微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。
摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.
关键词:微积分;背景;作用;函数
一、微积分进入高中课本的背景及必要性
在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!
二、微积分在中学数学中的作用
1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.
2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。
3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。
三、国际上一些教材对微积分知识的处理
以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。
当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!
摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。
关键词:微积分;起源;内容;方法
微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:
一、微积分起源的介绍
微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。
介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。
二、介绍微积分内容及方法
微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。
三、为什么要学习高等数学
微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:
微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。
前言
21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。
一、我国微积分教学改革的现状
目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。
首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。
其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。
再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。
二、微积分课改的必要性
随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。
(1)社会高度发展提出的要求
微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。
(2)科技的发展提出的需要
当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。
(3)人类思维发展的需要
微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。
三、微积分课改的内容
根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。
1、课程基本理念的改革
微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。
2、课程内容的改革
根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。
3、课程设计的改革
原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。
4、教学方法的革新
(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。
(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。
5、教学工具的革新。
现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。
四、小结
初中数学二次函数的教学反思(通用5篇)
身为一名刚到岗的教师,课堂教学是重要的工作之一,对教学中的新发现可以写在教学反思中,那么写教学反思需要注意哪些问题呢?以下是我收集整理的初中数学二次函数的教学反思(通用5篇),仅供参考,希望能够帮助到大家。
从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
完成这节课后,静下心来准备写个教学反思。重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!
对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。
对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释,我也从中看到了他们智慧的火花,这是很令人欣慰的。
这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的限制。依我看,这节课的重点该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上。一上完这节课后就有所感触:
1、二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。许多实际问题往往可以归结为二次函数加以研究。
2、教学要重视概念的形成和建构,在概念的学习过程中,从丰富的现实背景和学生感兴趣的问题出发,通过学生之间的合作与交流的探究性活动,引导分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。
3、课堂教学要求老师除了深入备好课外,还要懂得根据学生反馈来适时变通,组织学生讨论时该放则放,该收则收,合理使用好课堂45分钟,尽可能把课堂还给学生。
我觉得在教学中,只光热情还不够,没有积极调动学生的学习热情,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。总之,在数学教学中不但要善于设疑置难,激发学生的学习热情,同时要加强学生自学能力的培养,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。
二次函数是中学数学的重要内容,也是中考的热点。其中考试涉及的主要有考查二次函数的定义、图象与性质及应用等。在九年级的教学中,教师就要立足课堂,瞄准中考,研究中考试题。近年来,二次函数的应用题目不断出现在各地中考题中,特别值得一提的是,有些源自课本中的例题或习题原型和变式。在日常教学时,注重对接,为中考做好铺垫,是我对这节二次函数解决实际问题实
1、践探索课的期待
二次函数应用题型一般情况下,解题思路不外乎建立平面直角坐标系,标出图象上的点的坐标,求图象解析式,利用图象解析式及性质,来解决最优化等实际问题。一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。结合北师大版教材教学内容,呈现习题,让学生分小组去试验探索解决问题。各小组很快就求出了抛物线的`解析式,当然速度有快有慢,第二问,及少学生举手示意完成,我很高兴,也没细究他们的情况。继续按照预定方案,组织学生活动,开始对第二问进行探究。对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导,几次提醒按例题的方法,从函数的图象上进行考虑,但就是没有人响应,探究几乎陷于停顿,让我大感意外,超乎我的想象。好在我尚能应付,便提问素有“学霸”之称的小熊,你是怎样思考的?小熊说,他也知道首先建立平面直角坐标系,画出草图,但是不知道卡车是如何穿过桥洞,是靠中间走,还是靠边通过?我一听,才恍然大悟。原来学生的认知和老师想象的不一样,加上生活经验较少,难怪学生会沉默不语。对于坐标系的建立方法,学生面对多种可能的选择,往往束手无策,根本原因就是老师不重视对学生思考水平的研究,导致以老师思维代替学生思维,造成学生思考与实践脱节。这就要求老师要从学生的实际出发,了解学生的学习状况,善于启发和引导,才能较好的达到教学目标。
本节课的设计初衷,原是让学生从具体的生活实践中,感知数学模型,达到从实际问题中抽象出数学模型,并用数学知识解决问题,同时让学生感知和体会一题多变的变式训练,增加对数学解题思想的认识。但在教学时,学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。
当我充满自信准备进行下一问时,有学生说,我还没得出答案呢?我说,你们小组不是展示过了,怎么你还不会呢?他说,我的解析式设y=ax2+bx+c,我代入得不出来,组长设的和我不一样。我告诉他,其实你用一般式同样可以做的很准,只不过速度稍慢一些,这就需要加强运算练习。下课后我一直在思考,学生越是基础差,那些好的方法他们就越难掌握。学起来既吃力有费气,这就需要在平常加强双基训练,每个学生都必须掌握好基本概念和基本技能。
教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。
由于本节课是二次函数的应用问题,重在通过学习总结解决问题的方法和数学思想的应用,故而本节课以“启发探究式”为主线开展教学活动,以学生的合作交流为主,必要时加以引导,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。二次函数应用的教学后,比我预想的效果要好一些,出现了几个点引人深思:
2、精心设计问题,引发学生思考建立数模
本节以《二次函数的综合应用》为契机,培养学生的分析问题、解决问题的能力。本节课重点放在分析问题,将实际问题转化为数学问题,建立数学模型解决问题。所以在教学时,教师应有意锻炼学生从读题开始,分析题意,搜索与问题有联系的数学知识,运用知识和技能使问题获得解决。在备课中,我发现学生对例题的理解存在困难,采用设计小问题,设小台阶,引导学生探究,突破教学难点,带领学生寻找解决的方法。我设铺计的问题如下:
(1)读题,检索有用信息;
(2)分析已知,他们讲的是什么含义?根据题意画出图形;
(3)分析所求,是让我们求什么?将实际问题可转化为什么知识来解决?
(4)如何求二次函数的最大值?
