大学英语四级考试时间:通常情况下为每年6月份、12月份的第三个星期六。
注意事项:
一、考生必须按规定时间参加考试,在考试前打预备铃(上午8:45、下午2:45)后,凭准考证、身份证、考试证进入考场。迟到15分钟以上的,即上午9:00、下午3:00以后不得入场。
二、考生进入考场,只准携带考试必需的文具用品,如黑色字迹签字笔、2B铅笔、橡皮、卷笔刀、直尺,不准携带任何书籍、笔记、报纸、草稿纸、计算尺、计数器和录音器材等,禁止携带录放音机、电子记事本以及各种无线通信工具等进入考场。
三、进入考场前监考老师应仔细核查考生的准考证、身份证等能证明身份的证件与考生本人是否相符,防止冒名代考。考试时,发现考场有异常情况或考生作弊时,应及时向主考报告,并作好考场记录。
四、考生进入考场,即按准考证号码或座位号入座,并将自己的准考证和身份证等证明身份的证件放在课桌左上角,以便监考人员查对。
五、考生在试卷分发后,须核对试卷的应试等级是否相符,如有不符,应立即向监考人员报告,要求更换。考生还须将本人的准考证号码及姓名清楚、正确地填写在答卷纸密封线内规定的位置上,切勿遗漏。
六、考试时,考生不得随意离开自己的座位,不准喧哗吵闹,不准吸烟,不得有交谈等作弊行为。如发现有舞弊行为,该考生的考试成绩作零分处理。
考试技巧:
一、注意直接信息
在拿到题目通读全文的时候,要留意收集文章中直接表达出来的信息。比如文章在描述一种现象的时候,作者直接表达出来自己对这种现象是持支持态度还是反对态度,这些信息我们可以直接拿来回答态度题。除此之外,大家要注意文章中出现的一些连词,比如说because、reason表示原因的词出现的时候意味着因果关系即将出现我们可以直接划下来回答原因类的题目;but、however等转折性词出现的时候,要留意转折性词汇后面所表达的意思。
二、有的放矢
考试的时间非常紧张,我们在做题的时候也要合理的安排我们的答题时间,有的放矢才能保证成功。所以我们在做阅读的时候,能够快速地在文章中找到答案才是重要的。在通读全文之前,要先浏览一遍题目,抓住每道题目的“题眼”,然后在通读全文的时候对应文章的相应部分,可能出现答案的部分重点阅读,其他部分一带而过即可。
三、选择范围小的选项
在做题的时候能够百分百的确定正确选项的时候很少,更多的时候我们会在两个选项中犹豫不决,不知道到底哪一个才是正确选项。在这种情况下,要选择涉及范围更小的那一个。大家要注意的是,题目所涉及的范围不能大于文章涉及的范围,同理,选项涉及的范围一样不能大于文章所涉及的范围。
|声明:遵循CC 4.0 BY-SA版权协议 建立在YOLOv1的基础上,经过Joseph Redmon等的改进,YOLOv2和YOLO9000算法在2017年CVPR上被提出,并获得最佳论文提名,重点解决YOLOv1召回率和定位精度方面的误差。在提出时,YOLOv2在多种监测数据集中都要快过其他检测系统,并可以在速度与精确度上进行权衡。 YOLOv2采用Darknet-19作为特征提取网络,增加了批量标准化(Batch Normalization)的预处理,并使用224×224和448×448两阶段训练ImageNet,得到预训练模型后fine-tuning。 相比于YOLOv1是利用FC层直接预测Bounding Box的坐标,YOLOv2借鉴了FSR-CNN的思想,引入Anchor机制,利用K-Means聚类的方式在训练集中聚类计算出更好的Anchor模板,在卷积层使用Anchor Boxes操作,增加Region Proposal的预测,同时采用较强约束的定位方法,大大提高算法召回率。同时结合图像细粒度特征,将浅层特征与深层特征相连,有助于对小尺寸目标的检测。 下图所示是YOLOv2采取的各项改进带了的检测性能上的提升: YOLO9000 的主要检测网络也是YOLO v2,同时使用WordTree来混合来自不同的资源的训练数据,并使用联合优化技术同时在ImageNet和COCO数据集上进行训练,目的是利用数量较大的分类数据集来帮助训练检测模型,因此,YOLO 9000的网络结构允许实时地检测超过9000种物体分类,进一步缩小了检测数据集与分类数据集之间的大小代沟。 下面将具体分析YOLOv2的各个创新点: BN概述: 对数据进行预处理(统一格式、均衡化、去噪等)能够大大提高训练速度,提升训练效果。BN正是基于这个假设的实践,对每一层输入的数据进行加工。 BN是2015年Google研究员在论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》一文中提出的,同时也将BN应用到了2014年的GoogLeNet上,也就是Inception-v2。 BN层简单讲就是对网络的每一层的输入都做了归一化,这样网络就不需要每层都去学数据的分布,收敛会更快。YOLOv1算法(采用的是GoogleNet网络提取特征)是没有BN层的,而在YOLOv2中作者为每个卷积层都添加了BN层。 使用BN对网络进行优化,让网络提高了收敛性,同时还消除了对其他形式的正则化(regularization)的依赖,因此使用BN后可以从模型中去掉Dropout,而不会产生过拟合。 BN优点: 神经网络每层输入的分布总是发生变化,加入BN,通过标准化上层输出,均衡输入数据分布,加快训练速度,因此可以设置较大的学习率(Learning Rate)和衰减(Decay); 通过标准化输入,降低激活函数(Activation Function)在特定输入区间达到饱和状态的概率,避免梯度弥散(Gradient Vanishing)问题; 输入标准化对应样本正则化,BN在一定程度上可以替代 Dropout解决过拟合问题。 BN算法: 在卷积或池化之后,激活函数之前,对每个数据输出进行标准化,方式如下图所示: 公式很简单,前三行是 Batch内数据归一化(假设一个Batch中有每个数据),同一Batch内数据近似代表了整体训练数据。第四行引入了附加参数 γ 和 β,此二者的取值算法可以参考BN论文,在此不再赘述。 fine-tuning:用已经训练好的模型,加上自己的数据集,来训练新的模型。即使用别人的模型的前几层,来提取浅层特征,而非完全重新训练模型,从而提高效率。一般新训练模型准确率都会从很低的值开始慢慢上升,但是fine-tuning能够让我们在比较少的迭代次数之后得到一个比较好的效果。 YOLO模型分为两部分,分类模型和检测模型,前者使用在ImageNet上预训练好的模型,后者在检测数据集上fine-tuning。 YOLOv1在预训练时采用的是224*224的输入(在ImageNet数据集上进行),然后在检测的时候采用448*448的输入,这会导致从分类模型切换到检测模型的时候,模型还要适应图像分辨率的改变。 YOLOv2则将预训练分成两步:先用224*224的输入在ImageNet数据集训练分类网络,大概160个epoch(将所有训练数据循环跑160次)后将输入调整到448*448,再训练10个epoch(这两步都是在ImageNet数据集上操作)。然后利用预训练得到的模型在检测数据集上fine-tuning。这样训练得到的模型,在检测时用448*448的图像作为输入可以顺利检测。 YOLOv1将输入图像分成7*7的网格,每个网格预测2个Bounding Box,因此一共有98个Box,同时YOLOv1包含有全连接层,从而能直接预测Bounding Boxes的坐标值,但也导致丢失较多的空间信息,定位不准。 YOLOv2首先将YOLOv1网络的FC层和最后一个Pooling层去掉,使得最后的卷积层可以有更高分辨率的特征,然后缩减网络,用416*416大小的输入代替原来的448*448,使得网络输出的特征图有奇数大小的宽和高,进而使得每个特征图在划分单元格(Cell)的时候只有一个中心单元格(Center Cell)。 为什么希望只有一个中心单元格呢?由于图片中的物体都倾向于出现在图片的中心位置,特别是比较大的物体,所以有一个单元格单独位于物体中心的位置用于预测这些物体。 YOLOv2通过引入Anchor Boxes,通过预测Anchor Box的偏移值与置信度,而不是直接预测坐标值。YOLOv2的卷积层采用32这个值来下采样图片,所以通过选择416*416用作输入尺寸最终能输出一个13*13的特征图。若采用FSRCNN中的方式,每个Cell可预测出9个Anchor Box,共13*13*9=1521个(YOLOv2确定Anchor Boxes的方法见是维度聚类,每个Cell选择5个Anchor Box)。 在FSRCNN中,以一个51*39大小的特征图为例,其可以看做一个尺度为51*39的图像,对于该图像的每一个位置,考虑9个可能的候选窗口:3种面积3种比例。这些候选窗口称为Anchor Boxes。下图示出的是51*39个Anchor Box中心,以及9种Anchor Box示例。 YOLOv1和YOLOv2特征图数据结构: YOLOv1:S*S* (B*5 + C) => 7*7(2*5+20) 其中B对应Box数量,5对应边界框的定位信息(w,y,w,h)和边界框置信度(Confidience)。分辨率是7*7,每个Cell预测2个Box,这2个Box共用1套条件类别概率(1*20)。 YOLOv2:S*S*K* (5 + C) => 13*13*9(5+20) 分辨率提升至13*13,对小目标适应性更好,借鉴了FSRCNN的思想,每个Cell对应K个Anchor box(YOLOv2中K=5),每个Anchor box对应1组条件类别概率(1*20)。 聚类:聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程。即在没有划分类别的情况下,根据数据相似度进行样本分组。 在FSR-CNN中Anchor Box的大小和比例是按经验设定的,然后网络会在训练过程中调整Anchor Box的尺寸,最终得到准确的Anchor Boxes。若一开始就选择了更好的、更有代表性的先验Anchor Boxes,那么网络就更容易学到准确的预测位置。 YOLOv2使用K-means聚类方法类训练Bounding Boxes,可以自动找到更好的宽高维度的值用于一开始的初始化。传统的K-means聚类方法使用的是欧氏距离函数,意味着较大的Anchor Boxes会比较小的Anchor Boxes产生更多的错误,聚类结果可能会偏离。由于聚类目的是确定更精准的初始Anchor Box参数,即提高IOU值,这应与Box大小无关,因此YOLOv2采用IOU值为评判标准,即K-means 采用的距离函数(度量标准) 为: d(box,centroid) = 1 - IOU(box,centroid) 如下图,左边是聚类的簇个数和IOU的关系,两条曲线分别代表两个不同的数据集。分析聚类结果并权衡模型复杂度与IOU值后,YOLOv2选择K=5,即选择了5种大小的Box 维度来进行定位预测。 其中紫色和灰色也是分别表示两个不同的数据集,可以看出其基本形状是类似的。更重要的是,可以看出聚类的结果和手动设置的Anchor Box位置和大小差别显著——结果中扁长的框较少,而瘦高的框更多(更符合行人的特征)。 YOLOv2采用的5种Anchor的Avg IOU是61,而采用9种Anchor Boxes的Faster RCNN的Avg IOU是60.9,也就是说本文仅选取5种box就能达到Faster RCNN的9中box的效果。选择值为9的时候,AVG IOU更有显著提高。说明K-means方法的生成的boxes更具有代表性。 直接对Bounding Boxes求回归会导致模型不稳定,其中心点可能会出现在图像任何位置,有可能导致回归过程震荡,甚至无法收敛,尤其是在最开始的几次迭代的时候。大多数不稳定因素产生自预测Bounding Box的中心坐标(x,y)位置的时候。 YOLOv2的网络在特征图(13*13)的每一个单元格中预测出5个Bounding Boxes(对应5个Anchor Boxes),每个Bounding Box预测出5个值(tx,ty,tw,th,t0),其中前4个是坐标偏移值,t0是置信度结果(类似YOLOv1中的边界框置信度Confidence)。YOLOv2借鉴了如下的预测方式,即当Anchor Box的中心坐标和宽高分别是(xa,ya)和(wa,wh)时,Bounding Box坐标的预测偏移值(tx,ty,tw,th)与其坐标宽高(x,y,w,h)的关系如下: tx = (x-xa)/wa ty= (y-ya)/ha tw = log(w/wa) th = log(h/ha) 基于这种思想,YOLOv2在预测Bounding Box的位置参数时采用了如下强约束方法: 上图中,黑色虚线框是Anchor Box,蓝色矩形框就是预测的Bounding Box结果,预测出的Bounding Box的坐标和宽高为(bx,by)和(bw,bh),计算方式如图中所示,其中:对每个Bounding Box预测出5个值(tx,ty,tw,th,t0),Cell与图像左上角的横纵坐标距离为(cx,cy),σ定义为sigmoid激活函数(将函数值约束到[0,1]),该Cell对应的Anchor Box对应的宽高为(pw,ph)。 简而言之,(bx,by)就是(cx,cy)这个Cell附近的Anchor Box针对预测值(tx,ty)得到的Bounding Box的坐标预测结果,同时可以发现这种方式对于较远距离的Bounding Box预测值(tx,ty)能够得到很大的限制。 YOLOv2通过添加一个转移层,把高分辨率的浅层特征连接到低分辨率的深层特征(把特征堆积在不同Channel中)而后进行融合和检测。具体操作是先获取前层的26*26的特征图,将其同最后输出的13*13的特征图进行连接,而后输入检测器进行检测(检测器的FC层起到了全局特征融合的作用),以此来提高对小目标的检测能力。 为了适应不同尺度下的检测任务,YOLOv2在训练网络时,其在检测数据集上fine-tuning时候采用的输入图像的size是动态变化的。具体来讲,每训练10个Batch,网络就会随机选择另一种size的输入图像。因为YOLOv2用到了参数是32的下采样,因此也采用32的倍数作为输入的size,即采用{320,352,…,608}的输入尺寸(网络会自动改变尺寸,并继续训练的过程)。 这一策略让网络在不同的输入尺寸上都能达到较好的预测效果,使同一网络能在不同分辨率上进行检测。输入图片较大时,检测速度较慢,输入图片较小时,检测速度较快,总体上提高了准确率,因此多尺度训练算是在准确率和速度上达到一个平衡。 上表反映的是在检测时,不同大小的输入图片情况下的YOLOv2和其他目标检测算法的对比。可以看出通过多尺度训练的检测模型,在测试的时候,输入图像在尺寸变化范围较大的情况下也能取得mAP和FPS的平衡。 YOLOv1采用的训练网络是GoogleNet,YOLOv2采用了新的分类网络Darknet-19作为基础网络,它使用了较多的3*3卷积核,并把1*1的卷积核置于3*3的卷积核之间,用来压缩特征,同时在每一次池化操作后把通道(Channels)数翻倍(借鉴VGG网络)。 YOLOv1采用的GooleNet包含24个卷积层和2个全连接层,而Darknet-19包含19个卷积层和5个最大池化层(Max Pooling Layers),后面添加Average Pooling层(代替v1中FC层),而Softmax分类器作为激活被用在网络最后一层,用来进行分类和归一化。 在ImageNet数据集上进行预训练,主要分两步(采用随机梯度下降法): 输入图像大小是224*224,初始学习率(Learning Rate)为0.1,训练160个epoch,权值衰减(Weight Decay)为0.0005,动量(Momentum)为0.9,同时在训练时采用标准的数据增强(Data Augmentation)方式如随机裁剪、旋转以及色度、亮度的调整。 fine-tuning:第1步结束后,改用448*448输入(高分辨率模型),学习率改为0.001,训练10个epoch,其他参数不变。结果表明:fine-tuning后的top-1准确率为76.5%,top-5准确率为93.3%,若按照原来的训练方式,Darknet-19的top-1准确率是72.9%,top-5准确率为91.2%。可以看出,两步分别从网络结构和训练方式方面入手提高了网络分类准确率。 预训练之后,开始基于检测的数据集再进行fine-tuning。 首先,先把最后一个卷积层去掉,然后添加3个3*3的卷积层,每个卷积层有1024个卷积核,并且后面都连接一个1*1的卷积层,卷积核个数(特征维度)根据需要检测的类数量决定。(比如对VOC数据,每个Cell需要预测5个Boungding Box,每个Bounding Box有4个坐标值、1个置信度值和20个条件类别概率值,所以每个单元格对应125个数据,此时卷积核个数应该取125。) 然后,将最后一个3*3*512的卷积层和倒数第2个卷积层相连(提取细粒度特征),最后在检测数据集上fine-tuning预训练模型160个epoch,学习率采用0.001,并且在第60和90个epoch的时候将学习率除以10,权值衰减、动量和数据增强方法与预训练相同。 YOLO9000通过结合分类和检测数据集,使得训练得到的模型可以检测约9000类物体,利用带标注的分类数据集量比较大的特点,解决了带标注的检测数据集量比较少的问题。具体方法是:一方面采用WordTree融合数据集,另一方面联合训练分类数据集和检测数据集。 分类数据集和检测数据集存在较大差别:检测数据集只有粗粒度的标记信息,如“猫”、“狗”,而分类数据集的标签信息则更细粒度,更丰富。比如“狗”就包括“哈士奇”、“金毛狗”等等。所以如果想同时在检测数据集与分类数据集上进行训练,那么就要用一种一致性的方法融合这些标签信息。 用于分类的方法,常用Softmax(比如v2),Softmax意味着分类的类别之间要互相独立的,而ImageNet和COCO这两种数据集之间的分类信息不相互独立(ImageNet对应分类有9000种,而COCO仅提供80种目标检测),所以使用一种多标签模型来混合数据集,即假定一张图片可以有多个标签,并且不要求标签之间独立,而后进行Softmax分类。 由于ImageNet的类别是从WordNet选取的,作者采用以下策略重建了一个树形结构(称为WordTree): 遍历ImageNet的标签,然后在WordNet中寻找该标签到根节点(所有的根节点为实体对象)的路径; 如果路径只有一条,将该路径直接加入到WordTree结构中; 否则,从可选路径中选择一条最短路径,加入到WordTree结构中。 WordTree的作用就在于将两种数据集按照层级进行结合。 如此,在WordTree的某个节点上就可以计算该节点的一些条件概率值,比如在terrier这个节点,可以得到如下条件概率值: 进而,如果要预测此节点的概率(即图片中目标是Norfolk terrier的概率),可以根据WordTree将该节点到根节点的条件概率依次相乘得到,如下式: 其中: YOLO9000在WordTree1k(用有1000类别的ImageNet1k创建)上训练了Darknet-19模型。为了创建WordTree1k作者添加了很多中间节点(中间词汇),把标签由1000扩展到1369。 训练过程中GroundTruth标签要顺着向根节点的路径传播:为了计算条件概率,模型预测了一个包含1369个元素的向量,而且基于所有“同义词集”计算Softmax,其中“同义词集”是同一概念下的所属词。 现在一张图片是多标记的,标记之间不需要相互独立。在训练过程中,如果有一个图片的标签是“Norfolk terrier”,那么这个图片还会获得“狗”以及“哺乳动物”等标签。 如上图所示,之前的ImageNet分类是使用一个大Softmax进行分类,而现在WordTree只需要对同一概念下的同义词进行Softmax分类。然后作者分别两个数据集上用相同训练方法训练Darknet-19模型,最后在ImageNet数据集上的top-1准确率为72.9%,top-5准确率为91.2%;在WordTree数据集上的top-1准确率为71.9%,top-5准确率为90.4%。 这种方法的好处是有“退而求其次”的余地:在对未知或者新的物体进行分类时,性能损失更低,比如看到一个狗的照片,但不知道是哪种种类的狗,那么就预测其为“狗”。 以上是构造WordTree的原理,下图是融合COCO数据集和ImageNet数据集以及生成它们的WordTree的示意图(用颜色区分了COCO数据集和ImageNet数据集的标签节点), 混合后的数据集对应的WordTree有9418个类。另一方面,由于ImageNet数据集太大,YOLO9000为了平衡两个数据集之间的数据量,通过过采样(Oversampling)COCO数据集中的数据,使COCO数据集与ImageNet数据集之间的数据量比例达到1:4。 对YOLO9000进行评估,发现其mAP比DPM高,而且YOLO有更多先进的特征,YOLO9000是用部分监督的方式在不同训练集上进行训练,同时还能检测9000个物体类别,并保证实时运行。虽然YOLO9000对动物的识别性能很好,但是对衣服或者装备的识别性能不是很好(这跟数据集的数据组成有关)。 YOLO9000的网络结构和YOLOv2类似,区别是每个单元格只采用3个Anchor Boxes。 YOLO9000提出了一种在分类数据集和检测数据集上联合训练的机制,即使用检测数据集(COCO)的图片去学习检测相关的信息即查找对象(例如预测边界框坐标、边界框是否包含目标及目标属于各个类别的概率),使用仅有类别标签的分类数据集(ImageNet)中的图片去扩展检测到的对象的可识别种类。 具体方法是:当网络遇到一个来自检测数据集的图片与标记信息,就把这些数据用完整的损失函数(v2和9000均沿用了v1网络的损失函数)反向传播,而当网络遇到一个来自分类数据集的图片和分类标记信息,只用代表分类误差部分的损失函数反向传播这个图片。 YOLO v2 在大尺寸图片上能够实现高精度,在小尺寸图片上运行更快,可以说在速度和精度上达到了平衡,具体性能表现如下所示。 coco数据集 voc2012数据集
目标框由左上角点和右下角点确定,所以要预测一个目标框的位置大小,可转换为生成两个角点的热力图。对于多个目标,会有多个角点对,如何区分?添加一个embedding预测项!如果一个左上角点和一个右下角点的embedding相近,表示两个点“对上眼了”,可以组成一个目标框。为了使得预测的框的坐标更为准确,添加一个offset预测项,对于预测的角点进行坐标修正。 角点有什么特征呢?人呢,自然知道——矩形框的一横一竖相交处就是角点嘛,然而网络不容易知道啊,教教它吧!引入corner pooling。 2、取出top-100个左上,右下点,通过offset调整角点位置。 3、计算左上,右下角点embedding的L1距离,距离小的,类别一样的构成目标框。角点得分的平均作为置信度。 一个目标框可以用左上右下角点组成,还可以用 左下右上角点 极左、极右,极上,极下四个点组成,比如一个菱形,过左右极点做竖线,过上下极点做横线,这样一个外接矩形框就出来了。首先“diss”一下cornerNet——你固然是好,然而不够好。为何不再加个中心点热力图预测呢? 前向推理: 1、由CornerNet提出的方法选择top-k的目标框 2、选择分数为top-k的中心关键点,结合offset,remap到输入图像大小 3、对于每个目标框,定义一块中心区域,检查一下中心点是不是在中心区域内,且类别是否一致。(中心区域选择:根据目标尺度来,对于小目标,选大点,对于大目标,选小点。比如目标框大于150像素,5 * 5划分,目标小于150像素,3 * 3划分,选中间1 * 1的格子。) 4、如果中心点和中心区域匹配上了,置信度值是左上角,右下角,中心点三者平均;没有匹配,则删除 既然cornerNet搞了个corner pooling,顺势而为,center pooling水到渠成。顺便帮corner pooling再改进下——cascade corner pooling。 大家用(x,y,w,h)训练darknet是那么的熟练,然而现在,角点,极点,一堆“花里胡哨”的,回归初心吧——中心点热力图预测+中心点offset回归+框的宽高回归。 既然不用anchor,那么可以对于特征图上的每个点都产生一个预测嘛。咦,yolov1不就是这么做的,当然分成7 * 7的区域有点粗糙。。。 在Retinanet基础上,fpn的每层输出加两个分支用于anchor-free预测。 真值生成:原图目标框b投影到特征图 中,大小为 ,定义effective box为 (正样本),定义 ignoring box为 (梯度不回传),宽高分别为 的0.2和0.5倍。 对分类输出,白色区域表示目标所在区域,灰色区域为忽略区域,黑色为负样本区域。计算focal loss。 对于坐标输出,对于 里面所有的pixel(i,j),预测四个坐标,分别是(i,j)与 的上下左右边的偏移。effective box外面不计算loss。在线特征选择:FSAF module对于每个实例,根据其特征,选择该在哪个特征层进行预测,而不是像anchor-based方法只用目标的大小。 对于特征图 上的一个像素点 (x, y),反投影到输入图像上,坐标为(xs+s/2,ys+s/2)(s为当前特征图的stride)。如果落在gt框中,那么该点为正样本。 但是如果用所有的这些“正样本点”进行loss计算,会带来2个问题:第一个,如果这个点是两个目标框相交区域内的点,那么这个点该预测哪一个目标呢?第二个,如果这个点在目标角落处,其需要预测的(t,b,l,r)值相差很大,预测的框不靠谱。
基本研究内容一般包括:1、对论文名称的界说。应尽可能明确三点:研究的对象、研究的问题、研究的方法。2、本论文写作有关的理论、名词、术语、概念的界说。目标特色:1、论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。 2、常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确; 目标定得过高, 对预定的目标没有进行研究或无法进行研究。扩展资料毕业论文的作用:1、推动教育科研活专动自身不断完善:在一定意义上可以讲,教育科研活动均属创造性活动。为了保证教育科研活动越发卓有成效,论文是十分有必要的。2、交流认识:教育科研过程,属是人们获得直接经验的过程。这种经过精心设计、精心探索而获得的直接经验不仅对直接参加者来说是十分宝贵的。
毕业论文的主要研究内容和目标特色:(一)论文名称论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二) 论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴ 研究的有关背景(课题的提出): 即根据什么、受什么启发而搞这项研究。 ⑵ 通过分析本地(校) 的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三) 本论文国内外研究的历史和现状(文献综述)。规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得稜成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。
论文查重报告参数怎么看?学会查看论文查重报告有利于帮助我们修改论文和了解论文情况。paperfree小编给大家重点讲解。 一、论文检测报告有哪些类型? 1.简单的论文检测报告。 简短的报告强调简单,前半部分主要显示被论文擦汗从的基本信息,后半部分根据本章显示每章的类似文献信息。显示基本文档检测信息,如总查重率、删除参考文献文本抄袭率和区段查重率,指出重复文本的来源及是否引用。 2.全文引文论文检测报告。 全文(标记引用)报告表单将检测文档的全文添加到简单的报告表单中。红色文本表示重复率高的部分,黄色文本表示引用。显示基本文献的检测信息,重复文本的起源,以及文本的详细抄袭比例。重复文本标记为红色或黄色(引文部分) 3.全文对照论文检测报告。 红色部分和抄袭源一起列出。原始文本在左边,源头在右边,所以看起来很清楚。显示基本文档检测信息。
可以到一些知网自助查重网站:学术不端网、PaperEasy、蚂蚁查重网。
由于查重报告单中会以不同颜色来区别查重信息,例如红色为重复内容,黑色是未检测到重复部分,绿色为引用内容,如果学生选择打印黑白,查重报告单就无法提供有效数据,因此若学校要求学生需要打印查重报告单,建议学生使用彩印查重报告单。一般学校只会查看电子版的查重报告单,若学校无强制要求需要打印,学生只需提供电子版报告单即可。很多人在进行论文查重后,会拿到一份论文查重检测报告。这便是查重系统经过查重之后所给你的一份报告,你要通过这份报告来知道论文的重复率以及哪里需要进行更改。
论文检测是什么 在国内就是知网/维普/万方这三大系统,这里面的资源是不断更新的,每一年毕业生的论文除有保密要求外的基本上都是收这三大系统收录作为比对资源库,所以你就可不能大意啊!!国内就是三大系统,知网/维普/万方知网不对个人开放,维普及万方对个人开放万方不检测互联网及英文,知网及维普都检测互联网及英文。现在,所有学校对于硕士、博士毕业论文,必须通过论文检测查重才能算合格过关。本科毕业生,大部分211工程重点大学,采取抽检的方式对本科毕业论文进行检测查重。抄袭或引用率过高,一经检测查重查出超过百分之三十,后果相当严重。相似百分之五十以下,延期毕业,超过百分之五十者,取消学位。辛辛苦苦读个大学,花了好几万,加上几年时间,又面临找工作,学位拿不到多伤心。但是,所有检测系统都是机器,都有内在的检测原理,我们只要了解了其中内在的检测原理、系统算法、规律,通过检测报告反复修改,还是能成功通过检测,轻松毕业的。 现在是学生写作毕业论文的关键时期,许多学生在论文写作中要利用一些文献资料,这样就涉及到一个问题,如何应用别人的文献资料,如何形成一个良好的学术规范,避免抄袭。这在现在是一个非常迫切的问题,但是我们许多同学缺乏严格的训练,也不知道什么情况下是抄袭,什么情况下是引用别人的文章。在这里我想对这个问题作出一个简单的讨论。这仅仅只能算是个抛砖引玉而已,目的是想和大家一起讨论这个话题。 什么是抄袭行为?简单地说就是使用了别人的文字或观点而不注明就是抄袭。“照抄别人的字句而没有注明出处且用引号表示是别人的话,都构成抄袭。美国现代语言联合会《论文作者手册》对剽窃(或抄袭)的定义是:‘剽窃是指在你的写作中使用他人的观点或表述而没有恰当地注明出处。……这包括逐字复述、复制他人的写作,或使用不属于你自己的观点而没有给出恰当的引用。’可见,对论文而言,剽窃有两种:一种是剽窃观点,用了他人的观点而不注明,让人误以为是你自己的观点;一种是剽窃文字,照抄别人的文字表述而没有注明出处且用引号,让人误以为是你自己的表述。当然,由于论文注重观点的原创性,前者要比后者严重。至于普及性的文章却有所不同,因为并不注重观点的原创性,所以并不要求对来自别人的观点一一注明,因此只看重文字表述是否剽窃。” 那么如何使用别人的文献资料呢?美国哈佛大学在其相关的学生手册中指出,“如果你的句子与原始资料在观点和句子结构上都非常相似,并且结论与引语相近而非用自己的话重述,即使你注明出处,这也是抄袭。你不能仅仅简单改变原始资料中的几个词语或者对其进行摘要总结,你必须用你自己的语言和句子结构彻底地重塑你的总结,要不就直接引用。”(引自哈佛大学的相关规定,该原文是我1年前看到的,现在找不到出处了)。 可见,对别人的内容的使用必须进行全面的重写,否则就有抄袭的嫌疑。但这里要避免胡乱拼凑和揉合。 总之来说,我们必须尊重别人的智力成果,在文章中反映出哪些是你做的哪些是别人做的。 当然现在做到这些还很难,但我想我们至少要有这个意识,因为在剽窃的概念里,除过强调未注明这点外,还强调不是成心的。我们许多人写东西,正是因为不知道什么是抄袭,如何避免抄袭才犯了错误,所以明确什么是抄袭非常重要。从现实来看,我们的同学要写一篇10000字左右的没有任何抄袭嫌疑的毕业论文是很困难的,但是我们至少应该从主观上尽可能的避免出现严重抄袭行为,逐步形成好的习惯。 大概当今所有的研究生毕业论文都会经过中国知网的“学术不端检测”,即便最后不被盲审。这个系统的初衷其实是很好的,在一定程度上能...... 论文检测是什么意思? 主要是检查有没有抄袭,是否原创。什么是论文检测 论文检测,说的通俗一些,就是对你所写的论文进行查重。 把你的论文全文放入已发表论文的数据库进行比对,看看是否有和其他论文有过多的重复。 或者是查出重复比例 论文检测蓝字什么意思 paperrater检测报告标注颜色图示: • 红字表示严重抄袭 • 橙字表示轻度抄袭 • 绿字表示引用 • 灰色表示不参与检测 • 黑色表示原创 论文检测,知网和paperpass什么区别 知网最准,paperpass性价比高准确性中等,万方最便宜,但检测本科常用。 第一步:初稿一般重复率会比较高(除非你是自己一字一句写的大神),可以采用万方、papertest去检测,然后逐句修改。这个系统是逐句检测的,也就是说你抄的任何一句话都会被检测出来。这种检测算法比较严格,从程序的角度分析这种算法比较简单。因而网上卖的都很便宜,我测的是3万字,感觉还是物美价廉的。(注意:1 这个库不包含你上一届研究生师兄的大论文,修改一定注意. 2 个人建议如果学校是用万方检测,就不要去检测维普之类的 先把论文电子版复制一份,保存一份。看检测结果,其中一份复制的备份论文,把检测出重复的部分能删了先删了,把不能删的,15字以内改一改,最好是加减字符,不要改顺序,改顺序没太大用,参考文献删掉一部分,不能删的话,先改下,英文文献可以15个字符换一个词。把修改过的上交,重新过系统检查。保存的原论文稍做改动上交纸质版。那个系统很麻烦的,很多没看过没应用过的文献都能给你加上,可见中国人抄袭的功夫,都是互相抄,但是为了保证论文的完整性和表述的准确性,不要随意改动,上交的纸质版,一定要斟酌,一般检查完就不会再过检测系统了,所以纸质版的不用担心。 第二步:经过修改后,重复率大幅下降了。这时你可以用知网查了,知网查重系统是逐段检测的,比较智能。检测后再做局部修改就基本上大功告成了,我最后在网上用知网查是4%,简单修改后,在学校查是1.5%。 注意:记住,最忌讳的是为了查重,把论文语句改得语句不通、毫无逻辑,这样是逃不过老师的,哈哈,大家加油! 知网系统计算标准详细说明: 1.看了一下这个系统的介绍,有个疑问,这套系统对于文字复制鉴别还是不错的,但对于其他方面的内容呢,比如数据,图表,能检出来吗?检不出来的话不还是没什么用吗? 学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平,对于图表、公式、数据的抄袭和篡改等行为的检测,目前正在研发当中,且取得了比较大的进展,欢迎各位继续关注本检测系统的进展并多提批评性及建设性意见和建议。 2.按照这个系统39%以下的都是显示黄色,那么是否意味着在可容忍的限度内呢?最近看到对上海大学某教师的国家社科基金课题被撤消的消息,原因是其发表的两篇论文有抄袭行为,分别占到25%和30%. 请明示超过多少算是警戒线? 百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。 3.如何防止学位论文学术不端行为检测系统成为个人报复的平台? 这也是我们在认真考虑的事情,目前这套检测系统还只是在机构一级用户使用。我们制定了一套严格的管理流程。同时,在技术上,我们也采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。 4.最小检测单位是句子,那么在每句话里改动一两个字就检测不出来了么? 我们对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。 5.如果是从相关书籍上摘下来的原话,但是此话已经被数据库中的相关文献也抄了进去,也就是说前面的文章也从相关书籍上摘了相同的话,但是我的论文中标注的这段话来自相关的书籍,这个算不算学术抄袭? ...... 论文检测v1.0与v2.0分别是什么意思 一个是自写率 就是自己写的 一个是复写率 就是你抄袭的 还有一个引用率 就是那些被画上引用符号的 是合理的引用别人的资料 不过 亲爱的童鞋 你觉得你的导师能容忍你“合理”引用46%么 一篇三万字左右的文章让你引用3000字就很开恩了!!你倒是没抄袭,呵呵,就是“合理引用”太多了,你要是把那些引用符号去掉了,估计你的复写率就不是0%了 呵呵 论文检测中测试(勿拍)是什么意思 论文检测用PaperRight论文检测去进行检测就是,检测挺好用的,蛮精准 毕业论文检测结果分为2部分什么意思 必须围绕所论述的问题和中心论点来进行论证。开篇提出怎样的问题,结篇要归结到这一问题。在论证过程中,不能离题万里,任意发挥,或者任意变换论题。如果有几个分论点,每个分论点都要与中心论点有关联,要从属于中心论点。所有论证都要围绕中心论点进行。这样读者才能清楚地了解分论点和中心论点。议论文的逻辑性很强,论证必须紧扣中心,首尾一致。 3)“立”往往建立在“破”的基础之上。在立论的过程中,需要提到一些错误的见解和主张,加以否定和辩驳,以增强说服力,使读者不会误解自己的观点。 论文检测结果中 去除引用和去除本人具体是什么意思? “去除引用文献”,就是查论文中“去掉已经标明出处的文献”之后的重复率。 “去除本人文献”就应该是去除引用本人文献之后的重复率。 其实这个查重系统主要的目的是查出引用别人的文字但是却不愿意注明人家的名字,把别人的文字拿来当做自己的,将别人的据为己有,这就是抄袭,所以,所谓的查重,就是查抄没抄的问题。,既然“引用文献”和“本人文献”都是在查重“去除”之列,那就说明这些“引用文献”和“本人文献”都是注明出处的规范的行为这些是可以重复的,当然不能太多,但是标准却又难以量化。 什么样的引用不算抄?就是引用别人的文字的时候注明出处,需要人家的东西的时候不是去偷偷拿来不敢声张,而是去借来。表现在文字上,偷偷拿多少文字过来算抄袭?一般的情况下,还是比较宽松的,“去除引用文献”15%以下,可以勉强过关。但是,还是要说明的,如果一篇文章中在引用别人的文字时,倒也规规矩矩的注明出处了,太多的话,也不行,因为引用人家的太多,很容易就把别人的观点抄来了。就是说,如果你家里的东西全是明目张胆的去邻居家借来的,你能说这家里的东西都是你的吗?你只有使用权没有拥有权,占据这些东西的意义是什么呢? 所以“去除引用文献”,就是去除了“引用自己的文字且标明出处”和“引用他人的文字且标明出处”的,去除了这些规范的引用文字,如果还有重复比率,那就是包括了“引用自己的文章没有标明出处的”和“引用别人文字没有标明出处的”,这些都是不规范的行为,一旦比率高了,就是抄袭了。 其实,一篇原创的论文,在“去除引用文献”后,重复比率应该为0的,但是因为现在天下文章一大抄的现象太严重了,所以各个科研部门在查重的时候也不得不水涨船高,这就是法难责众,在人们“违法”现象太普遍的情况下,只好一律从轻处理,重新设定标准了。 “去除本人文献”后的重复率就包括了“引用他人文献注明出处的”,加上“用自己的已经发表过的文字但是没有注明出处的”,加上“用他人文字没标明出处的”,(重复自己已经发表的文字但是没有注明出处的也是不规范行为),这三类都是不规范的引用行为,比“去除引用文献”后的重复率多了“引用他人文字有出处的”的规范的内容,即“去除本人文献”后的重复率中包括了引用他人文献的规范内容。所以查重结果如果有重复现象的话,“去除本人文献”后的重复率总是比“去除引用文献”的重复率高一些。 查“去除引用文献”的重复率目的是为了查不规范的行为,“去除本人文献”的查重主要目的是为了看文章在引用自己的文献之外还有多少是规范引用别人的和不规范的抄袭。如果不规范的比率低,而所谓的注明出处的规范引用现象比较严重,也应该予以注意,加以改正 。 举例:如果“去除引用文献”的重复率是8.8%,那按照当前的标准来看,这样的文章不算是抄袭,应该算是不规范引用,把出处加上去就可以了。“去除本人文献”的重复率是43%,那么43%—8.8%=34.2%。那这个34.2%就是引用他人文献有出处的重复率,就是属于规范的重复率。但是这个貌似规范的重复率也实在太高了,就是说引用太多了也有剽窃他人文字表述的嫌疑,因此如果采用这样的文章,就要要求作者不仅把不规范的引用处注明出处,还要把一些引用太多的文献进行精简和删除。 由此可见,查“去除引用文献”的重复率的主要目的是为了查出引用别人文字但是却尊重别人的知识产权的不规范行为,查出是否抄袭别人的观点和文字表述。就是说,“去除引用文献”后的重复率中包括的全是不规范的引用行为,“去除本人文献”后的重复中包括了不规范的和规范引用的行为,所以,“去除引用文献”的重复率是查抄袭最关键的一个...... 论文检测里面的合作高校是什么意思 .wo ,,,,,会、。、
一般来说,学校都有论文格式要求,格式要求中也对引用部分如何标识进行了明确的要求。所以,按照学校要求进行标识引用部分肯定是没问题的,知网也是能识别出来的。
下面是某个高校的参考文献的标识要求:
1、参考文献著录项目:
① 、主要责任者(专著作者、论文集主编、学位申报人、专利申请人、报告撰写人、期刊文章作者、析出文章作者)。
多个责任者之间以“,”分隔,注意在本项数据中不得出现缩写点“.”(英文作者请将作者名写全)。主要责任者只列姓名,其后不加“著”、“编”、“主编”、“合编”等责任说明。
②、文献题名及版本(初版省略)。
③ 、文献类型及载体类型标识。
④、 出版项(出版地、出版者、出版年)。
⑤、 文献出处或电子文献的可获得地址。
⑥ 、文献起止页码。
⑦ 、文献标准编号(标准号、专利号……)。
2、参考文献类型及其标识
根据 GB 3469规定,以单字母方式标识以下各种参考文献类型:
参考文献类型 专著 论文集 报纸文章 期刊文章 学位论文 报告 标准 专利 文献类型标识 M C N J D R S P
对于专著、论文集中的析出文献,其文献类型标识建议采用单字母“A”;对于其他未说明的文献类型,建议采用单字母“Z”。
对于数据库(database)、计算机程序(computer program)及电子公告(electronic bulletin board)等电子文献类型的参考文献,建议以下列双字母作为标识:
电子参考文献类型 数据库 计算机程序 电子公告 电子文献类型标识 DB CP EB
3、电子文献的载体类型及其标识
对于非纸张型载体的电子文献,当被引用为参考文献时需在参考文献类型标识中同时标明其载体类型。本规范建议采用双字母表示电子文献载体类型:磁带(magnetic tape)——MT,磁盘(disk)——DK,光盘(CD-ROM)——CD,联机网络(online)——OL。
以纸张为载体的传统文献在引作参考文献时不必注明其载体类型。
4、文后参考文献表编排格式
参考文献按在正文中出现的先后次序列表于文后;表上以“[参考文献]”(居中)作为标识;参考文献的序号左顶格,并用数字加方括号表示,如[1]、[2]、…,以与正文中的指示序号格式一致。参照ISO 690及ISO 690-2,每一参考文献条目的最后均以“.”结束。
a、专著、论文集、学位论文、报告
[序号] 主要责任者.文献题名[文献类型标识].出版地:出版者,出版年.起止页码(任选).
[1] 刘国钧,陈绍业,王凤翥.图书馆目录[M].北京:高等教育出版社,1957.15-18.
[2] 辛希孟.信息技术与信息服务国际研讨会论文集:A集[C].北京:中国社会科学出版社,1994.
b、期刊文章
[序号] 主要责任者. 文献题名 [J]. 刊名,年,卷(期):起止页码.
[5]何龄修.读顾城《南明史》[J].中国史研究,1998,(3):167-173.
[6]金显贺,王昌长,王忠东,等.一种用于在线检测局部放电的数字滤波技术[J].清华大学学报(自然科学版),1993,33(4):62-67.
c、论文集中的析出文献
[序号] 析出文献主要责任者. 析出文献题名 [A]. 原文献主要责任者(任选). 原文献题名[C]. 出版地:出版者,出版年. 析出文献起止页码.
[7]钟文发.非线性规划在可燃毒物配置中的应用[A].赵玮.运筹学的理论与应用——中国运筹学会第五届大会论文集[C].西安:西安电子科技大学出版社,1996. 468-471.
d、报纸文章
[序号] 主要责任者. 文献题名 [N]. 报纸名,出版日期 (版次).
[8]谢希德.创造学习的新思路[N].人民日报,1998-12-25(10).
e、国际、国家标准
[序号] 标准编号,标准名称 [S].
[9] GB/T 16159-1996,汉语拼音正词法基本规则[S].
f、专利
[序号] 专利所有者. 专利题名 [P]. 专利国别:专利号,出版日期.
[10]姜锡洲.一种温热外敷药制备方案[P].中国专利:881056073,1989-07-26.
g、电子文献
[序号]主要责任者.电子文献题名[电子文献及载体类型标识].电子文献的出处或可获得地址,发表或更新日期/引用日期(任选).
[11] 万锦坤. 中国大学学报论文文摘(1983-1993). 英文版 [DB/CD]. 北京:中国大百科全书出版社,1996.
扩展资料:
知网检测系统识别参考文献的标准:
1、有明显的“参考文献”标记,参考文献4个字独占一行,下面是各个参考文献条目;
2、每个参考文献有明显的标号,标号可以是以下任意一种:【Num】、[Num]、(Num);
3、标号可以是Word自动生成也可以手工书写;
4、标号内不要添加标点符号,例如:不要[Num.]或(Num、)等;
5、每个参考文献中最好有时间休息或者URL或《》书目信息;
6、一条参考文献内及在此条参考文献没有结束时不要有手动换行或者回车符(即顺其自然,满行后会自动换行,请勿人为!)
参考资料来源:
中国知网—知网论文检测中,如何标识引用部分才能被知网查重系统
1、如果是引用,在引用标号后,不要轻易使用句号,如果写了句号,句号后面的就是剽窃了(尽管自已认为是引用),所以,引用没有结束前,尽量使用分号。有些人将引用的上标放在了句号后面,这是不对的,应该在句号之前。2、可以将文字转换为表格,将表格边框隐藏。3、如果你看的外文的多,由外文自己翻译过来引用的,个人认为,不需要尾注,就可以当做自己的,因为查重的数据库只是字符的匹配,无法做到中文和英文的匹配。4、查重是一个匹配的过程,是以句为单位,如果一句话重复了,就很容易判定重复了,所以:的确是经典的句子,就用上标的尾注的方式,在参考文献中表达出来,或者是用:原文章作者《名字》和引号的方式,将引用的内容框出来。引号内的东西,系统会识别为引用如果是一般的引用,就采用罗嗦法,将原句中省略的主语、谓语、等等添加全,反正哪怕多一个字,就是胜利,也可以采用横刀法,将一些句子的成分,去除,用一些代词替代。或者是用洋鬼子法,将原文中的洋名,是中文的,就直接用英文,是英文的直接用中文,或是哦中文的全姓名,就用中文的名,如果是中文的名,就找齐了,替换成中文的姓名。故意在一些缩写的英文边上,加上(注释)(画蛇添足法),总之,将每句话都可以变化一下,哪怕增加一个字或减少一个字,都是胜利了。特别注意标点符号,变化变化,将英文的复合句,变成两个或多个单句,等等,自己灵活掌握。因为真正写一篇论文,很罕见地都是自己的,几乎不可能,但大量引用别人的东西,说明你的综合能力强,你已经阅读了大量的资料,这就是一个过程,一个学习、总结的过程。所有的一切,千万别在版面上让导师责难,这是最划不来的。导师最讨厌版面不规范的,因为他只负责内容,但又不忍心因为版面问题自己的弟子被轰出来。5、下面这一条我傻妞试过的,决对牛B:将别人的文字和部分你自己的文字,选中,复制(成为块,长方形),另外在桌面建一个空文件,将内容,复制到文件中,存盘,关闭。将这个文件的图标选中,复制,在你的正文中的位置上,直接黏贴,就变成了图片了,不能编辑的。这个操作事实上是将内容的文件作为一个对象插入的,所以是图片。这个操作事实上是将内容的文件作为一个对象插入的。所以是图片。 -------------------------------------------------点我用户名,空间博文有介绍 详细各种论文检测系统软件介绍见我空间 各种有效论文修改秘籍、论文格式 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!没有免费的,或者免费的不好用,都是在线的含有的,另外博客的内容也可能是复制知网上的你说的那个没法做到,检测结果只是参考,你加了引用就没问题了
目前,高校对于硕博士论文,需要通过抄袭检测系统的检测才能算过关。对本科生来说,大部分学校也采取抽查的方式对本科论文进行检测。抄袭过多,一经查出超过30%,后果严重。轻者延期毕业,重者取消学位。辛辛苦苦读个大学,学位报销了多不爽。但是,软件毕竟是人工设置的一种机制,里面内嵌了检测算法,我们只要摸清其中的机理,通过简单的修改,就能成功通过检测。本文是在网络收集的资料。整理了最重要的部分,供大家参考。论文抄袭检测算法:1.论文的段落与格式论文检测基本都是整篇文章上传,上传后,论文检测软件首先进行部分划分,上交的最终稿件格式对抄袭率有很大影响。不同段落的划分可能造成几十个字的小段落检测不出来。因此,我们可以通过划分多的小段落来降低抄袭率。2.数据库论文检测,多半是针对已发表的毕业论文,期刊文章,还有会议论文进行匹配的,有的数据库也包含了网络的一些文章。这里给大家透露下,很多书籍是没有包含在检测数据库中的。之前朋友从一本研究性的著作中摘抄了大量文字,也没被查出来。就能看出,这个方法还是有效果的。3.章节变换很多同学改变了章节的顺序,或者从不同的文章中抽取不同的章节拼接而成的文章,对抄袭检测的结果影响几乎为零。所以论文抄袭检测大师建议大家不要以为抄袭了几篇文章,或者几十篇文章就能过关。4.标注参考文献参考别人的文章和抄袭别人的文章在检测软件中是如何界定的。其实很简单,我们的论文中加了参考文献的引用符号,但是在抄袭检测软件中。都是统一看待,软件的阀值一般设定为1%,例如一篇文章有5000字,文章的1%就是50字,如果抄袭了多于50,即使加了参考文献,也会被判定为抄袭。5.字数匹配论文抄袭检测系统相对比较严格,只要多于20单位的字数匹配一致,就被认定为抄袭,但是前提是满足第4点,参考文献的标注。论文抄袭修改方法:首先是词语变化。文章中的专业词汇可以保留,尽量变换同义词;其次,改变文中的描述方式,例如倒装句、被动句、主动句;打乱段落的顺序,抄袭原文时分割段落,并重组。通过上述方法,能有效降低抄袭率。下面举几个例子,大家可以参考下:例句A:本文以设备利用率最大化为目标函数,采用整数编码与实数编码相结合的遗传算法,研究了HFS的构建问题。本文提出的染色体编码方法及相应的遗传操作方法可实现研究对象的全局随机寻优。通过对car系列标准算例的研究,显示了本文提出方法具有较高的计算重复性和计算效率。修改A:本文研究了HFS问题的构建,通过遗传算法并结合整数与实数编码,目标函数为最大化设备利用率来求解。本文的染色体编码方法与对应的遗传算法操作可有效提高算法的全局搜索能力。通过对一些列基准算例的研究,验证了本文算法的有效性,并具有较高的计算重复性和较高的运算效率。例句B:由于房地产商品的地域性强,房地产开发企业在进行不同区域投资时,通常需要建立项目公司,此时就会面临建立分公司还是子公司的选择。子公司是一个独立的法人,而分公司则不是独立法人,它们在税收利益方面存在差异。子公司是独立法人,在设立区域被视为纳税人,通常要承担与该区域其它公司一样的全面纳税义务;分公司不是独立的法人实体,在设立分公司的所在区域不被视为纳税人,只承担有限的纳税义务,分公司发生的利润与亏损要与总公司合并计算。修改B:房地产开发企业在不同区域进行投资时,由于此类商品的地域性强,因此需要建立项目公司。此时,企业需要选择建立分公司还是子公司。主要的区别是子公司具有独立的法人,分公司则不是独立法人。其次,在税收利益方面,由于分公司不是独立的法人实体,在设立分公司的所在区域不被视为纳税人,只承担纳税义务,总公司需要合并计算分公司的利润与亏损;而子公司是独立法人,在所在区域被视为法人实体,需要承担与区域其他公司一样的全面纳税义务。修改抄袭的方法不外乎这些,这里更建议同学们,先熟悉你所看的参考论文,关闭文档,用自己的话写出来,这样就不会受参考文献的太多影响。有同学这里就提出问题了,学校用的检测系统是知网的学术不端检测系统,不是淘宝几元钱买的万方数据检测。其实,各个检测系统的算法区别并不大,只是数据库有多有少,如果你没有太多,什么系统都不用怕。既然你抄了,得到检测报告的同时,先好好修改自己的文章。抄了之后,改相拟度,可以这样去头去尾留中间,意同词不同。一、查重原理1、知网学位论文检测为整篇上传,格式对检测结果可能会造成影响,需要将最终交稿格式提交检测,将影响降到最小,此影响为几十字的小段可能检测不出。对于3万字符以上文字较多的论文是可以忽略的。对比数据库为:中国学术期刊网络出版总库,中国博士学位论文全文数据库/中国优秀硕士学位论文全文数据库,国重要会议论文全文数据库,中国重要报纸全文数据库,中国专利全文数据库,个人比对库,其他比对库。部分书籍不在知网库,检测不到。2、上传论文后,系统会自动检测该论文的章节信息,如果有自动生成的目录信息,那么系统会将论文按章节分段检测,否则会自动分段检测。3、有部分同学反映说自己在段落中明明引用或者抄袭了其他文献的段落或句子,为什么没有检测出来,这是正常的。中国知网对该套检测系统的灵敏度设置了一个阀值,该阀值为5%,以段落计,低于5%的抄袭或引用是检测不出来的,这种情况常见于大段落中的小句或者小概念。举个例子:假如检测段落1有10000字,那么引用单篇文献500字以下,是不会被检测出来的。实际上这里也告诉同学们一个修改的方法,就是对段落抄袭千万不要选一篇文章来引用,尽可能多的选择多篇文献,一篇截取几句,这样是不会被检测出来的。4、一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。二、快速通过论文查重的七大方法方法一:外文文献翻译法查阅研究领域外文文献,特别是高水平期刊的文献,比如Science,Nature,WaterRes等,将其中的理论讲解翻译成中文,放在自己的论文中。优点:1、每个人语言习惯不同,翻译成的汉语必然不同。因此即使是同一段文字,不同人翻译了之后,也 不会出现抄袭的情况。2、外文文献的阅读,可以提升自身英语水平,拓展专业领域视野。缺点:英文不好特别是专业英文不好的同学实施起来比较费劲。方法二:变化措辞法将别人论文里的文字,或按照意思重写,或变换句式结构,更改主被动语态,或更换关键词,或通过增减。当然如果却属于经典名句,还是按照经典的方法加以引用。优点:1.将文字修改之后,按照知网程序和算法,只要不出现连续13个字重复,以及关键词的重复,就不会被标红。2.对论文的每字每句都了如指掌,烂熟于心,答辩时亦会如鱼得水。缺点:逐字逐句的改,费时费力。方法三:减头去尾,中间换语序将别人论文里的文字,头尾换掉中间留下,留下的部分改成被动句,句式和结构就会发生改变,再自行修改下语病后,即可顺利躲过查重。优点:方便快捷,可以一大段一大段的修改。缺点中文没学好的,会很费劲,要想半天。方法四:转换图片法将别人论文里的文字,截成图片,放在自己的论文里。因为知网查重系统目前只能查文字,而不能查图片和表格,因此可以躲过查重。优点:比改句序更加方便快捷。缺点:用顺手了容易出现整页都是图片的情况,会影响整个论文的字数统计。方法五:插入文档法将某些参考引用来的文字通过word文档的形式插入到论文中。优点:此法比方法四更甚一筹,因为该方法日后还可以在所插入的文档里进行重新编辑,而图片转换法以后就不便于再修改了。缺点:还没发现。方法六:插入空格法将文章中所有的字间插入空格,然后将空 格 字 间距调到最小。因为查重的根据是以词为基础的,空格切断了词语,自然略过了查重系统。优点:从查重系统的原理出发,可靠性高。缺点:工作量极大,课可以考虑通过宏完成,但宏的编制需要研究。方法七:自己原创法自己动手写论文,在写作时,要么不原文复制粘贴;要么正确的加上引用。优点:基本上绝对不会担心查重不通过,哪怕这个查重系统的阈值调的再低。缺点:如果说优缺点的话,就是写完一篇毕业论文,可能会死掉更多的脑细胞。呵呵。。。知网系统计算标准详细说明:1.看了一下这个系统的介绍,有个疑问,这套系统对于文字复制鉴别还是不错的,但对于其他方面的内容呢,比如数据,图表,能检出来吗?检不出来的话不还是没什么用吗?学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平,对于图表、公式、数据的抄袭和篡改等行为的检测,目前正在研发当中,且取得了比较大的进展,欢迎各位继续关注本检测系统的进展并多提批评性及建设性意见和建议。2.按照这个系统39%以下的都是显示黄色,那么是否意味着在可容忍的限度内呢?最近看到对上海大学某教师的国家社科基金课题被撤消的消息,原因是其发表的两篇论文有抄袭行为,分别占到25%和30%. 请明示超过多少算是警戒线?百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。3.如何防止学位论文学术不端行为检测系统成为个人报复的平台?这也是我们在认真考虑的事情,目前这套检测系统还只是在机构一级用户使用。我们制定了一套严格的管理流程。同时,在技术上,我们也采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。4.最小检测单位是句子,那么在每句话里改动一两个字就检测不出来了么?我们对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。5.如果是从相关书籍上摘下来的原话,但是此话已经被数据库中的相关文献也抄了进去,也就是说前面的文章也从相关书籍上摘了相同的话,但是我的论文中标注的这段话来自相关的书籍,这个算不算学术抄袭?检测系统不下结论,是不是抄袭最后还有人工审查这一关,所以,如果是您描述的这种情况,专家会有相应判断。我们的系统只是提供各种线索和依据,让人能够快速掌握检测文献的信息。6.知网检测系统的权威性?学术不端文献检测系统并不下结论,即检测系统并不对检测文献定性,只是将检测文献中与其他已发表文献中的雷同部分陈列出来,列出客观事实,而这篇检测文献是否属于学术不端,需专家做最后的审查确认。一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。论文查重修改的规律:1、如果是引用,在引用标号后,不要轻易使用句号,如果写了句号,句号后面的就是剽窃了(尽管自已认为是引用),所以,引用没有结束前,尽量使用分号。有些人将引用的上标放在了句号后面,这是不对的,应该在句号之前。2、可以将文字转换为表格,将表格边框隐藏。3、如果你看的外文的多,由外文自己翻译过来引用的,个人认为,不需要尾注,就可以当做自己的,因为查重的数据库只是字符的匹配,无法做到中文和英文的匹配。4、查重是一个匹配的过程,是以句为单位,如果一句话重复了,就很容易判定重复了,所以:的确是经典的句子,就用上标的尾注的方式,在参考文献中表达出来,或者是用:原文章作者《名字》和引号的方式,将引用的内容框出来。引号内的东西,系统会识别为引用如果是一般的引用,就采用罗嗦法,将原句中省略的主语、谓语、等等添加全,反正哪怕多一个字,就是胜利,也可以采用横刀法,将一些句子的成分,去除,用一些代词替代。或者是用洋鬼子法,将原文中的洋名,是中文的,就直接用英文,是英文的直接用中文,或是哦中文的全姓名,就用中文的名,如果是中文的名,就找齐了,替换成中文的姓名。故意在一些缩写的英文边上,加上(注释)(画蛇添足法),总之,将每句话都可以变化一下,哪怕增加一个字或减少一个字,都是胜利了。特别注意标点符号,变化变化,将英文的复合句,变成两个或多个单句,等等,自己灵活掌握。因为真正写一篇论文,很罕见地都是自己的,几乎不可能,但大量引用别人的东西,说明你的综合能力强,你已经阅读了大量的资料,这就是一个过程,一个学习、总结的过程。所有的一切,千万别在版面上让导师责难,这是最划不来的。导师最讨厌版面不规范的,因为他只负责内容,但又不忍心因为版面问题自己的弟子被轰出来。5、下面这一条我傻妞试过的,决对牛B:将别人的文字和部分你自己的文字,选中,复制(成为块,长方形),另外在桌面建一个空文件,将内容,复制到文件中,存盘,关闭。将这个文件的图标选中,复制,在你的正文中的位置上,直接黏贴,就变成了图片了,不能编辑的。这个操作事实上是将内容的文件作为一个对象插入的,所以是图片。这个操作事实上是将内容的文件作为一个对象插入的。所以是图片。以上那些东西再次总结一下:查重是一个匹配的过程,是以句为单位,如果一句话重复了,就很容易判定重复了,所以:1)如果的确是经典的句子,就用上标的尾注的方式,在参考文献中表达出来。2)如果是一般的引用,就采用罗嗦法,将原句中省略的主语、谓语、等等添加全,反正哪怕多一个字,就是胜利。3)也可以采用横刀法,将一些句子的成分,去除,用一些代词替代。4)或者是用洋鬼子法,将原文中的洋名,是中文的,就直接用英文,是英文的直接用中文,或是中文的全姓名,就用中文的名,如果是中文的名,就找齐了,替换成中文的姓名。5)故意在一些缩写的英文边上,加上(注释)(画蛇添足法),总之,将每句话都可以变化一下,哪怕增加一个字或减少一个字,都是胜利了。6)如果是引用,在引用标号后,不要轻易使用句号,如果写了句号,句号后面的就是剽窃了(尽管自已认为是引用),所以,引用没有结束前,尽量使用分号。有些人将引用的上标放在了句号后面,这是不对的,应该在句号之前。7)可以将文字转换为表格、表格基本是查重不了的,文字变成图形、表格变成图形,一目了然,绝对不会检查出是重复剽窃了。论文查重修改学校的要求:1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
黄色部分表示的是引用部分,红色部分是抄袭部分,红色部分是需要全部进行修改的,黄色部分需要标注引用进行引用。
引用部分被标红通常是由于论文作者对某文章部分的片段甚至是句子引用,根据知网查重判定规则,只要连续十三字以上重复即被判定为重复,因而,论文作者在引用过程中应当尽量避免过度的引用。
引用部分的修改可以尽量理解所引用部分的原文的意思,以自己的表达方式进行表达。对于一些名人名言,可以通过解释的方式,增加文章字数,以增加文章查重的基数部分,如此一来,该部分的重复就可以稀释。
再次,对于一些法条的引用,虽然知网已经能够自动识别法条的引用,但是不排除杂志社或者其他学报等机构对论文不用知网进行查重。
因而,法条的引用也有可能出现标红的现象,为此,只能尽可能的遵守法条的内容,理解立法者的初衷,通过语句的语法的变动,将法条部分进行合理适度的修改,以降低该部分论文内容的重复率。
对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。
R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:
在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于0.5,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。
框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。
Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:
RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。
为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:
回归的target可以参考前面的R-CNN部分。
notes
为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:
为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:
在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:
自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。
对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。
与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。
与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。
不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。
由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。
为此,作者使用了RoIAlign。如下图
为了避免上面提到的量化过程
可以参考
作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:
整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :