从积分方面入手
二重积分的计算方法
1、对称性计算二重积分:当被积函数 integrand 是奇函数时,在对称于原点的区域内积分为0。被积函数或被积函数的一部分是否关於某个坐标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。
2、奇偶性计算二重积分:当被积函数是偶函数时,在对称于原点的区域内积分为单侧积分的两倍。被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性。
性质须知
1、被积函数提供不定积分积出来的函数,虽然看可以讨论原函数的奇偶性,但是讨论积分函数去奇偶性时,考虑的仅仅是被积函数。
2、有界性:设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
3、单调性:设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1 以上内容参考:百度百科——函数 把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。你可以找一本高等数学书看看。。 你这个题目积分区域中,x,y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x),g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待(只含有x的项可以像提出常数一样提到积分号外面来)。这个第一次积分得到一个关于x的函数(这个结果是第二次积分的表达式),然后再对x积分,这时候上下限就是2和1。这样就得到积分值了。 二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。 当被积函数大于零时,二重积分是柱体的体积。 当被积函数小于零时,二重积分是柱体体积负值。 参考资料:百度百科-二重积分 把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。你可以找一本高等数学书看看。。 你这个题目积分区域中,x,y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x),g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待(只含有x的项可以像提出常数一样提到积分号外面来)。这个第一次积分得到一个关于x的函数(这个结果是第二次积分的表达式),然后再对x积分,这时候上下限就是2和1。这样就得到积分值了。 二重积分计算方法:化为二次积分。 1、直角坐标系中 当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy,从而二重积分可以表示为, 由此可以看出二重积分的值是被积函数和积分区域共同确定的。将上述二重积分化成两次定积分的计算,称之为:化二重积分为二次积分或累次积分。 ①X型区域 设积分区域是由两条直线x=a,x=b(a
特点:穿过D内部且平行于y轴的直线,与D的边界交点数不多于两点。 如图,对任意取定的x0∈[a,b],过点(x0,0,0)作垂直于x轴的平面x=x0,该平面与曲顶柱体相交所得截面是以区间 为底,z=f(x0,y)为曲边的曲边梯形。 由于x0的任意性,这一截面的面积为 。 其中y是积分变量在积分过程中视x为常数。上述曲顶柱体可看成平行截面面积S(x)从a到b求定积分的体积,从而得到: ②Y型区域 积分区域 称为Y型区域。 特点:穿过D内部且平行于x轴的直线,与D的边界交点数不多于两点。 称D为Y型区域,此时可采用先对x,后对y积分的积分次序,将二重定积分化为累次积分: 2、在极坐标中 有许多二重积分仅仅依靠直角坐标下化为累次积分的方法难以达到简化和求解的目的。当积分区域为圆域,环域,扇域等,或被积函数为 等形式时,采用极坐标会更方便。 在直角坐标系xOy中,取原点为极坐标的极点,取正x轴为极轴,则点P的直角坐标系(x,y)与极坐标轴(r,θ)之间有关系式: 在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。 为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D, 设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为 ,可得到二重积分在极坐标下的表达式: 扩展资料 二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。 当被积函数大于零时,二重积分是柱体的体积。 当被积函数小于零时,二重积分是柱体体积负值。 参考资料:百度百科-二重积分 国内:现如今二重积分基础理论的研究已经相当成熟,在实际应用中的研究还比较少,任何一门学问在历史发展过程中都会与时俱进,所以二重积分的发展趋势会在现有的基础上日益完善,尤其是在物理学、经济学等应用方面的研究会越来越深入,整个微积分体系会越来越完备 不定积分的计算方法: 积分公式法:直接利用积分公式求出不定积分。换元积分法:换元积分法可分为第一类换元法与第二类换元法,第一类换元法通过凑微分,最后依托于某个积分公式。进而求得原不定积分。分部积分法:将所求积分化为两个积分之差,积分容易者先积分。 任何真分式总能分解为部分分式之和。有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和可见问题转化为计算真分式的积分。 求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。 设函数和u,v具有连续导数,则uv=udv+vdu。移项得到udv=duv-vdu,两边积分,得分部积分公式:∫udv=uv-∫vdu 。称公式1为分部积分公式。如果积分∫vdu易于求出,则左端积分式随之得到 具体回答如图所示: 把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。 注:∫f(x)dx+c1=∫f(x)dx+c2, 不能推出c1=c2 扩展资料: 若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。 不定积分的积分公式主要有如下几类: 含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。 参考资料来源:百度百科——积分公式 沟通技巧 1、首先礼貌问好:老师,您好,我是您毕业论文带的学生。 2、简单介绍自己的论文:我的论文水平还不是很好,有很多的缺陷,我会努力改进的! 3、虚心问教:以后可能经常会麻烦老师,还请别介意,最后就是感谢老师的指导! 扩展资料 和指导老师探讨时,需要注意的事项: 1、熟悉内容,携带纸笔、论文底稿和一些必要的参考资料等。 2、图表穿插,直观的表达观点。 3、要有自信意识,克服怯场心理,消除紧张情绪,尽量放松,语速不要太快。 4、在答辩时,学生要注意仪态与风度 ,目光移动 ,体态语辅助。 5、发言提纲的准备。时间控制,答辩前应对将要答辩的内容有时间上的估计。 6、陈述论文内容时,应尽量紧扣主题、言简意赅。 7、回答问题过程中,要简明扼要,层次清晰,并留有余地。 8、回答问题后,要认真听取答辩老师的评判和意见,总结论文写作中的经验教训。 放心。 都是和你做的这个题目相关的问题,比如某个功能的具体实现过程或者是具体的流程等等,只要这个东西是你自己做的,你就没有必要担心。因为你每个流程都了解,只要你不是过于紧张,什么都说不上来了,你就不可能得不及格,而且你还很可能得到优。再说asp语言很简单,就即使不是你自己做的,你也可以找别人把大概的流程给你讲一讲,估计到时也应该没有什么问题。毕业答辩并不是像你想象的那么难。 被积函数有e^|x|,是偶函数,根据对称性,等于2倍的∫e^x,积分区域变成x>0的部分。 ∫∫dydz,积分区间就是y2+z2≤(1-x2).(也就是球在yoz平面的投影),积分就是这个圆的面积。所以就得到上面的求解。 解题思路是:积分域关于坐标平面 yOz 对称,记 第一卦限部分为 Ω1,x,y,z 的偶函数 e^|x| 的积分是 e^x 在 Ω1 上积分的 8 倍。直角坐标法:I = 8∫<0, 1>e^xdx∫<0, √(1-x^2)>dy∫<0, √(1-x^2-y^2)>dz很麻烦。化为极坐标:I = ∫<0, π/2>dφ∫<0, π/2>dθ∫<0, 1>e^(rsinφcosθ)r^2sinφdr其中 ∫e^(rsinφcosθ)r^2sinφdr = secθ∫r^2de^(rsinφcosθ)= secθ[r^2e^(rsinφcosθ)-2∫re^(rsinφcosθ)dr]= secθ[r^2e^(rsinφcosθ)-2cscφsecθ∫rde^(rsinφcosθ)]= secθ{r^2e^(rsinφcosθ)-2cscφsecθ[re^(rsinφcosθ)-∫e^(rsinφcosθ)dr]}= secθ{r^2e^(rsinφcosθ)-2cscφsecθ[re^(rsinφcosθ)-cscφsecθe^(rsinφcosθ)]}r 从 0 到 1 取值,得secθ{e^(sinφcosθ)-2cscφsecθ[e^(sinφcosθ)-cscφsecθe^(sinφcosθ)]-2(cscφsecθ)^2}再代入积分,也非常麻烦。 三重积分的计算,首先要转化为“一重积分+二重积分”或“二重积分+一重积分”。 适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法: 先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。 区域条件:对积分区域Ω无限制; 函数条件:对f(x,y,z)无限制。 先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。 区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成 函数条件:f(x,y)仅为一个变量的函数。 三重积分特点: 当然如果把其中的“二重积分”再转化为“累次积分”代入,则三重积分就转化为了“三次积分”,这个属于二重积分化累次积分。 与二重积分类似,三重积分仍是密度函数在整个Ω内每一个点都累积一遍,且与累积的顺序无关(按任意路径累积)。当积分函数为1时,就是其密度分布均匀且为1,三维空间质量值就等于其体积值;当积分函数不为1时,说明密度分布不均匀。 三重积分的几何意义是不均匀的空间物体的质量。 三重积分的含义是设三元函数f(x,y,z)在区域Q上具有一阶连续偏导数,将Q任意分割为n个小区域,每个小区域的直径记为ri(i=1,2,3...…n),体积记为Ai,记ITll=maxri,在每个小区域内取点f(i,ni,i),作和式zf(i,ni,)△6i’ 若该和式当Tl>0时的极限存在且唯一(即与Q的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Q上的三重积分,记为f(x,y,z)dV,其中dV=dxdydz。 三重积分的计算方法 1、先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。①区域条件:对积分区域Q无限制;②函数条件:对f(x,y,2)无限制。 2、先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成;②函数条件:f(x,y,z)仅为一个变量的函数。 3、柱面坐标法适用被积区域Q的投影为圆时,依具体函数设定,如设x2+y2=a2,x=a sin0,y=acos0 ①区域条件:积分区域Q为圆柱形、圆锥形、球形或它们的组合;②函数条件:f(x,y,z)为含有与x2+y2(或另两种形式)相关的项。 4、球面坐标系法适用于被积区域Q包含球的一部分。①区域条件:积分区域为球形或球形的一部分,锥面也可以;②函数条件:f(x,y,2)含有与x2+y2十2相关的项。 以上参考:快懂百科—三重积分重积分的计算方法数学毕业论文
不定积分的计算方法毕业论文
计算机专业论文答辩方法与技巧
三重积分的计算毕业论文