学生根据老师提出的问题,小组讨论,同学间互相交流与补充,在教师的引领下,发现本题就是转化为求二次函数的最大值问题,逐步将难点突破,帮助学生建立数模解决问题。学生在动手画图、讨论的基础上找到解决的方法与步骤,先求二次函数的解析式,再求二次函数的最大值。学生在理解题意后画图形,又加深了对题目的理解,为解决问题奠定了基础,进一步体会运用数形结合的思想方法求解二次函数的问题,将数学思想与方法渗透到整个教学过程中。
3、为学生提供思考的空间,注重一题多解
学生在建立平面直角坐标系后,根据题意知道,对称轴是x=1,A点坐标(0,2),B点坐标(0,0),C点坐标(0,2),确定二次函数解析式时,出现了一个小插曲。学生用一般式确定二次函数解式后,有同学想用其他的方法求解想法,我马上鼓励学生去寻找新的方法。个别学生思维活跃,有个学生想用两根式求解析式,让这个学生说出自己的思路,其他学生帮助他进行分析与补充。该同学将A、B、C三点坐标带入两根式求解,发现求得解析式与用一般式求得解析式不同,很疑惑,不知道问题出在哪里?我并没有否定该同学的方法,而是让其他学生帮助纠正,在大家的分析图形中发现,B点坐标不在抛物线上,不能将其带入。
在教学中出现分歧时,要给学生空间去思考,发现问题的原因,从而确定解决得方法,避免今后出现类似错误。而学生善于思考,在用两根式求解析式时,我设计一个小陷阱,故意引导学生选用A、B、C三点求解析式,学生通过计算与观察,同样发现了这个问题:B点坐标不在抛物线上,不能将其带入求解。在这种情景下,追问:如何利用两根式确定解析式呢?学生积极性很高,小组讨论,学生根据抛物线的对称性找到它与x轴另一个交点D(—0。5,0),将A、D、C三点带入可求出二次函数的解析式。在教学中,要注重解题方法的灵活性,一题多解,开阔学生的思维,提高学生的发现问题,解决问题的能力。在教学过程中,层层设疑,激发学生求知欲,积极主动参与教学活动,大大提高了课堂效率。
4、数学来源于生活并运用于生活
例题有较强的现实感,例题的选择增加数学教学的现实性,使学生体验数学知识与日常生活的密切联系,从而培养学生喜爱数学,学好数学的情感。课堂中,学生在解决数学情境问题的过程中,感悟数学来源于生活并运用于生活,激发学生学习数学的兴趣。在课上,学生因问题来自于身边而思维活跃,有强烈的探索欲望,这样才能充分发挥学生学习的积极性,进而提高课堂教学质量。
5、不足之处:
《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习探讨。在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。
教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。
二次函数是学生学习了正比例函数,一次函数和反比例函数以后进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些简单变量最优化问题的数学模型。和一次函数,反比例函数一样,它也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数,体会函数的思想奠定基础和积累经验。
本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导”出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax+bx+c(a,b,c是常数,a≠0)。最后,通过随堂练习巩固二次函数的概念并解决一些简单的数学问题。
我个人以为,本节课的成功之处是:
教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型,通过学习求一些简单的实际问题中二次函数的解析式,大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述,研究变量之间变化规律的意义。让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。
二次函数是初中阶段研究的一个具体、重要的函数,在历年来中考题中都占有较大的分值。二次函数不仅和学生前面学习的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想有着重要的作用。而二次函数的概念是后面学习二次函数的基础,在整个教材体系中起着承上启下的作用。
本节课的内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决实际问题。为此,先让学生复习了函数及一次函数的相关内容,然后设计具体的问题情境让学生自己推导出一个二次函数,并观察、总结它与一次函数的不同,在此基础上逐步归纳出二次函数的一般表达式,最后通过习题巩固二次函数的概念并解决一些简单的数学问题。
我个人认为,本节课的成功之处是:一是在教学设计上“步步为营”,学生的思维能力“层层提高”。在教学设计上,根据内容的需要,我合理设计具有针对性的问题,借助学生已有的知识展开教学,通过解决问题,充分激发学生的求知欲,调动学生学习的积极性和主动性。
二是在学习的过程中,不仅注重对学生知识的教授,更注重教给学生学习和思考的方法,提高学生独立发现问题、解决问题的能力,让学生时时体验到成功的快乐。
三是在整个教学过程中,注重不同层次学生的发展,不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到吃不饱现象,因此在后面的练习设计中,也有针对性的习题,对这部分学生提高也是很有帮助的。
不足之处表现在:
1、由于学生对一次函数的遗忘,因此复习占用的太多的时间,导致课后练习没完成。
2、学生自学环节,要求不够细致,学生学的不够深入只是看了教材,而未挖掘出教材以外的东西。
3、由于时间紧张小结的不够完整。
总之,本节课的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文
本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。 以上就是我的这篇“数学小论文-一次函数”,所有观点只是我个人之见,谢谢!
(一)教材地位:本小节属于《全日制义务教育数学课程标准实验稿》中“数与代数”领域,是我们在学习了平面直角坐标系和一次函数的基础上,再一次进入函数领域,通过本小节的学习,让学生感受到函数是反映现实生活的一种有效模型,同时,本小节的学习内容,直接关系到后续内容的学习,也可以说是后续内容的基础。(二)教学重点:1、了解并掌握反比例函数的概念;2、能根据问题中的已知条件确定反比例函数解析式;3、能判断一个函数是否为反比例函数及比例系数;4、培养学生的观察、比较、概括能力。(三)教学重学:1、了解并掌握反比例函数的概念2、能根据已知条件确定反比例函数解析式(四)教学难点:1、解并掌握反比例函数的概念2、能根据已知条件确定反比例函数解析式分式目录 第一节 分式的基本概念 第二节 分式的基本性质和变形应用 第三节 分式的四则运算 第四节 分式方程 第一节 分式的基本概念I.定义:整式A除以整式B,可以表示成A/B的形式。如果除式B中含有字母,那么称为分式(fraction)。注:A÷B=A×1/BII.组成:在分式 中A称为分式的分子,B称为分式的分母。III.意义:对于任意一个分式,分母都不能为0,否则分式无意义。IV.分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。注:分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。第二节 分式的基本性质和变形应用V.分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。VI.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.VII.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.VIII.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.IX.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分.X.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.注:(1)约分和通分的依据都是分式的基本性质.(2)分式的约分和通分都是互逆运算过程.第三节 分式的四则运算XI.同分母分式加减法则:分母不变,将分子相加减.XII.异分母分式加减法则:通分后,再按照同分母分式的加减法法则计算.XIII.分式的乘法法则:用分子的积作分子,分母的积作分母.XIV.分式的除法法则:把除式变为其倒数再与被除式相乘.第四节 分式方程XVI.分式方程的意义:分母中含有未知数的方程叫做分式方程.XVII.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根). 二、分析教法与学法:(一)教法:由于学生已学过正比例关系,一次函数,正比例函数等概念,由于打算采用新旧知识相联系的方法,让学生通过比较发现从而掌握新知识(二)学法:通过观察、比较、发现、概括的方法来学习新知识。三、分析教学过程(一)创设情境: 1、由于学生所学过的反比例关系,一次函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以以有知识的记忆。 2、在情境中,列举大量实例,让学生装根据已知条件,列出一次函数、正比例函数、反比例函数为学生的探险索创造条件。(二)探索过程 1、学生的探索能力不是很强,因此在列出的大量函数中,教师发挥主导作用,启发学生思考。 2、通过一系列的探索,让学生概括出反比例函数的共同特征,从而给出概念。3、在学生得出反比例函数后,再进行深化,给出比例系数为负数或分的情境,巩固反比例函数的概念。(三)小结和作业:在学生的自我小结中教师加以完善,对反比例函数有一定程度上的掌握。
3000自只有5分么?呵呵呵~~~
本文从以下几方面探讨如何学好二次函数 . 一、理解二次函数的内涵及本质 . 二次函数 y=ax2 + bx + c ( a ≠ 0 , a 、 b 、 c 是常数)中含有两个变量 x 、 y ,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形 . 二、熟悉几个特殊型二次函数的图象及性质 . 1 、通过描点,观察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式 . 2 、理解图象的平移口诀“加上减下,加左减右” . y=ax2 → y=a ( x + h ) 2 + k “加上减下”是针对 k 而言的,“加左减右”是针对 h 而言的 . 总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移 . 3 、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征; 4 、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数 a 、 b 、 c 、△以及由系数组成的代数式的符号等问题 . 三、要充分利用抛物线“顶点”的作用 . 1 、要能准确灵活地求出“顶点” . 形如 y=a ( x + h ) 2 + K →顶点(- h,k ),对于其它形式的二次函数,我们可化为顶点式而求出顶点 . 2 、理解顶点、对称轴、函数最值三者的关系 . 若顶点为(- h , k ),则对称轴为 x= - h , y 最大(小) =k ;反之,若对称轴为 x=m , y 最值 =n ,则顶点为( m , n );理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果 . 3 、利用顶点画草图 . 在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象 . 四、理解掌握抛物线与坐标轴交点的求法 . 一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标 . 如果方程无实数根,则说明抛物线与 x 轴无交点 . 从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与 x 轴的交点个数 . 五、灵活应用待定系数法求二次函数的解析式 . 用待定系数法求二次函数的解析式是我们求解析式时最常规有效的方法,求解析式时往往可选择多种方法,如能综合利用二次函数的图象与性质,灵活应用数形结合的思想,不仅可以简化计算,而且对进一步理解二次函数的本质及数与形的关系大有裨益 .〖教学目标〗 ◆1,经历一元二次方程概念的发生过程. ◆2,理解一元二次方程的概念. ◆3,了解一元二次方程的一般形式,会辨别一元二次方程的二次项系数,一次项系数及常数项. 〖教学重点与难点〗 ◆教学重点:一元二次方程的概念,包括一般形式. ◆教学难点:例1第4题计算容易产生差错,是本节教学的难点. 〖教学过程〗 合作学习 列出下列问题中关于未知数x的方程 ①正方形的面积为80,边长为x,则可列出方程 . ②某村的粮食年产量,在两年内从60万千克增长到72万千克,问平均每年增长的百分率是多少 设年平均增长率为x,则可列出方程 . 引入新课 观察方程x2=80 和 两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,我们把这样的方程叫做一元二次方程,能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根) 练一练:1,判断下列方程是否为一元二次方程:① 2(3x+2)=x2 ② +x+3=0 ③ ④ ⑤ 2,判断未知数的值,,是否是方程的根. 一般地,任何一个关于x 的一元二次方程都可以化为的形式,我们把形如(,,为常数,)称为一元二次方程的一般形式,其中,,分别称为二次项,一次项和常数项.,分别称为二次项系数和一次项系数. 思考:为什么,,可以为零吗 三,范例讲解: 例1:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数,一次项系数和常数项. ① ② ③ ④ 解:① 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ② 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ③ 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. ④ 移项,整理,得 这个二次项系数为,一次项系数为,常数项为. 我们在写一元二次方程的一般形式时,通常按未知数的系数从高到低排列,先写二次项,再写一次项,最后是常数项. 四,练习巩固: 1,方程 ① ② ③ ④ 中是一元二次方程的为 (填序号). 2,关于的一元二次方程的一个解是,则 3,判断下列各方程后面的两个数是不是它的解. ① ( ) ② ( ) ③ (3 , 1) ( ) ④ () ( ) 五,小结: 记住一元二次方程的一般形式,并会判断方程是否为一元二次方程; 化成一元二次方程的一般形式后,能说出二次项系数,一次项系数和常数项; 能判断的值是不是方程的解. 作业:见作业本 2.1一元二次方程(2) 【教学目标】 ◆1.掌握因式分解法解一元二次方程的基本步骤. ◆2.会用因式分解法解一元二次方程. 【教学重点与难点】 ◆教学重点:用因式分解法解一元二次方程. ◆教学难点:例3方程中含有无理系数,需将常数项2看成,才能分解因式,是本节教学的难点. 【教学过程】 复习引入 1,将下列各式分解因式: 教师指出:把一个多项式化成几个整式的积的形式叫做因式分解. 2,你能利用因式分解解下列方程吗 请中等程度的学生上来板演,其余学生写在练习本上,教师巡视. 之后教师指出:像上面这种利用因式分解解一元二次方程的方法叫做因式分解法.(板书课题) 新课学习 归纳因式分解法解一元二次方程的步骤: 教师首先指出:当方程的一边为0,另一边容易分解成两个一次因式的积时,用因式分解法求解方程比较方便.然后归纳步骤:(板书) 若方程的右边不是零,则先移项,使方程的右边为零; 将方程的左边分解因式; 根据若M·N=0,则M=0或N=0,将解一元二次方程转化为解两个一元一次方程. 2,讲解例2. (1)解下列一元二次方程: 教师在讲解中不仅要突出整体的思想:把x-2及3x-4和4x-3看成整体,还要突出化归的思想:通过因式分解把一元二次方程转化为一元一次方程来求解.并且教师要认真板演,示范表述格式,强调两个一元一次方程之间的连结词要用"或",而不能用且. (2)想一想:将第(1),(2),(3)题的解分别代人原方程的左,右两边,等式成立吗 (3)归纳用因式分解法解的一元二次方程的基本类型: ①先变形成一般形式,再因式分解: ②移项后直接因式分解. 在选择方法时通常可先考虑移项后能否直接分解因式,然后再考虑化简后能否分解因式. 讲解例3. 解方程 在本例中出现无理系数,要注意引导学生将将常数项2看成,另外对于方程中出现两个相等的根,教师要做好板书示范. 3,补充例4 若一个数的平方等于这个数本身,你能求出这个数吗 首先让学生设出未知数,列出方程(),再让学生求解.根据学生的求解情况强调:对于此类方程不能两边同时约去x,因为这里的x可以是0. 三,巩固练习: 课本第32页课内练习. 四,体会和分享 能说出你这节课的收获和体验让大家与你分享吗 先由学生自由发言,教师再投影演示: 1.能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积; 2.用分解因式法解一元二次方程的一般步骤: (1)将方程的右边化为零; (2)将方程的左边分解为两个一次因式的乘积; (3)令每一个因式为零,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 3. 用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0. 4,用分解因式法解一元二次方程的注意点:1.必须将方程的右边化为零;2.方程两边不能同时除以含有未知数的代数式. 5,数学思想:整体思想和化归思想. 五.课后作业 1.书本作业题 2.作业本 【板书设计】 屏幕 2.1一元二次方程(二) ——因式分解法解一元二次方程 1. 用分解因式法解一元二次方程的一般步骤: (1)将方程的右边化为零; (2)将方程的左边分解为两个一次因式的乘积; (3)令每一个因式为零,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2. 数学思想:整体思想和化归思想. 2.2一元二次方程的解法(1) 【教学目标】 ◆1. 理解开平方法解一元二次方程的依据是平方根的意义. ◆2. 会用开平方法解一元二次方程. ◆3. 理解配方法. ◆4. 会用配方法解二次项系数为1的一元二次方程. 【教学重点与难点】 ◆教学重点:开平方法. ◆教学难点:配方法有一个比较复杂的过程,无论从理解和运用上,对学生来说都有一定的难度. 【教学手段】 用多媒体powerpoint和黑板的形式. 【教学过程】 (一)引入新课 问题1: 在修建甬(宁波)金(金华)高速公路时,遇到高山,需要开掘隧道,为了预计这座山隧道的长度,工程人员测量了山的高度约AB=3千米,坡面的长度约AC=5千米.请你估算开掘这座山的隧道约有多少千米 从甬金高速公路入手引出 型的一元二次方程,体现方程与几何图形性质的应用,对一元二次方程概念的理解,方程根的检验等起着复习巩固的作用. (二)由问题1可得 即 再利用因式分解法得出方程的根. 如果把 变形为 ,进而可以理解为x是16的平方根,引出求这种方程的根可以用两边直接开方的方法进行,再得出开平方法的概念. 通过让学生观察体会得出开平方法的两个特征:1,它适合于什么样的方程 (左边是一个关于x的完全平方,右边为一个非负常数即 ).2:用什么样的方法来解 (方程的两边直接开平方的方法) 然后通过一系列,连续的例题来巩固用开平方法解一元二次方程,既突出本节课的重点,又比较自然的过渡到用配方法解一元二次方程. 例1, (1 ) (2) (3) (4) 通过第4个例题的讲解学生已经了解到,如果左边不是一个直接的完全平方,那么通过观察,变形,把它配成完全平方,就可以用开平方法来解一元二次方程. (三),问题2: 把方程变形:左边是一个含有x的式子的完全平方,而右边是一个非负数. 1:先移项:含有未知数的项移到左边,含有常数的项移到右边. 2:方程两边同加上一个合适的数. 3:左边是一个完全平方,右边是一个非负常数. 4:最后用开平方法来解 即可引出配方法的概念.像这样,把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法. 然后让学生回答:用配方法解一元二次方程关键在哪里 (就是如何在方程左,右两边同加上一个合适的数使左边配成一个完全平方.) 为了弄清楚在方程的左右两边究竟应加上一个什么样的合适的数,可以通过专门的3个练习来得出.即突破本节课的难点. (1) (2) (3) 最后让学生得出结论:1:加上一次项系数一半的平方; 2:前提条件:二次项系数为1 例2, (1) (2) 再次总结:形如 (二次项系数为1时),可以用配方法来解一元二次方程. 具体的步骤有: 第一:移项. 第二:等式两边同加上一次项系数一半的平方. 第三:再用开平方法来解方程. (四)提出挑战题:当二次项系数不是1时,怎么办 为下节课的教学打下了基础. 例3, 课堂小结 让学生回答1:用开平方法,配方法解一元二次方程的概念.2:用这两种方法解方程时,方程的特点.3:用这两种方法解方程时的步骤.4:让学生回答在解方程过程中应注意的事项. 六,布置作业. 2.2一元二次方程和解法(2) 【教学目标】 ◆1. 巩固用配方法解一元二次方程的基本步骤. ◆2. 会用配方法解二次项系数的绝对值不为1的一元二次方程. 【教学重点与难点】 ◆教学重点:用配方法解二次项的系数的绝对值不是1的一元二次方程. ◆教学难点:当二次项系数为小数或分数时,用配方法解一元二次方程. 【教学过程】 一.复习旧知 用适当的方法解下列方程: 1,(x-2)2=3 2, x2+3x+1=0 请学生上来板演,老师点评归纳. 二.新课讲授 1.出示引例:用配方法解方程5x2=10x+1 提出问题:当一元二次方程的二次项系数的绝对值不是1时,怎样用配方法来解 经学生讨论后,指定一名学生(中等程度)回答. 教师总结:对于二次项系数的绝对值不是1的一元二次方程,只要将方程的两边都除以二次项系数,就转化为我们已经能解决的问题.即用配方法解二次项系数是1的一元二次方程. 2.讲解例题 例3:用配方法解下列一元二次方程 (1)2x2+4x-3=0 (2) 3x2-8x-3=0 评注(1)本例讲解可由上一课时的复习来引入,先给出方程x2+2x-1=0,让学生解答,并板书过程,同时解答方程3x2+6x-3=0,让学生作比较,学生容易发现,两个方程同解.再把6x改成4x,并提出问题:方程3x2+4x-3=0又应该如何解 从而把问题化归. (2)本例中两个小题的解法是相通的,在讲解时,需要让学生明确配上去的值到底应该是多少,即解决的一半是多少这一问题,常用的解决方法是把该数乘以. 教师总结:1:用配方法解系数为1的一元二次方程x2+px+q=0时,一般步骤为: (1)x2+px=-q(移); (2)x2+px+() 2=-q+() 2(配); (3)(x+)2= (化); (4)解得x=- (解) 2,当二次项系数不为1时,则在 "移"之前先要有个"除",即两边同除以二次项系数,使二次项系数为1. 练习:用配方法解下列方程 1.2x2-7x+5=0 2.-3n=1 3.x2-x-=0 练习: 一个长方形牧场的面积为8100平方米,长比宽多19米.这个牧场的周长是多少米 三:小结 本课时的重点用配方法解答各种一元二次方程. 本课时的难点是对二次项系数的处理. 四:布置作业 课本""作业本"及习题精选中对应的练习. 2.2一元二次方程的解法(3) 【教学目标】 ◆知识教学点:理解一元二次方程求根公式的推导,会运用公式法解一元二次方程. ◆能力训练点:1.通过求根公式的推导,培养学生数学推理的严密性及严谨性. 2.培养学生快速而准确的计算能力. ◆德育渗透点:1.通过公式的引入,培养学生寻求简便方法的探索精神及创新意识. 2.让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美,简洁美,产生热爱数学的情感. 【教学重点与难点】 ◆教学重点:求根公式的推导及用公式法解一元二次方程. ◆教学难点:对求根公式推导过程中依据的理论的深刻理解. 【教学过程】 (一)复习引入 1.用配方法解下列方程. (1)x2-7x+11=0,(2)9x2=12x+14. (通过两题练习,使学生复习用配方法解一元二次方程的思路和步骤,为本节课求根公式的推导做第一次铺垫.) 2.用配方法解关于x的方程 x2+2px+q=0. 解:移项,得x2+2px=-q 配方,得x2+2px+p2=-q+p2 即(x+p)2=p2-q. (教师板书,学生回答,此题为求根公式的推导做第二次铺垫.)3.用配方法推导出一元二次方程ax2+bx+c=0(a≠0)的根. 解:因为a≠0,所以方程的两边同除以a, ∵ a≠0, ∴4a2>0 当b2-4ac≥0时. 从上面的结论可以发现: (1)一元二次方程a2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的. (2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入上式中,可求得方程的两个根. 的求根公式,用此公式解一元二次方程的方法叫做公式法. (二)师生互动,应用新知 互动1 师:一元二次方程ax2+bx+c=0(a≠0)的求根公式中,要求b2-4ac ≥0 , 那么b2-4ac<0时会怎样呢 生:当b2-4ac<0时,没有意义,此时一元二次方程ax2+bx+c=0(a≠0)无实数解. 明确: b2-4ac≥0是公式的一个重要组成部分,是求根公式成立的前提条件,这一点是解一元二次方程的一个隐藏条件.当b2-4ac0, ∴ x1=2,x2=1. 在教师的引导下,学生回答,教师板书,提醒学生一定要先"代"后"算".不要边代边算.引导学生总结步骤 1.确定a,b,c的值.2.算出b2-4ac的值.3.代入求根公式求出方程的根. 例2不是一般形式,所以在利用公式法之前应先化成一般形式,另外注意例2中的b2-4ac=0,方程有两个相同的实数根,应写成x1= 例3用公式法解一元二次方程: (1)X(x-1)=(X-2)2; (2) x2+x+1=0 其中第一题要先化简成一般形式,如系数是分数或小数,可以直接代公式,也可以先把系数化成整系数后再代公式,视实际清况而定.第二题b2-4ac<0,方程无实数根. 明确:运用公式法解一元二次方程的步骤:( 1) 把方程化为一般形式, 确定a,b,c的值;(2)求出b2-4ac的值;(3)若b2-4ac≥0,把a,b,c及b2-4ac的值代入一元二次方程的求根公式,求出方程的根;若b2-4ac<0,此时方程无解. 练习:P.35课内练习1.熟悉公式法的步骤,训练快速准确的计算能力. 互动3 请同学们根据学习体会,小结一下解一元二次方程的几种方法,通常你是如何选择的 请同学们交流,教师鼓励发言. 明确: 解一元二次方程一般有以下四种方法:直接开平方法,因式分解法,配方法,求根公式法.(1)当方程形如(x-a)2=b(b≥0)时,可用直接开平方法;(2) 当方程左边可以直接简单因式分解时,可选用因式分解法;(3) 配方法是一种重要的解法,尤其要熟悉配方法的整个过程,但解一般方程不选用这种解法;(4) 公式法是一元二次方程最重要的,最常用的解法,任何一元二次方程都可以选用这种解法,我们有时也称它为万能公式. 练习:P.35课内练习2.合理选择解法. (三)达标反馈,深化新知 (1)用公式法解方程4x2+12x+3=0,得到 (A) A.x= B.x= C.x= D.x= (2)关于x的一元二次方程x2-2x+2+K=0有两个实数根,则k的取值范围是 (3)不解方程,你能说出下列方程解的个数吗: x2-2x-2=0 4x2-4x+1=0 2x2-x+2=0, (四)总结及布置作业 引导学生从以下几个方面总结: ≥0). (2)利用公式法求一元二次方程的解的步骤:①化方程为一般式.②确定a,b,c的值.③算出b2-4ac的值.④代入求根公式求根.公式法与配方法都是通法,前者较之后者简单. 2.求根公式是指在b2-4ac≥0对方程的解,如果b2-4ac<0时,则在实数范围内无实数解.渗透一种分类的思想. 2.3一元二次方程的应用(2) 【教学目标】 ◆1. 继续探索一元二次方程的实际应用,进一步体验列一元二次方程解应用题的应用价值. ◆2. 进一步掌握列一元二次方程解应用题的方法和技能. 【教学重点与难点】 ◆教学重点:本节教学的重点是继续探索一元二次方程的应用. ◆教学难点:"合作学习"的问题教为复杂,计算量大,是本节的难点. 【教学过程】 1.复习提问, (1)列方程解应用题的基本步骤 答: ①审题; ②找出题中的量,分清有哪些已知量,哪些未知量,哪些是要求的未知量; ③找出所涉及的基本数量关系; ④列方程; ⑤解方程; ⑥检验. 2.新课讲解, 列一元儿次方程解应用题在初中阶段主要有三类问题:(1)变化率问题;(2)市场营销中单价,销量,销售额以及利润之间的相互关系问题;(3)根据图形中的线段长度,面积之间的相互关系建立方程的问题.而我们今天要解决的就是根据图形中的线段长度,面积之间的相互关系建立方程的问题. 如图2-4,有一张长40cm,宽25cm的长方形硬纸片,裁去角上四个小正方形之后,折成如图2-5那样的无盖纸盒.若纸盒的底面积是450cm,那么纸盒的高是多少 分析 设纸盒的高为x (cm),那么裁去的四个小正方形的边长也是x(cm),这样就可以用关于x的代数式表示纸盒底面长方形的长和宽,根据纸盒的底面积是450cm,就可以列出方程. 解 设纸盒的高为x(cm),则纸盒底面长方形的长和宽分别为(40-2x)cm,(25-2x)cm.由题意,得 化简,整理,得 解这个方程,得 (不合题意,舍去) 答:纸盒的高为5cm. 接下来,同学们来做一下课内练习题1. 围绕长方形公园的栅栏长280m.已知该公园的面积为4800㎡,求这个公园的长与宽. 解: 设公园的一边长为x(m),则另一边长为(140-x)m,由题意,得 化简,整理,得 解这个方程,得 答:略. 合作学习: 一轮船一30km/h的速度由西向东航行(如图2-6),在途中接到台风警报,台风中心正以20km/h的速度由南向北移动.已知距台风中心200km的区域(包括边界)都属于受台风影响区.当轮船接到台风警报时,测得BC=500km,BA=300km. 如果轮船不改变航向,轮船会不会进入台风影响区 你采用什么方法来判断 如果你认为轮船会进入台风影响区,那么从接到报警开始,经过多少时间就进入台风影响区 建议: ①假设经过t时后,轮船和台风中心分别在cb位置; ②运用数形结合的方法寻找相等关系,并列出方程; ③通过相互交流,检查列方程,计算等过程是否正确; ④讨论:如果把航速改为10km/h,结果该怎样 提示:①几何画版给出演示; ②若从接到台风警报开始,经过t时,轮船到达C'点,台风中心到达B'点,那么船是否受到台风影响与什么有关 ③当B'C'符合什么条件时船受到台风影响 ④你能用关于t的代数式表示B',C'两点之间的距离吗 ⑤你能用一元二次方程表示船开始受台风影响的条件吗 解答(略) 练习 练习:P40——课内练习2 补充练习:P40---作业题5 课堂小结: 体会如何根据图形中的线段长度,面积之间的相互关系建立方程的问题.从中学到了什么
区别:(1)二次函数、一元二次方程、一元二次不等式的概念范畴分别是函数、方程、不等式 ;(2)二次函数中,代数式ax²+bx+c 等于因变量y ;一元二次方程中,代数式ax²+bx+c 等于零;一元二次不等式中,代数式ax²+bx+c 大于或小于零;(3)图像:二次函数的图像是一条曲线:抛物线 ;一元二次方程的解是点:二个点或一个点或无点 ;一元二次不等式的解集是线段或射线 。 联系:(1)一元二次方程的知识是研究二次函数和一元二次不等式的基础知识 。(2)令二次函数y=ax²+bx+c的y=0,则原式变为一元二次方程ax²+bx+c=0 , 令一元二次不等式ax²+bx+c>0的不等号变为等号,则原式变为一元二次方程ax²+bx+c=0 。(3)二次函数y=ax²+bx+c抛物线与x轴的两交点的横坐标x1、x2(x1<x2),即为一元二次方程ax²+bx+c=0的两根。(抛物线与x轴有一个交点,即方程有二个相同的根;没有交点,即方程无解。)一元二次不等式ax²+bx+c>0 解集是:x<x1 或 x>x2 ;对于ax²+bx+c<0,解集是:x1<x<x2 。
二次函数我们已经在初三的时候学过了,但听学姐说,高中还要继续学习二次函数。我原以为这东西已经被我们搞得很彻底了,没想到……真是神奇的二次函数啊! 作为最基本的初等函数,它既简单又具有丰富的内涵和外延。可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间的关系。这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题。同时,有关二次函数的内容,与近现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础。因此,从这个意义上说有关二次函数的问题在高考中频繁出现,也就不足为奇了。 二次函数有两个典型特征:一是解析式,二是图像特征。从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法。 首先来说代数推理,由于二次函数的解析式简洁明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质。例如:1、一般式为y=ax2+bx+c (c≠0) 中有三个参数a、b、c,解题的关节在于:通过三个独立条件“确定”这三个参数。2、利用函数与方程根的关系,写出二次函数的零点式y=a(x-x1)(x-x2)。3、紧扣二次函数的顶点式 ,对称轴、最值、判别式是合力。其次是“数形结合”,二次函数 y=ax2+bx+c (c≠0) 的图像为抛物线,具有许多优美的性质,如对称性、单调性、凹凸性等。结合这些图像特征解决有关二次函数的问题,可以化难为易,形象直观。例如:1、二次函数的图像关于直线x=- 对称,特别关系x1+x2= 也反映了二次函数的一种对称性。2、二次函数f(x)的图像具有连续性,且由于二次方程至多有两个实数根,所以存在m、n,且f(m)f(n)<0等价于在区间(m,n)上,必存在f(x)=0的唯一的实数根。3、因为二次函数f(x)= ax2+bx+c (c≠0) 在区间(-∞,- 和区间 - ,+∞)上分别单调,所以函数f(x)在比区间上的最大值、最小值必在区间端点或顶点处取得;函数|f(x)|在闭区间上的最大值必在区间端点或顶点处取得。 在来说说医院二次方程的解法。有人总结出一段顺口溜,式针对优选一元二次方程解法的步骤的。“一分解,二配方,形如x2=a开平方;前面三法均不易,求根公式再用上;字母系数需讨论,分类求解不能忘。”在具体解题时,须具体问题具体分析,千万不能忽视了一些隐含条件。 通过对二次函数的认识,我深深的认识到,在今后的日子里,无论是升学或是工作,二次函数都是一个必考点和得力助手,所以学好二次函数,也是我高中生涯必不可少的一项重要内容。
你是兰州一中的?
可以与物理相结合,利用S=0.5*gt2(0.5乘以重力加速度乘以时间的平方)计算物体下落路程。 在企业其利润随投资的变化关系一般可用二次函数表示。 例题如下 一汽车出租公司拥有汽车100辆,当每辆车的月租金为3000元时,可全租出。当每辆车月租金增加50元时,未出租的车将会增加一辆,租出的车每辆每月需维修费150元,未出租的车每辆每月需维修费50元。当每辆车的月租金为多少元时出租公司月收益最大? 设每辆车的月租金为X。则月收益为Y=[100-(X-3000)/50][X-150]-(X-3000)/50*50=162X-21000-X^2/50= -1/50(X-4050)^2+307050 所以当每辆车的月租金为4050元时出租公司月收益最大,最大收益为307050元 二次函数是数学中很重要的一部分,想必与物理有相当密切的关系,毕竟数学和物理都属理科。物理学的各种计算都要用数学知识,二次函数当然也要用。 一 直线等加速运动 我们知道,在匀速直线运动中,物体运动的距离等于速度与时间的乘积,用字母表示为S=vt,而在直线等加速运动(即通常所说的加速度)中,速度的数值是时刻在改变的,我们仍用S表示距离(米),用v0表示初始速度(米/秒),用t表示时间(秒),用a表示每秒增加的速度(米/秒)。那么直线等加速运动位移的公式是: S=v0t+ at2 就是说,再出是速度和每秒增加的速度一定时,距离是时间的函数,但不再是正比例函数,而是二次函数。 我们来看一个例子:v0=1米/秒,a=1米/秒,下面我们列表看一下S和t的关系。 注意,这里的时间必须从开始等加速时开始计时,停止等加速时停止计时。t的取值范围,很明显是t≥0,而S的取值范围,同样是S≥0。下面我们来看看它的图象: 下面我们再来看一个特殊情况。 二 自由落体位移 我们知道,自由落体位移是直线等加速运动的特殊情况,它的初始速度为0,而每秒增加的速度为9.8米/秒,我们用g表示,但这个g不是9.8牛顿/千克。 自由落体位移的公式为: S= gt2 我们再来看看这个函数的表格: 图象我们就不画了,它只是直线等加速运动的特殊情况,图象大同小异。 三 动能 现在我们来看另一方面的问题。我们知道,物体在运动中具有的能量叫做动能,动能与物体的质量和速度有关。比如说,以个人走过来不小心撞上你,或许没什么,但如果他是跑步时撞上你,说不定会倒退几步,而假如你站在百米终点线上,想不被撞倒都不容易。这是因为对方具有的动能随速度的增大而增大。 我们用E表示物体具有的动能(焦耳),m表示物体的质量(千克),用v表示物体的速度(米/秒),那么计算物体动能的公式就是: E= mv2 来看一个表格(m=1千克): v的取值范围显然是v≥0,E的取值范围也是E≥0,所以它的图象和前两个没什么区别。 总结 通过上面几个问题的研究,我们认为二次函数在物理方面的实际应用中的特点,在于物理学上对取值范围的要求大部分都是要求该数值大于等于0,所以图象大部分是二次函数图象的一半,除原点外,图象都在第一象限。还有,物理学上用到的公式,一般很少有常数项。 关于二次函数与物理的关系,我们就研究至此。
摘要: 在历届高考试题解析与应注意的问题中,一元二次函数占有重要的地位,不管在代数中,解析几何中,利用此函数的机会特别多,同时各种数学思想如函数的 ...www.wsdxs.cn/html/shuxue/20090314/53641.html
初中数学电教论文1:多媒体技术在初中数学中的应用 创新是知识经济时代的一个显著标志,二十一世纪的人才必须具有开拓进取精神,必须具有创新意识和创新才能,而知识创新的基础是教育,教育要创新就要转变教育观念,大力推进素质教育。 信息时代,以多媒体、计算机和网络通讯技术为主要标志的信息技术的迅猛发展,学习教学的环境和手段正在发生着新的变化,传统的教学目标、教学设计、教学模式和教学方法已经严重不适应信息时代对人才培养的要求。在学生完成一件作品的过程中,都需要开动脑筋,大胆想象,自己动手。”新的《数学课程标准》也把“现代信息技术作为学生学习数学和解决数学问题的强有力工具”。 针对多媒体技术在日常数学教学中的应用,结合我自身的体会谈一些粗浅的认识。 一、多媒体应用可提高学生的空间想象能力 数学教学的主要目标之一就是培养学生的空间能力。多媒体能用具体形象的媒体展示给学生,使其能从中体验形象与抽象的关系。在课件《立体图形的展开图》的制作中,我适当地运用动画、声音来对学生的学习氛围进行调节,在上课前通过媒体播放一首CD的音乐,让学生在专心致志地欣赏中达到情感智商的提高,有利于学生数学思维的发展。在讲立体图形时,我设计插入一段动画影片《旋转着的地球》,时间是半分钟,在同学观看时,结合教师课题讲解,让学生进一步复习生活中的立体图形。在制作各张幻灯片画面时,注意用意明确,使常规数学教学中要求的基本技能、重要的思想方法、运算能力和分析问题解决问题的能力尽量反映在课件中,各个幻灯片的连接注意衔接合理、自然,利用人工操作控制时间,使其变化有序,让学生对多媒体在教学应用中避免产生黑板搬家的感觉,尽量使得求解以及归纳总结等与常规教学的方法相接近,使学生比较自如、顺畅地进入数学的学习状态。 二、多媒体应用可提高学生的发散性思维能力 在对学生发散性思维能力的培养方面,针对把一个用橡皮泥做的正方体,用一刀切去一部分,那么剩下部分切口图形为哪些形状制作了多个正方体。然后用FLASH制作动画,一一把剪切的形象演示出来,剪切的角度由小而大变化,给学生以形象直观的了解,开发他们的发散性思维。如在处理教科书中数据的表示时,首先用EXCEL制作了统计表,接着利用EXCEL的强大功能在把它转化为条形统计图,折线统计图,扇形图型等表达方式,使学生能在实践生活中体验数据的存在,数据的快速处理,对开阔学生视野,体现发散思维的流畅性、变通性有较大的帮助。 三、多媒体应用可提高学生学习数学的兴趣 数学课程的特点之一是内容抽象。因此,考虑如何在传授知识的过程中做到生动形象,是数学教师在教学实践中时常思索的问题。而多媒体在数学教学中应用可以较好地解决这个难题。例如在图形的平移和旋转中,学生对图形的特征虽然了解,但应用上把握不定。我在设计课件这一部分时,采用动画显示图形的平移和旋转,例如,可以使三角形自左飞入,然后按动画叠放次序播放,将所要平移的三角形的自动地缓缓沿着移动的方向移动,让学生能够体会到平行移动由移动的方向和距离决定,加深了对平移的特征的掌握。 四、 多媒体可应用于数学教学中实验模拟和难点突破 学生在中学阶段对数学的理解有两大难点:立体几何部分与概率统计部分。以往教师对这二部分知识较难做到实验模拟。我们在选择相关软件的基础上,设计有关课件用于计算机模拟实验,可多次出现,帮助学生复习掌握。对立体几何的理解我借用高中的立体几何画板中的范例,使各类几何体能在静态和动态的状况下展现给学生,既激发学生兴趣,同时也大大加快理解速度。对概率统计我选择各种相关的EXCEL等软件,重复多次实验,对各种数据进行分析统计。 总之,在信息时代的课堂教学中,应该充分利用多媒体和网络创造的丰富资源的优势,引导和促进学生将传统的学习模式和现代的学习模式结合起来,不断促进和提高学生学习的自主性、合作性和创造性,用先进的教学技术造就优秀的新世纪人才。随着计算机的日益普及,多媒体技术的不断发展,以及互联网使用的迅速增长,这对我们每一位教师来说是一种机遇,更是一种挑战,只有以一种健康、充满激情的开放心态,迎接信息时代的挑战,才能跟上时代潮流,为我国的教育事业腾飞作出应有的贡献! 初中数学电教论文1:浅谈电教媒体在初中数学导探教学中培养学生创新的功用 创新源自于探索,探索更是创新的过程。以引导学生自我探索为目的的初中数学导探教学模式,我们已经过两轮从初一到初三的实验。通过实验表明,恰当、巧妙地利用音乐、幻灯、录音、录像、计算机等电教手段,使形、情、境、理熔于一炉,把教师的“导”与学生的“探”有机地结合起来,和谐地进行教学,会有效地开启学生思维的闸门,激发联想,激励探索,不断培养学生的创新精神。 一、 运用电教媒体,激发学生探索兴趣 根据初中学生心理特征和思维发展的不平衡性,将数学课本中一些抽象的概念、复杂的变化过程、形态各异的运动,通过多媒体对课本、图形、图像、动态和声音等进行综合处理与控制,直接展现在学生面前,调动了学生的眼、耳、脑等器官,让他们兴奋起来,创造了一个使学生积极参与、乐于探索的情境。所以,在教学软件制作过程中我们注重利用图形、音乐和动画等多种信息来补充刺激学生的多种器官,使教学内容真实化、趣味化和多样化,有力地唤起学生的注意,调动起学生学习的积极性和学习兴趣。例如:在“直线和圆的位置关系”教学中,我们设计了如图1的教学软件,屏幕出现了:美丽清晰的地平线上,太阳开始露出了可爱的笑脸。将这一美丽的景物形象地比喻为直线和圆的关系。 在舒缓、优美的《日光曲》音乐的伴奏下,一首“一轮红日,从地平线上冉冉升起……”的散文诗轻轻诵来……组合成一个巨大的、诱人的“探索场”,在教师的引导下,学生很快“悟”图出直线和圆的位置关系在公共点个数方面存在的本质特征,教师提示学生去发现:直线和圆有几个公共点?位置关系可分为几种类型?分类的标准是什么?能否象判定点和圆的位置关系那样,通过数量关系来判定直线和圆的位置关系?这样,使学生学会运用联想,化归、数形结合的思想方法去探索问题实质,并且这样探索的兴趣也会持续下去。另外,在“直线与平面垂直”采用了“日晷”实例录像图片并配上音乐,在“轨迹”教学中运用软件的动态性、再现性等进行了教学。实验发现,学生在电教媒体的作用下,产生强烈的探奇觅胜的心理。因此,教师在多媒体的设计和使用时就必须根据学生的身心特点和教学要求,设置问题情境,并注意“五度”(程度、难度、跨度、梯度和密度)。学生探索兴趣的持续,保持了注意力的高度集中,这是非电教手段中任何教学法无法比拟的。 二、运用电教媒体,指导学生学生探索方法 冯.诺依谩说过:“远离经验来源,一直处于“抽象的”近亲交配之中,一门数学学科将有退化的危险。”在数学教学中,抽象与具体、逻辑与直观是永恒的矛盾。太简单的例子不能说明问题,生动有趣的实例又因表达的困难而不易讲清,于是造成理性与感性、理论与应用的脱节。因此,在指导学生的探索方法、培养学生创新意识的过程中,我们必须首先将抽象的问题形象化、庞杂的问题明晰化、静态的问题动态化,而这些目标的达成,是靠运用电教媒体来实现的,特别是CAI,可以闪烁、变色、平移、翻折、旋转和透视等,还可以设计问题模型和供学生探试的情境,这为指导学生的探索方法,开辟了崭新的天地。如和学生研究二次函数的增减性问题,这是一个难点问题,以往都是从静态角度去和学生分析,学生也因此容易走上只记结论不去真正理解函数增减性实质的误区,更不要说让学生去主动探索了,且讲授此知识点十分费时。为此,我们充分利用了电教媒体寓教于乐易探的特点,设计运用了二次函数增减性的二维动画片,如图2。同时,结合分析函数Y与自变量X的对应值表引导学生。 (1)观察函数变化(P点在抛物线上运动……)探索PxPy的变化情况;且分析函数变化(结合X、Y的对应值表),探索函数变化实质; (2)学会总结、探索函数变化的规律。又如,在几何中有这样一个基本图形(如图3),在教材中多次出现,我们对这一基本图形通过多媒体对条件进行增减变化,使学生由浅入深、由简到繁、循序渐进地理解,进而不断提高学生的思维能力和探索水平。这样,就有机地把数形结合、化归等数学思想和方法渗透给学生,从而使学生在教学过程中逐步地学会研究、探索问题的方法,自觉养成自我探索的习惯,这是使学生终身学习、终身受益的能力,同时这也是现代教学中培养学生创造精神的前提。二、 运用电教媒体,加强学生思维训练 “二次函数增减性”二维动画图 “数学是人类思维体操”,学生是在数学问题的提出和解决过程中受到思维训练的。因此,现代数学教育观特别强调要重视问题解决的思维活动过程和知识发生过程的展现,以提高学生的思维能力。然而,传统的数学教学由于受教学技术手段的限制,在这方面常常显得力不从心:如讲抽象的数学概念,难以形象直观地表述;讲数形结合,图形不能召之即来;讲数形运动变化,黑板上的图形却静止不动。所以,我们必须借助各种电教媒体的经验替代功能,将感觉器官、思维触角延伸到浩淼深邃的多维空间,从而达到化远为近、化静为动、化繁为简、化难为易、化虚为实的效果,最大限度地拓展教育的时空领域,利用现代教学媒体展示的奇妙绚丽的声、光、形、色来激起学生强烈的学习兴趣和欲望,特别是在引导学生用变维(改变问题的维度)、变序(改变问题的条件、结论)等方式(发散式)提出新问题,将问题链引向课外或后继课程有其不可替代的特殊功能。如课本上曾要我们证明:“从□ABCD的顶点A、B、C、D向形外任意直线MN引垂线AA'、BB'、CC'、DD',垂足分别是A'、B'、C'、D'[如图4(Ⅰ)],求证AA'+CC'=BB'+DD'”现将直线MN向上平移(多媒体演示),使得A点在直线上侧B、C、D三点在直线的另一侧[如图4(Ⅱ)]再将直线MN向上移动,使两侧各有两个顶点[如图4(Ⅲ)],图(Ⅱ)、(Ⅲ)中AA'、BB'、CC'、DD'之间(相加的两条垂线段在多媒体中用同一颜色不断闪烁,直线MN在符合条件的范围内不断变化,使四条垂线段处于不断变化之中……)又有什么关系?通过多媒体的演示和教师的同步引导,使学生通过“观察——实验——类比——联想——猜想——分析——归纳”的循序渐进过程达到落实思维训练的目的,其中尤其是学生创造性思维能力得到了训练和提高,真可谓有一石(多媒体)三鸟之功效。 电教媒体在优化数学教学导探中的融合性、非线性、互交性和可编辑性的特征满足了学生多角度、多方位、多层次、多联系的思维方式和个别化学习的需要。但电教媒体的音乐、画面、色彩、运动等所表现出的综合艺术效果对学生创造能力的培养与提高,将是一个颇具诱惑力和有很高研究价值的崭新领域,这正如李政道博士在“科学与艺术”研讨会上提出的“美苏之争的实质是什么,直到世纪末我们才明白,他们竞争最深层次的东西是有艺术气质的高科技人才。”所以,作为教师必须站在为培养跨世纪创新人才的高度,在使用电教媒体的同时,还应把数学与各种教学艺术的协调作用作为现代数学创新教学的重要目标之一来追求。另外,多媒体的使用要“适时、适度、适当”,当用则用,不当用是尽量不用。要用在“精彩”之处,用在激发学生兴趣、有利于突破难点、强化重点之处,用在有利于内化教学内容、提高学生创新能力之处。切不可以媒体为中心设计教学过程,不能为了多媒体而忽视学生在学习中的主体性、人文性,充分认识其“辅助”地位,重视发挥学生的主体作用,注意调动学生的积极性、主动性和创造性。只有这样,电教媒体才能在数学教学中真正发挥教师导和学生“探”的互补作用。
毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。
本科数学毕业论文题目
★浅谈奥数竟赛的利与弊
★浅谈中学数学中数形结合的思想
★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学
★中数教学研究
★XXX课程网上教学系统分析与设计
★数学CAI课件开发研究
★中等职业学校数学教学改革研究与探讨
★中等职业学校数学教学设计研究
★中等职业学校中外数学教学的比较研究
★中等职业学校数学教材研究
★关于数学学科案例教学法的探讨
★中外著名数学家学术思想探讨
★试论数学美
★数学中的研究性学习
★数字危机
★中学数学中的化归方法
★高斯分布的启示
★a二+b二≧二ab的变形推广及应用
★网络优化
★泰勒公式及其应用
★浅谈中学数学中的反证法
★数学选择题的利和弊
★浅谈计算机辅助数学教学
★论研究性学习
★浅谈发展数学思维的学习方法
★关于整系数多项式有理根的几个定理及求解方法
★数学教学中课堂提问的误区与对策
★怎样发掘数学题中的隐含条件
★数学概念探索式教学
★从一个实际问题谈概率统计教学
★教学媒体在数学教学中的作用
★数学问题解决及其教学
★数学概念课的特征及教学原则
★数学美与解题
★创造性思维能力的培养和数学教学
★教材顺序的教学过程设计创新
★排列组合问题的探讨
★浅谈初中数学教材的思考
★整除在数学应用中的探索
★浅谈协作机制在数学教学中的运用
★课堂标准与数学课堂教学的研究与实践
★浅谈研究性学习在数学教学中的渗透与实践
★关于现代中学数学教育的思考
★在中学数学教学中教材的使用
★情境教学的认识与实践
★浅谈初中代数中的二次函数
★略论数学教育创新与数学素质提高
★高中数学“分层教学”的初探与实践
★在中学数学课堂教学中如何培养学生的创新思维
★中小学数学的教学衔接与教法初探
★如何在初中数学教学中进行思想方法的渗透
★培养学生创新思维全面推进课程改革
★数学问题解决活动中的反思
★数学:让我们合理猜想
★如何优化数学课堂教学
★中学数学教学中的创造性思维的培养
★浅谈数学教学中的“问题情境”
★市场经济中的蛛网模型
★中学数学教学设计前期分析的研究
★数学课堂差异教学
★一种函数方程的解法
★浅析数学教学与创新教育
★数学文化的核心—数学思想与数学方法
★漫话探究性问题之解法
★浅论数学教学的策略
★当前初中数学教学存在的问题及其对策
★例谈用“构造法”证明不等式
★数学研究性学习的探索与实践
★数学教学中创新思维的培养
★数学教育中的科学人文精神
★教学媒体在数学教学中的应用
★“三角形的积化和差”课例大家评
★谈谈类比法
★直觉思维在解题中的应用
★数学几种课型的问题设计
★数学教学中的情境创设
★在探索中发展学生的创新思维
★精心设计习题提高教学质量
★对数学教育现状的分析与建议
★创设情景教学生猜想
★反思教学中的一题多解
★在不等式教学中培养学生的探究思维能力
★浅谈数学学法指导
★中学生数学能力的培养
★数学探究性活动的内容形式及教学设计
★浅谈数学学习兴趣的培养
★浅谈课堂教学的师生互动
★新世纪对初中数学的教材的思考
★数学教学的现代研究
★关于学生数学能力培养的几点设想
★在数学教学中培养学生创新能力的尝试
★积分中值定理的再讨论
★二阶变系数齐次微分方程的求解问题
★浅谈培养学生的空间想象能力
★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育
★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计
★培养学生学习数学的兴趣
★课堂教学与素质教育探讨
★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施
★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题
★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣
★数学教学中探究性学习策略
★论数学课堂教学的语言艺术
★数学概念的教与学
★优化课堂教学推进素质教育
★数学教学中的情商因素
★浅谈创新教育
★培养学生的数学兴趣的实施途径
★论数学学法指导
★学生能力在数学教学中的培养
★浅论数学直觉思维及培养
★论数学学法指导
★优化课堂教学焕发课堂活力
★浅谈高初中数学教学衔接
★如何搞好数学教育教学研究
★浅谈线性变换的对角化问题
本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。
1数学建模在煤矿安全生产中的意义
在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。
只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。
2煤矿生产计划的优化方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。
2.1基于数学模型的方法
(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。
(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。
2.2基于人工智能方法
(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。
(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。
3煤矿安全生产中数学模型的优化建立
根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。
3.1建立简化模型
3.1.1模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。
很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式
式中x2---B工作面瓦斯体积分数;
u2---B工作面采煤进度;
w1---B矿井所对应的空气流速;
w2---相邻A工作面的空气流速;
a2、b2、c2、d2---未知量系数。
CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】
式中x3、x4---C、D工作面的瓦斯体积分数;
e1、e2---A、B工作面的瓦斯体积分数;
a3、b3、c3、d3---未知量系数:
f1、f2---A、B工作面的瓦斯绝对涌出量。
3.1.2系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。
3.2模型的转型及其离散化
因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】
在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=0.5就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若0.5表示通风口的开通程度是0.5,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。
依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。
3.3模型的应用效果及降低瓦斯体积分数的措施
以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。
综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。
4结语
应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。
参考文献:
[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.
[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.
[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.
初三 就写 论文 厉害 佩服啊你可以 按这个 模式 写一下一、目的要求从一元二次方程、一元二次不等式与二次函数的关系出发,掌握利用二次函数图象求解一元二次不等式的方法。二、内容分析1.本小节首先对照学生已经了解的一元一次方程、一元一次不等式与一次函数的关系,利用二次函数的图象,找出一元二次方程、一元二次不等式与二次函数的关系,进而得到利用二次函数图象求解一元二次不等式的方法。然后,说明一元二次不等式可以转化为一元一次不等式组,由此又引出了简单的分式不等式的解法。2.本节课学习一元二次不等式的解法,这是这小节的重点,关键是弄清一元二次方程、一元二次不等式与二次函数的关系。三、教学过程复习提问:1.当x取什么值的时候,3x-15的值(1)等于0;(2)大于0;(3)小于0。(这是初中作过的题目)2.你可以用几种方法求解上题?新课讲解:像3x-15>0(或<0)这样的不等式,常用的有两种解法。(1)图象解法:利用一次函数y=3x-15的图象求解。注:①直线与x轴交点的横坐标,就是对应的一元一次方程的根。②图象在x轴上面的部分表示3x-15>0。(2)代数解法:用不等式的三条基本性质直接求解。注这个方法也是对比一元一次方程的解法得到的。复习提问:画出函数的图象,利用图象回答:(1)方程的解是什么;(2)x取什么值时,函数值大于0;(3)x取什么值时,函数值小于0。(这也是初中作过的题目)新课讲解:1.结合二次函数的对应值表与图象(表、图略),可以得出,方程的解是x=-2,或x=3;当x<-2,或x>3时,y>0,即;当-2
函数与方程是初中数学中两个最基本的概念,它们的形式虽然不同,但本质上是相互连接的,有密切关系。如:一元二次方程与二次函数。我们知道形如ax2+bx+c=0的方程是一元二次方程,而形式为y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。它们在形式上几乎相同,差别只是一元二次方程的表达式等于0,而二次函数的表达式等于y。这种形式上的类似使得它们之间的关系格外密切,很多题型都是以此来命题。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成一元二次方程。由此可见,方程中的很多知识点可以运用在函数中。下面,我们就它们间的具体运用详细的了解一下。一、 配方法解方程与二次函数的应用关系在解方程的四种方法就有一种用配方法来解方程的。而在二次函数中,我们经常要将一般形式 转化成 的样式,这个转化过程实际上就是对其进行配方,与方程配方相同。例1:用配方法解方程解:(1)(2)(3)(4)……例2:指出函数 的顶点坐标。解:(5)(6)(7)(8)∴顶点为(-2,-17)方程中的(1)、(2)、(3)、(4)四个步骤与函数中的(5)、(6)、(7)、(8)四个步骤的方法是完全一样的。可见,方程与函数密切相关。我们通过课本的学习可知;二次函数y= ax2+bx+c(a≠0)的图象与x轴有交点时,交点横坐标的值就是方程ax2+bx+c=0(a≠0)的根。二、 一元二次方程根的判别式与二次函数的结合应用在二次函数中,当函数与x轴分别有两个交点、一个交点和无交点时,该函数所对应的一元二次方程根的判别式分别是:△>0、△=0和△<0。而在一元二次方程中有以下结论:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根。例3:判断二次函数y= x2-4x+3与x轴的交点个数分析:因为二次函数与x轴的交点个数可由对应方程根的判别式△来确定。若△>0,则有两个交点;若△=0,则有一个交点;若△<0,则无交点。该题中△=4>0,所以有两个交点。例4:试说明函数y= x2-4x+5,无论x取何值,y>0。分析:第一种方法:用配方法将其化成y= (x-2)2 +1的形式来说明。(但如果系数取值不好,该方法就比较麻烦)第二种方法:用△来说明,因为△=-4<0,所以函数与x轴无交点,又因为该函数的二次项系数a=1>0,所以图象开口向上。于是,图象在x轴上方,因此无论x取何值,y>0。例5:求证:不论m取什么实数,方程x2-(m2+m)x+m-2=0必有两个不相等的实数根。分析:这道题如果用常规做法,就是证明一元二次方程的△>0的问题。然而本题的判别式△是一个关于m的一元四次多项式,符号不易判断,这就给证明带来了麻烦,若用函数思想分析题意,设f(x)=x2-(m2+m)x+m-2,由于它的开口向上,所以只要找到一个实数x0,使得f(x0)<0,就说明这个二次函数的图象与x轴有两个交点,问题就得到了解决。注意观察,容易发现当x=1时,f(1)=1-(m2+m)+m-2=-m2-1<0,故这个图象必与x轴有两个交点。这就说明要证明的结论是成立的。证明 略。三、 一元二次方程中根与系数的关系在函数中的应用例6:二次函数图象过点(-1,0)、(3,0),且与y轴交于(0,3),求函数解析式。分析:此类题型的常规解法是待定系数法。然而在这里可以用根与系数的关系来解,因为(-1,0)、(3,0)实际在x轴上,所以-1和3是函数所对应方程的两个根。解:设函数形式为∵函数过点(0,3)∴ c=3∴又∵函数过点(-1,0)、(3,0)即函数与x轴交点的横坐标是-1和3∴解得 a=-1,b=2∴函数形式为y= -x2+29x+3很明显,此方法要比待定系数法简单。一元二次方程与二次函数之间的密切关系还有很多巧妙的用处。在这里,我们只探讨这么多,更多的地方需要在实践中去慢慢体会。论文格式:1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。2、论文格式的目录目录是论文中主要段落的简表。(短篇论文不必列目录)3、论文格式的内容提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、论文格式的关键词或主题词关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。5、论文格式的论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。 资料来源: