时地制定出解决方案。另外,智能技术还可以有效完善系统的漏洞,可见在电力系统中智能技术拥有非常广阔的发展前景。

2.1.3电气自动化中的安全监控技术。安全监控技术是电气自动化在电力系统中应用的重要表现形式。安全监控技术能够通过科学的监测手段对系统的运行情况进行有效监测,保证系统的良性运行。目前,安全监控技术主要通过对电磁暂态故障信息的实时收集,来达到对电力系统进行监测的目的。安全监控技术的应用主要以GPS技术和SCADA技术为依托,达到动态监控的目的。其中信息通信系统、中央数据处理系统、动态相量测量系统、同步系统是安全监控技术的四个主要组成部分。随着电力系统中监测工作由稳态向着动态的转变,也标志着安全监控技术进入了动态监测的新纪元。动态安全监控技术对于保障电力系统的稳定性,提高电力系统的运行效率具有非常重要的作用。

2.1.4电气自动化中的柔性交流电系统技术。柔性电流技术也是电气自动化在电力系统中应用的关键一环。具体来说,柔性电流技术指的是在电力供应系统中,通过对电力供应的关键环节进行科学的技术处理,采用具有较强独立性能的电子设备,从而实现对电力供应系统的参数进行有效调节的目的。柔性电流技术的应用对于保证电力系统的稳定性和安全性具有非常重要的作用。柔性交流技术的核心设备是ASVC装置。ASVC装置的技术结构比较简单,属于静止无功发生器。但由于ASVC装置通过和柔性交流电系统技术的有效结合,因此具有非常优良的应用效果。当系统发生故障的时候,ASVC装置能够进行快速的调整,从而在短时间内保证电压的稳定。另外,ASVC装置具有良好的电压调节范围和快速的反应速度,因此在实际工作中很少出现延迟的情况。同时在噪音和惯性方面,ASVC装置也具有良好的效果,在电力系统中得到了广泛的应用。

2.1.5电气自动化中的多项集成技术。在电力系统中,通过电气自动化技术能够有效促进系统的统一管理。而实现统一管理功能的就是电气自动化中的多项集成技术。在传统的电力系统中,通常采用的是分开管理的模式,这种管理方式对于工作效率不能够保证,同时还增加了系统的运行成本。而多项集成技术能够根据用户的不同要求,通过科学的技术手段,将电力系统中管理、安全保护几个环节进行统一,从而实现集中管理的目的。通过集中统一的管理模式,不仅能够对电力系统的设计工作、施工工作、测试工作以及维护工作等提供有力的技术支持,在保证了系统各个环节良性运行的同时,还有效地降低了系统运行产生的经济和人力成本。根据统计发现,采用电气自动化技术的电力系统,相比传统系统来说,能够有效地降低运营成本,间接提高的经济效益能够达到30%左右。

2.2电力系统中应用电气自动化的领域

2.2.1变电站的自动化控制。在电力系统中,变电站的自动化控制是电气自动化应用的重要领域。在变电站中应用电气自动化技术能够有效提高变电站的运行效率。具体来说,在变电站中应用电气自动化技术主要通过程序化的设备来实现。技术人员将变电站中的传统的电磁设备转变成程序化设备,从而有效提高变电站的自动化程度,并可以实现对变电站工作过程的全方位监控,在提高变电站工作效率的同时,保证了变电站工作的稳定性和安全性。

2.2.2电网的自动化控制。电网的运行质量对于供电的稳定性具有决定性的影响,因此通过科学的手段保证电网工作的可靠性一直是电力企业重点研究的问题。在电网工程领域中,通过电气自动化技术的应用能够有效地提高电网运行的自动化程度,从而为电网运行的稳定性提供保证。电气自动化技术通过强大的数据信息处理能力,能够对电网工程中的变电站、工作站、服务器等进行科学的调度工作,并通过控制部门和变电站的设备终端对电网的运行信息进行准确的采集,根据这些信息系统可以对电网的运行状态做出科学的判断。

3电气自动化在电力系统中的发展趋势

电气自动化对于电力系统的良性运行具有非常重要的作用。通过电气自动化能够有效提高电力系统的运行效率,提高系统运行的安全性和稳定性。随着科学技术的发展,在电力系统中应用电气自动化具有以下三点发展趋势:

3.1保护和控制一体化趋势保护和控制一体化趋势是电气自动化发展的一个主要趋势。目前,我国的电气化控制系统主要通过相对独立的方式对监控数据进行采集和分析工作。而将保护和控制工作进行统一结合,能够有效地降低系统重复配置的情况,增加技术的合理性,从而达到降低工作量的目的。在实际工作中,电力系统的测量、保护和控制等的数据信息都是从电力现场得到的,这些信息相对来说不够精确。而通过CPU总控单元进行控制,能够免除遥控输出和执行的步骤,从而有效提高了系统的可靠性,可见电力系统保护和控制的一体化已经成为了非常重要的发展趋势。

3.2国际化趋势国际化趋势是电气自动化在电力系统中主要的发展趋势。目前,国际通用的是IEC61850标准,该标准能够使不同型号和规格的IED设备实现信息之间的有效交流,从而达到信息共享的目的。而我国也已经有效展开了适用国际标准的电气自动化研究工作,并将其作为未来电气自动化的主要发展方向。

3.3信息化趋势信息化趋势也是电气自动化发展的主要趋势。随着以太网技术的发展,电气自动化在数据传输方面的速度要求得到了极大的满足。可以预见,在未来的电力系统发展趋势中,以信息化技术作为发展基础,通过和工业生产的有效结合,能够形成以信息化技术为核心的现场总线技术。

4结语

在电力系统中,应用电气自动化技术能够有效地提高系统的工作效率,提升电力系统的安全性和稳定性。在实际工作中,电力系统的工作人员要对电气自动化技术引起重视,对目前电气自动化技术的应用进行清晰把握,从而为保证电力系统的良性运行做出贡献。

参考文献

[1]李爱民.电气自动化的发展趋势以及在电力系统中的应用[J].科技资讯,2012,(27).

[2]刘猛.电气自动化技术在电力系统中的应用解析[J].通讯世界,2014,(21).

[3]罗小明.电气自动化在电力系统中的应用及发展趋势[J].中国高新技术企业,2013,(20).

电力系统自动化毕业论文范文二:电力系统配电网自动化建设

摘要:随着经济发展水平的提高,对电力的需求也在激增中。为了满足生产生活对电力的使用需求,国家逐步投入建设自动化的配电网工程。这是一项需要周密规划,并投入巨大资金,应用复杂的技术要求,涉及方方面面的综合性工程。 文章 对电力系统配电网自动化建设策略进行了探讨。

关键词:电力系统;配电网工程;自动化建议策略;电力需求;供电效率;电力质量

配电网实施自动化应用对于科学分配电力、合理应用科技成果促进电网发展有着重要意义。通过自动化工程,不仅可以有力提高电网的供电效率、电力质量,还可以合理缓解电网压力,释放电网潜能,减少故障频率,并提高电网的服务能力。自动化工程可以帮助电网自我检查,缩短故障检修、处理时间,进一步提高电网安全性与稳定性。这对于极度依赖电力的现代化社会来说,是具有重大意义的一项改造工程。

1研究背景

配电网自动化工程的定义一般可以理解为,利用先进的通信技术与 网络技术 ,依托各类自动化设备,通过计算机系统,保护电网,控制发电,检测问题,计量电力使用状况,并据此为供电事业单位提供各类信息,简化管理难度,提高供电效率与电力质量。通过自动化的配电,有助于了解用户的各类需求,并调整电网的供电量与价格,达到经济性、科学性、安全性并重的发展目标。当然这是一个系统的综合性工程,对于电力企业的管理模式、设备改造都是一个巨大的调整,最终形成一个统一的服务型电网。这一工程的基本原理是,通过分段开关将本来是统一运行的线路改造为不同的几个供电区域。这样一来,即使某一供电部位出现问题,也可以迅速锁定区域关掉开关,将故障区域隔离出正常供电的电网中,使得正常运行的其他区域可以恢复供电,从而避免了因为某一个小的故障而使得一条线上的电路全部断掉,造成更大的影响范围与损失,极大地减少了影响区域,并使得供电的可靠性增强。

2基本要求

2.1线路的形式应该采用环网型,而且为了保证供电稳定性,可以使用双电源甚至多电源供电系统。

2.2干线的模式多使用分段式。分段式的好处是一旦某段线路出现故障,可以通过切断这段故障电路而保证其他线路仍然正常供电。一般对于分段式干线供电的建设原则是:合理利用投资,在充分考虑收益的情况下,实事求是地采用均等原则,或线长相等,或负荷相等,或用户量相等,以三千米干线为例,一般分为三段。

2.3抛弃传统断路器自动化工程多采用负荷开关,既可以节约成本,减少投资规模,又可以在故障发生时,有效隔离故障区域,使之不影响非故障区域。

3设计要点

3.1软件要具备可维护性

在配电网满足了硬件条件,比如可靠的电源,有完善的监测、控制设备,有齐备的线路设施后,自动化工程的一大重要内容就是是否配套了专业化的软件设备。只有软件硬件配套,才能保障配网自动、安全、稳定地运行。通常提到软件系统,多考虑其可维护性。一款合适的软件必须是可以被不断完善、更新的。基于我国社会经济的发展性,对于电力的需求也在波动变化中,所以配电网的负荷也在变化中,如果配电网的自动化软件不能有效维护波动变化的电网,所谓的自动化就变得不切实际了,所以软件的可维护性成为了配电网自动化工程的最基本前提。其技术软件只有可以维护,才能有效保障电力系统的稳定性及正常运行,延长自动化工程的整体使用寿命。只有保证了电网的稳定性,才能使得供电企业在竞争愈发激烈的供电市场站稳脚跟,并满足社会发展需求。

3.2提高配网自动化系统的可靠性

配电网的自动化改造,有一个重要诉求就是增强电网的稳定性,提高电网的容错率。所以,建设自动化的电网工程,一个重要的衡量因素就是当系统运行发生故障或者不可控意外时,系统是否能自我处理,保障整个系统的供电能力与供电质量。所以说,对于建设自动化配电网工程,是需要想办法提高其系统稳定性以及运行的可靠性。

3.3进一步提高系统的运行效率和可移植性

提高电网自动化效率,一般是指是否可以充分利用计算机资源。可移植性,顾名思义是指将此系统整体移植到另一个软硬件环境时,系统可以稳定、高效地运行。可移植性对于电力企业来说是十分重要的,它使得电力企业可以在固定成本投入下,满足不同供电环境的使用需求,并与其他相关单位有效兼容。

4技术实现时的注意事项

4.1加强配网的建设和改造

对于供电企业来说,电力系统的平稳运行是首要任务,即使是改造电网为自动化工作,也是为了这一目标。所以说,实现自动化作业,必须要完善配电网络结构,并积极应用先进的前沿科技,还要改造老旧设备,提高智能化。在对配电网建设中,要强调计量装置的重要性,合理安置,全面整顿。

4.2进一步完善相应的硬件支持系统

现阶段电力企业对配网自动化工程的建设中,一般会在以下两方面开始:第一是市场预测。主要是利用科学的数据处理分析系统,对于供电网络在不同地区、不同时段的不同电力使用量进行记录、分析、比较、预测。通过对接下来的电力使用情况进行预测,为企业发展规划提供可信的数据;第二是修复系统建设。当常态化的供电情况发生异常现象时,自动化系统必须要有及时自检的能力以及在确定故障后的警报能力,更进一步有初步的解决 措施 。一系列的修复系统可以最大化地降低事故发生率以及事故危害程度,保障系统的安全稳定运行。

4.3提高配电网的自我诊断能力

技术、新设备,满足系统的自我检查、自我检测、自我管理的功能性需求,从而保障系统的稳定性运行。

5电力系统配网自动化实用化模式

5.1集中智能模式

集中智能模式是电力系统配网自动化的第一大模式,主要指整个系统的智能是依靠主站的。线路上的实时情况是通过线路上的分段开关上传的,通过主站的智能诊断对线路的故障进行定位,进而通过对每一段的电网结构隔断故障,寻求出合适的解决方案。这种模式的好处是适用性强,并且对于一些多故障情况进行处理比较容易,是一种比较高级的智能模式。

5.2分布智能模式

分布智能模式是指线路上的开关有自己的智能判断能力,在不需要上传实时状态,请求主站反馈的情况下,自我检测故障并判定哪一部分需要被隔离修复,主要是分段开关发挥作用。具体又分为电流计数型与电压时间型。这种智能模式的好处是在通信条件不完善的地区,网架结构简单的系统,可用性较强。

6未来技术发展

电力系统配电网自动化是现阶段电力企业发展的必然趋势之一,而未来的发展趋势也在研究者的展望中浮出水面。发展趋势如下:其一是电能质量在大功率设备的应用下有效提高;其二是配电网系统保护能力更强,综合运用GIS平台管理电网自动化成为可行方案;其三是分布式小电流接地保护方案的可行性。这是基于其高灵敏度与大承载力而言的。

7结语

通过以上分析,我们可以发现电网系统的自动化是一个明显的趋势,而对于这一技术的应用,可以切实促进供电的稳定性,并且创造更大的社会效益。在我国电力企业谋求发展与创新的情形下,对于此类工程的探索是一个重要的方向,有助于解决电网中的运行故障,提高配电的科学性。因此,对于电力技术的研究以及自动化工程的应用,具有十分重要的意义。

参考文献

[1]裴文.浅探电力系统中配电自动化及管理[J].黑龙江科技信息,2011,(21).

[2]苏俊斌.城市电网配电自动化系统技术分析[J].广东科技,2011,(18).

【算一算你家装修要花多少钱】断路器是一种很基本的低压电器,断路器具有过载、短路和欠电压保护功能,有保护线路和电源的能力。? 空气开关和断路器的用法与功能都是差不多的!只是一般空开用在负荷较小的场合,断路器一般用在负荷相对较大一点的场合!? 根据所采用灭弧介质的不同,断路器包括空气断路器(俗称空气开关)、真空断路器、SF6断路器、油断路器等。民用建筑电气设计由于电压多为220~380V,断路器灭弧介质为空气,故称空气开关或断路器都对。但对于电力系统来说,就要具体对待识别了。 断路器主要品种有:? 塑壳断路器、漏电断路器、小型断路器、高分段小型断路器、高分段小型漏电断路器、小型漏电断路器、智能型万能式。【输入面积,免费获取装修报价】【输入面积,免费获取装修报价】

综述真空断路器存在的问题处理及预防措施论文

摘要:本文针对真空断路器在运行、检修中出现的问题进行分析。并提出了处理方法和预防措施。

关键词:检修故障预防处理

1断路器的工作原理

真空断路器利用真空中电流过零点时,等离子体迅速扩散而熄灭电弧,达到切断电流的目的。真空灭弧室是真空断路器的主要部件,开关寿命长短决定于触头的磨损和灭弧室真空度,真空度是真空断路器的重要技术指标。

2断路器真空泡真空度降低

2.1原因分析

2.1.1真空泡的材质或制作工艺存在问题,真空泡本身存在微小漏点。

2.1.2真空泡内波形管的材质或制作装配工艺存在问题,随着真空灭弧室使用时间的增长和开断次数的增多,其真空度逐步下降,下降到一定程度将会影响其开断能力和耐压水平。

2.1.3分体式真空断路器,如使用电磁式操作机构的真空断路器,在操作时,由于操作连杆的传动距离比较大,直接影响开关的同期、弹跳、超行程等机械特性,使真空度降低的速度加快。

2.2故障危害真空度降低将严重影响真空断路器开断过电流的能力,并导致断路器的`使用寿命急剧下降。

2.3处理方法①在进行断路器定期停电检修时,必须使用真空测试仪对真空泡进行真空度的定性测试,确保真空泡具有一定的真空度(真空度不能低于6.6×10-2Pa,制造厂新生产的真空灭弧室要求达到7.5×10-4Pa以下)。②当真空度降低时,必须更换真空泡,并做好行程、同期、弹跳等特性试验。③做好极限开断电流值的统计。在日常运行中,应对真空断路器的正常开断操作和短路开断隋况进行记录。当发现极限开断电流值l,达到厂家给出的极限值时,应更换真空灭弧室。

1=n1Ir+n2Ik;

式中:n1—正常开断次数;

Ir—厂家提供的断路器额定工作电流;

n2—短路开断次数;

Ik—l0kV母线最大开断电流。

2.4预防措施①当前真空断路器型号繁杂、生产厂家众多,产品质量分散性大,有的真空断路器无备品、备件,给维护与检修造成了一定的难度,所以,选用真空断路器时,应该选用质量信誉良好的厂家生产的成熟产品。②选用本体与操作机构一体的真空断路器。③运行人员应定期对真空断路器进行认真严格的巡视,应注意断路器真空泡外部是否有放电现象;特别是玻璃外壳真空泡,应对其内部表面颜色和开断电流时弧光的颜色进行目测判断,当内部表面颜色变暗或开断电流时弧光的颜色为暗红色时,真空泡的真空度基本上为不合格,应及时停电更换。④检修人员进行停电检修工作时,必须进行断路器同期、弹跳、行程、超行程、回路电阻等特性测试,以确保断路器处于良好的工作状态。⑤在现场检验灭弧室是否合格的最简便的方法是对灭弧室进行42kV的工频耐压试验。

3真空断路器分闸失灵

3.1故障现象①断路器远方遥控不能分闸;②就地手动不能分闸;③外部回路或设备故障时继电保护动作,但断路器不能分闸。

3.2原因分析①分闸操作回路断线;②分闸线圈断线;③操作电源电压降低;④分闸线圈电阻增加,分闸动能降低;⑤分闸顶杆变形,分闸时存在顶杆卡涩、不灵活现象,分闸动力降低;⑥分闸顶杆变形严重,分闸时卡死;⑦分闸顶杆动作,但不能可靠地打开分闸压板。

3.3故障危害断路器分闸失灵,会导致事故越级,扩大事故范围。

3.4处理方法①检查分闸回路是否断线;②检查分闸线圈是否断线;③测量分闸线圈电阻值是否合格;④检查分闸顶杆是否变形;⑤检查操作电压是否正常;⑥改铜质分闸顶杆为钢质,以避免顶杆变形;⑦调整分闸顶杆及铁芯的长度,保证动作可靠;⑧分闸线圈固定架应保证紧固,防止铁芯动作时分闸线圈固定架也随之上下窜动。

3.5预防措施①运行人员若发现分合闸指示灯不亮。应及时检查分合闸回路是否断线;②检修人员在停电检修时,应注意测量分闸线圈的电阻,并检查分闸线圈固定架螺丝是否紧固;③检查分闸顶杆是否变形;④如果分闸顶杆的材质为铜质应更换为钢质;⑤必须进行低电压分合闸试验,以保证断路器性能可靠。

4弹簧操作机构合闸储能回路故障

4.1故障现象①合闸后无法实现分闸操作;②储能电机运转不停IE,甚至导致电机线圈过拱损坏。 4.2原因分析①行程开关安装位置偏下,致使合闸弹簧尚未储能完毕,行程开关触点已经转换完毕,切断了电机电源,弹簧所储能量不够分闸操作;②行程开关安装位置偏上,致使合闸弹簧储能完毕后,行程开关触点还没有得到及时转换,储能电机仍处于工作状态;(3)行程开关或其接点损坏,储能电机不能停止运转。

4.3故障危害在合闸储能不到位的情况下,若线路发生事故,断路器不能分闸,将会导致事故越级,扩大事故范围。

4.4处理方法①调整行程开关位置,实现电机准确断电;②检修时应注意行程开关的动作情况,如行程开关损坏,应及时更换。

4.5预防措施运行人员在倒闸操作时,应注意观察合闸储能指示灯,以判断合闸储能情况;检修人员在检修工作结束后,应就地进行几次分合闸操作试验,以确定断路器处于良好状态。

5分合闸不同期、弹跳数值大

5.1原因分析①断路器本体机械性能较差,多次操作后,由于机械原因导致不同期、弹跳数值偏大;②分体式断路器由于操作杆距离较大,分闸力传到触头时,各相之间存在偏差,导致不同期、弹跳数值偏大;③合闸冲击刚性过大,致使动触头发生轴向反弹;④动触杆导向不良,晃动过大;⑤触头平面与中心轴垂直度不好,碰合时产生横向滑动等。

5.2故障危害如果不同期或弹跳大,会严重影响真空断路器开断过电流的能力,影响断路器的寿命,严重时能引起断路器爆炸。

5.3处理方法①在保证行程、超行程的前提下,通过调整三相绝缘拉杆的长度使同期、弹跳测试数据在合格范围内;②提高配件的加工精度,使绝缘支座与轴、换向器与钢销、轴等紧密配合,减小空程间隙;③加强装配工艺质量控制,提高装配工艺质量。在真空断路器装配过程中,注意安装合理,不使真空灭弧室受到额外的力;④调整导向管的位置,使灭弧室动触头的运动轨迹通过灭弧室的轴心,真空灭弧室动触头活动自如,无任何卡涩现象;⑤适度加大触头超程弹簧预压力。

通过采取以上措施,可以有效地控制真空断路器合闸弹跳。如果通过调整无法实现,则必须更换数据不合格相的真空泡,并重新调整到数据合格。

5.4预防措施由于分体式真空断路器存在诸多故障隐患,在更换断路器时应使用一体式真空断路器;定期检修工作时必须使用特性测试仪进行有关特性测试,及时发现问题,并解决问题。

6运行维护与检修试验

加强对10kV真空断路器的维护非常必要,维护中应做好以下几个方面的工作:

6.1在检修维护试验中,要测试开关的导电回路电阻、开关的机械特性、断口间的工频耐压试验,真空度试验,试验数据要满足厂家规定。断口间的工频耐压试验、真空度检验是检验真空管是否漏气的有效方法。

6.2在保护定检时,应对断路器做跳合闸试验,以检验开关在有故障时,断路器动作是否可靠。

6.3对断路器机构、传动轴等传动部位应注入一些润滑油,对紧固件要进行紧固确认等,以确保断路器传动灵活。

6.4开展真空度的测试工作。真空灭弧室真空度的测定主要有以下几种方法:

6.4.1观察法如果真空灭弧室的外壳是玻璃的,则可根据涂在玻璃内壁表面上的钡吸气剂薄膜颜色的变化来判断真空度:真空度良好时,吸气剂薄膜呈镜面状态;真空度变差时,吸气剂薄膜呈乳白色。这种用肉眼观察真空度的方法不太准确,只能作为参考。

6.4.2工频耐压法将真空断路器置于分闸状态下,在真空灭弧室的触头间加工频电压来判定真空度。如果真空灭弧室能耐受工频电压10秒以上,可认为真空度满足要求。如果随着电压升高,电流也增大,且超过5A,则认为真空度不合格。这种方法简单易行,现场使用方便。

6.4.3磁控放电法磁控真空度测试仪通常在触头之间施加一次或数次高压脉冲,脉冲宽度为数十到上百毫秒,磁场线圈中则通以同步脉冲电流,产生与高压同步的脉冲磁场来测量真空度。

对于真空度不满足要求,已接近或低于国家标准6.6×10-2Pa时,应及时进行真空灭弧室的更换,对于真空度有较大幅度降低,但仍在合格范围内的真空断路器,应适当缩短测试周期,并结合历次测量情况进行分析,判断真空度下降的趋势,据此决定真空断路器是否继续进行。

  • 索引序列
  • 真空断路器操作过电压的研究论文
  • 高压断路器的控制毕业论文
  • 高压断路器论文参考文献
  • 升降压斩波电路仿真研究毕业论文
  • 电力毕业论文断路器的结论
  • 返回顶部