泡沫混凝土是混凝土大家族中的一员,近年来,国内外都非常重视泡沫混凝土的研究与开发,使其在建筑领域的应用越来越广,现将有关情况介绍如下:一、 泡沫混凝土的特性泡沫混凝土通常是用机械方法将泡沫剂水溶液制备成泡沫,再将泡沫加入到含硅质材料、钙质材料、水及各种外加剂等组成的料浆中,经混合搅拌、浇注成型、养护而成的一种多孔材料。由于泡沫混凝土中含有大量封闭的孔隙,使其具有下列良好的物理力学性能。1、 轻质泡沫混凝土的密度小,密度等级一般为300-1800kg/m3,常用泡沫混凝土的密度等级为300-1200 kg/m3,近年来,密度为 160 kg/m3的超轻泡沫混凝土也在建筑工程中获得了应用。由于泡沫混凝土的密度小,在建筑物的内外墙体、层面、楼面、立柱等建筑结构中采用该种材料,一般可使建筑物自重降低25%左右,有些可达结构物总重的30%-40%.而且,对结构构件而言,如采用泡沫混凝土代替普通混凝土,可提高构件的承截能力。因此,在建筑工程中采用泡沫混凝土具有显著的经济效益。2、 保温隔热性能好由于泡沫混凝土中含有大量封闭的细小孔隙,因此具有良好的热工性能,即良好的保温隔热性能,这是普通混凝土所不具备的。通常密度等级在300-1200 kg/m3范围的泡沫混凝土,导热系数在0.08-0.3w/(m·K)之间。采用泡沫混凝土作为建筑物墙体及屋面材料,具有良好的节能效果。3、 隔音耐火性能好泡沫混凝土属多孔材料,因此它也是一种良好的隔音材料,在建筑物的楼层和高速公路的隔音板、地下建筑物的顶层等可采用该材料作为隔音层。泡沫混凝土是无机材料,不会燃烧,从而具有良好的耐火性,在建筑物上使用,可提高建筑物的防火性能。4、 其它性能泡沫混凝土还具有施工过程中可泵性好,防水能力强,冲击能量吸收性能好,可大量利用工业废渣,价格低廉等优点。二、 泡沫混凝土的生产工艺泡沫混凝土的基本原料为水泥、石灰、水、泡沫,在此基础上掺加一些填料、骨料及外加剂。常用的填料及骨料为:砂、粉煤灰、陶粒、碎石屑、膨胀聚苯乙烯、膨胀珍珠岩、苯脱克细骨料,常用的外加剂与普通混凝土一样,为减水剂、防水剂、缓凝剂、促凝剂等。泡沫混凝土的生产方法有湿砂浆法和干砂浆法两种。湿砂浆法通常是在混凝土搅拌站将水泥、砂与水等搅拌成砂浆,并用汽车式搅拌机车运至工地,再将单独制成的泡沫加入砂浆,搅拌机将泡沫及砂浆拌匀,然后将制备好的泡沫混凝土注入泵车输送或现场直接施工。干砂浆法是将各干组份(水泥、粉煤灰等)通过散装运输或传动系统输送至施工现场,干组份与水在施工现场拌合,然后将单独制成的泡沫加入砂浆,两者在匀化器内拌合,然后用于现场施工。最近,日本采用蛋白质物添加适量的阳离子表面活性剂配成的混合发泡剂,采用现场浇注成型的工艺,研制成功现浇泡沫混凝土新工艺。共所用发泡沫是在蛋白质中掺入0.1% -5%的阳离子表面活性剂而配成,阳离子表面活性剂使用季铵盐。其制备方法有三种:一种是将水、蛋白质物、阳离子表面活性剂混合,经发泡剂机发泡,再注入水泥料浆中搅拌,制备泡沫水泥浆,现浇成型;一种是将水、蛋白质物、阳离子表面活性剂混合,经高速搅拌机发泡,再注入水泥料浆中,制备发泡水泥浆;一种是按第二种方法发泡,一边加入少量水泥,一边高速搅拌,制备发泡水泥浆,其中前一种制备方法较好。上述制备方法生产的现浇混凝土不仅轻质、高强、耐火,更引人注目的是不需蒸压养护,现浇即可成型,节能效果显著。三、 我国泡沫混凝土的应用现状近年来,我国越来越重视建筑节能工作,随着与建筑节能有关政策的实施,墙体材料改革取得了显著的成就,节能材料倍受欢迎。泡沫混凝土以其良好的特性,已用于节能墙体材料中,在其它方面也获得了应用。目前,泡沫混凝土在我国的应用情况如下。1、 泡沫混凝土砌块泡沫混凝土砌块是泡沫混凝土在墙体材料中应用量最大的一种材料。在我国南方地区,一般用密度等级为900-1200 kg/m3的泡沫混凝土砌块作为框架结构的填充墙,主要是利用该砌块隔热性能好和轻质高强的特点。尤以广东省应用最多,目前该省泡沫混凝土砌块的年用量达60万平方米。在北方,泡沫混凝土砌块主要用作墙体保温层,表1为广州市美城新型建材开发有限公司生产的泡沫混凝土砌块的性能指标。哈尔滨建筑大学研制了聚苯乙烯泡沫混凝土砌块,并用于城市楼房建设。此种砌块是以聚苯乙烯泡沫塑料作为骨料,水泥和粉煤灰作胶凝材料,加入少量外加剂,经搅拌、成型和自然养护而成,其规格为200 ×200×200mm,可用于内、外非承重墙体材料,也可用于屋面保温材料。它具有质量轻、导热系数小、抗冻性高、防火、生产简单、造价较低、施工方便等优点。其与烧结黏土砖的技术经济对比表见表2.2、 泡沫混凝土轻质墙板目前用于建筑物分户和分室隔墙的主要材料是GRC轻质墙板,由于其原料价格较高,影响了其推广应用。中国建筑材料科学研究院采用GRC隔墙板生产工艺结合固体泡沫剂和泡沫水泥的研究成果,开发出了粉煤灰泡沫水泥轻质墙板的生产技术,并得到了应用。该产品生产采用的原料如下:30%-40%的粉煤灰,45%-65%的硫铝酸盐水泥,0-15%的膨胀珍珠岩以及一定体积的泡沫。与传统的GRC轻质墙板相比,采用泡沫混凝土生产技术,不但能明显降低产品的成本,而且大大改善了浆体的流动性,使成型更为方便。该产品的物理力学性能见表3.3、 泡沫混凝土补偿地基现代建筑设计与施工越来越重视建筑物在施工过程中的自由沉降。由于建筑物群各部分自重的不同,在施工过程中将产生自由沉降差,在建筑物设计过程中要求在建筑物自重较低的部分其基础须填软材料,作为补偿地基使用。泡沫混凝土能较好地满足补偿地基材料的要求。例如,在北京团结湖大厦的部分基础中,现场浇注了厚度为150mm、抗压强度在0.10±0.02Mpa,密度小于 200 kg/m3泡沫混凝土,取得了良好的效果。据现场测试,此种低密度泡沫混凝土的强度可很好地控制在设计的范围内,且具有良好的压缩性。四、 国外泡沫混凝土应用的新进展近年来,美国、英国、荷兰、加拿大等欧美国家以及日本、韩国等亚洲国家,充分利用泡沫混凝土的良好特性,将它在建筑工程中的应用领域不断扩大,加快了工程进度,提高了工程质量,现归纳如下。1、用作挡土墙主要用作港口的岩墙。泡沫混凝土在岸墙后用作轻质回填材料可降低垂直载荷,也减少了对岸墙的侧向载荷。这是因为泡沫混凝土是一种粘结性能良好的刚性体,它并不沿周边对岸墙施加侧向压力,沉降降低了,维修费用随之减少,从而节省很多开支。泡沫混凝土也可用来增进路堤边坡的稳定性,用它取代边坡的部分土壤,由于减轻了质量,从而就降低了影响边坡稳定性的作用力。用于减少侧向压力的泡沫混凝土的密度为400-600 kg/m3.2、修建运动场和田径跑道使用排水能力强的可渗性泡沫混凝土作为轻质基础,上面覆以砾石或人造草皮,作为运动场用。泡沫混凝土的密度为800-900 kg/m3.此类运动场可进行曲棍球,足球及网球活动。或者在泡沫混凝土上盖上一层0.05m厚的多孔沥青层及塑料层,则可作田径跑道用。3、作夹芯构件在预制钢筋混凝土构件时可采用泡沫混凝土作为内芯,使其具有轻质高强隔热的良好性能。通常采用密度为400-600 kg/m3的泡沫混凝土。4、用作复合墙板用泡沫混凝土制作成各种轻质板材,在框架结构中用作隔热填充墙体或与薄钢板制成复合墙板,泡沫混凝土的密度通常为600 kg/m3左右。5、管线回填地下废弃的油柜、管线(内装粗油、化学品)、污水管及其它空穴容易导致火灾或塌方,采用泡沫混凝土回填可解决这些后患,费用也少。泡沫混凝土采用的密度取决于管子的直径及地下水位,一般为600-1100 kg/m3.6、贫混凝土填层由于使用可弯曲的软管,泡沫混凝土具有很大的工作度及适应性,因此它经常用于贫混凝土填层。如对隔热性要求不很高,采用密度为1200 kg/m3左右的贫混凝土填层,平均厚度为0.05m;如对隔热性要求很高,则采用密度为500 kg/m3的贫混凝土填层,平均厚度为0.1-0.2m.7、屋面边坡泡沫混凝土用于屋面边坡,具有重量轻、施工速度快、价格低廉等优点。坡度一般为10mm/m,厚度为0.03-0.2m,采用密度为800-1200 kg/m3的泡沫混凝土。8、储罐底脚的支撑将泡沫混凝土浇阶在钢储罐(内装粗油、化学品)底脚的底部,必要时也可形成一凸形地基,这样可确保整个箱底的支撑在焊接时年处于最佳应力状态,这一连续的支撑可使储罐采用薄板箱底。同时凸形地基也易于清洁。泡沫混凝土的使用密度为800-1000 kg/m3.9、其它泡沫混凝土也可用于防火墙的绝缘填充,隔声楼面填充、隧道衬管回填;以及供电、水管线的隔离等方面。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
泡沫混凝土是通过发泡机的发泡系统将发泡剂用机械方式充分发泡,并将泡沫与水泥浆均匀混合,然后经过发泡机的泵送系统进行现浇施工或模具成型,经自然养护所形成的一种含有大量封闭气孔的新型轻质保温材料。它属于气泡状绝热材料,突出特点是在混凝土内部形成封闭的泡沫孔,使混凝土轻质化和保温隔热化;同时也是加气混凝土中的一个特殊品种,它的孔结构和材料性能都接近于加气混凝土,他们二者的差别,只是在气孔形状和加气手段之间的差别.加气混凝土气孔一般是椭圆形的,而泡沫混凝土受毛细孔作用的影响,产生变形,形成多面体.加气混凝土是利用化学发气,通过化学反应,由内部产生气体而形成气孔,泡沫混凝土则是通过机械制泡的方法,先将发泡剂制成泡沫,然后再将泡沫加入水泥、菱镁、石膏浆中、形成泡沫浆体,再经自然养护蒸气养护而成.。
泡沫混凝土是一种新型的节能环保型建筑材料,国内外学者对其做了大量的研究开发,使其广泛应用于墙体材料中,但其还存在一定的缺陷,如强度偏低、开裂、吸水等,因而要进一步扩大其应用领域还需在发泡剂、配合比、工艺流程、设备等方面做更进一步的研究。
泡沫混凝土是混凝土大家族中的一员,近年来,国内外都非常重视泡沫混凝土的研究与开发,使其在建筑领域的应用越来越广,现将有关情况介绍如下:
一、 泡沫混凝土的特性:
泡沫混凝土通常是用机械方法将泡沫剂水溶液制备成泡沫,再将泡沫加入到含硅质材料、钙质材料、水及各种外加剂等组成的料浆中,经混合搅拌、浇注成型、养护而成的一种多孔材料。由于泡沫混凝土中含有大量封闭的孔隙,使其具有下列良好的物理力学性能。
1、 轻质
泡沫混凝土的密度小,密度等级一般为300-1800kg/m3,常用泡沫混凝土的密度等级为300-1200 kg/m3,近年来,密度为 160 kg/m3的超轻泡沫混凝土也在建筑工程中获得了应用。由于泡沫混凝土的密度小,在建筑物的内外墙体、层面、楼面、立柱等建筑结构中采用该种材料,一般可使建筑物自重降低25%左右,有些可达结构物总重的30%-40%。而且,对结构构件而言,如采用泡沫混凝土代替普通混凝土,可提高构件的承截能力。因此,在建筑工程中采用泡沫混凝土具有显著的经济效益。
2、 保温隔热性能好
由于泡沫混凝土中含有大量封闭的细小孔隙,因此具有良好的热工性能,即良好的保温隔热性能,这是普通混凝土所不具备的。通常密度等级在300-1200 kg/m3范围的泡沫混凝土,导热系数在0.08-0.3w/(m·K)之间,热阻约为普通混凝土的10-20倍。采用泡沫混凝土作为建筑物墙体及屋面材料,具有良好的节能效果。
3、 隔音耐火性能好
泡沫混凝土属多孔材料,因此它也是一种良好的隔音材料,在建筑物的楼层和高速公路的隔音板、地下建筑物的顶层等可采用该材料作为隔音层。泡沫混凝土是无机材料,不会燃烧,从而具有良好的耐火性,在建筑物上使用,可提高建筑物的防火性能。
4、 整体性能好
可现场浇注施工,与主体工程结合紧密。
5、低弹减震性好
泡沫混凝土的多孔性使其具有低的弹性模量,从而使其对冲击载荷具有良好的吸收和分散作用。
6、防水性能强
现浇泡沫混凝土吸水率较低,相对独立的封闭气泡及良好的整体性,使其具有一定的防水性能。
7、耐久性能好
与主体工程寿命相同。
8、生产加工方便
泡沫混凝土不但能在厂内生产成各种各样的制品,而且还能现场施工,直接现浇成屋面、地面和墙体。
9、环保性能好
泡沫混凝土所需原料为水泥和发泡剂,发泡剂大都接近中性,不含苯、甲醛等有害物质,避免了环境污染和消防隐患。
10、施工方便
只需使用水泥发泡机可实现自动化作业,可泵送实现垂直高度200米的远距离输送,工作量为150—300立方/工作日。
11、其它性能
泡沫混凝土还具有施工过程中可泵性好,抗压强度高(0.5-22.2Mpa),冲击能量吸收性能好,可大量利用工业废渣,价格低廉等优点。
二、 泡沫混凝土的应用范围:
泡沫混凝土以其良好的特性,广泛应用于节能墙体材料中,在其他方面也获得了应用。目前,泡沫混凝土在我国的应用主要是屋面泡沫混凝土保温层现浇、泡沫混凝土面块、泡沫混凝土轻质墙板、泡沫混凝土补偿地基。但是,充分利用泡沫混凝土的良好特性,可以将它在建筑工程中的应用领域不断扩大,加快工程进度,提高工程质量,具体如下:
(1)用作挡土墙。主要用作港口的岩墙。泡沫混凝土在岸墙后用作轻质回填材料可降低垂直截荷,也减少了对岸墙的侧向载荷。这是因为泡沫混凝土是一种粘结性能良好的刚性体,它并不沿周边对岸墙施加侧向压力,沉降降低了,维修费用随之减少,从而节省很多开支。泡沫混凝土也可用来增进路堤边坡的稳定性,用它取代边坡的部分土壤,由于减轻了质量,从而就降低了影响边坡稳定性的作用力。
(2)修建运动场和田径跑道。使用排水能力强的可渗性泡沫混凝土作为轻质基础,上面覆以砾石或人造草皮,作为运动场用。泡沫混凝土的密度为800-900kg/m³此类运动场可进行曲棍球,足球及网球活动。或者在泡沫混凝土上盖上一层0.05m厚的多孔沥青层及塑料层,则可作田径跑道用。
(3)作夹芯构件。在预制钢筋混凝土构件中可采用泡沫混凝土作为内芯,使其具有轻质高强隔热的良好性能。通常采用密度为400 - 600kg/m³的泡沫混凝土。
(4)管线回填。地下废弃的油柜、管线(内装粗油、化学品)、 污水管及其他空穴容易导致火灾或塌方,采用泡沫混凝土回填可解决这些后患,费用也少。泡沫混凝土采用的密度取决于管子的直径及地下水位,一般为600-1100kg/m³。
(5)贫混凝土填层。由于使用可弯曲的软管,泡沫混凝土具有很大的工作度及适应性,因此它经常用于贫混凝土填层。如对隔热性要求不很高,采用密度为1200kg/m³左右的贫混凝土填层,平均厚度为0.05m;如对隔热性要求很高,则采用密度为500kg/m³的贫混凝土填层,平均厚度为0.1- 0.2m。
(6)屋面边坡。泡沫混凝土用于屋面边坡,具有重量轻、 施工速度快、价格低廉等优点。坡度一般为10mm/m.厚度为0.03-0.2m,采用密度为800 - 1200kg/m³的泡沫混凝土。
(7)储罐底脚的支撑。将泡沫混凝土浇阶在钢储罐(内装粗油、化学品)底脚的底部,必要时也可形成一凸形地基,这样可确保整个箱底的支撑在焊接时年处于最佳应力状态,这一连续的支撑可使储罐采用薄板箱底。同时凸形地基也易于清洁。泡沫混凝土的使用密度为800-1000kg\m³。
(8)其他。泡沫混凝土也可用于防火墙的绝缘填充,隔声楼面填充、隧道衬管回填;以及供电、水管线的隔离等方面。
三、泡沫混凝土的发展现状:
1泡沫混凝土取得的成果
泡沫混凝土的种类很多,但最常用的是水泥泡沫混凝土。水泥泡沫混凝土根据其掺合料不同又可分为水泥-粉煤灰-石灰型、水泥-矿渣-石灰-石膏型、水泥-粉煤灰-砂-石灰型、水泥一砂一石灰型、水泥-矿渣-粉煤灰-石灰-植物纤维型[4]、水泥-砂-玻璃纤维型等类型。
谢明晖阴对水泥-粉煤灰-石灰型的泡沫混凝土进行了试验研究,获得了密度为691kg/m3、抗压强度为3.4MPa、导热系数为0.210W/(m•K、抗15次冻融循环合格、碳化系数为0.89的理想的泡沫混凝土墙体材料。
陆爱萍、郭玉顺等对水泥-矿渣-石灰-石膏型的泡沫混凝土进行了试验研究,研究表明常压养护矿渣多孔混凝土是一种较理想的隔热保温材料(密度为910 kg/m3, 28d抗压强度为9.81MPa),同时在价格上优势明显,具有一定的市场竞争力。
高波[7]对水泥-粉煤灰-砂-石灰型的泡沫混凝土进行了试验研究,获得最佳配合比粉煤灰60%,石灰5%,发泡液3kg,细砂15%,水泥20%所对应的性能为密度创6kglm3、 吸水率229岛、28d抗压强度3.4MPa。
宋旭辉等对水泥-砂-石灰型的泡沫混凝土进行了试验研究,在得了密度为812kg/m³、抗压强度为2.8MPa、导热系数为0.108W/(m•K、抗15次冻融循环合格、干燥收缩率0.43mmlm的泡沫混凝土。
高波、王群力等对水泥-矿渣-粉煤灰-石灰-植物纤维型的泡沫混凝土进行了试验研究,获得了干密度648kg/m3、抗压强度3.6MPa、吸水率12.0%、抗25次冻融循环合格、干燥收缩0.72mm/m、工艺简单、价格低廉的优异产品。
詹炳根等[10]对水泥-砂-玻璃纤维型的泡沫混凝土进行了试验研究,结果表明玻瑞纤维增加了泡沫混凝土的抗压和抗折强度,极大地改善了韧性,并在一定程度上抑制了早期干缩开裂。
2 泡沫混凝土存在的缺陷
(1)强度偏低:体积密度为800-859kg/m³的泡沫混凝土的抗压强度严重偏低,一般低于2.0MPa,有的甚至不足1.0MPa。
(2)开裂、吸水:硬化泡沫混凝土表面开裂,导致吸收大量外来水分。
资料分析是指用适当的统计分析方法对收集来的大量资料进行分析,提取有用资讯和形成结论而对资料加以详细研究和概括总结的过程。这一过程也是质量管理体系的支援过程。在实用中,资料分析可帮助人们作出判断,以便采取适当行动。以下是我为大家精心准备的:资料分析在混凝土配合比设计中的应用探究相关论文。内容仅供参考,欢迎阅读!
资料分析在混凝土配合比设计中的应用探究全文如下:
混凝土是全世界范围应用最为广泛的建筑材料。在混凝土诞生的一百多年中,无数科研工作者、工程实践者付诸大量的心血探索混凝土的奥秘。但是由于混凝土是一种从细观到巨集观都是高度非均质的多项复杂体系,在科学实践中存在众多问题。
混凝土配合比设计的研究对于混凝土生产企业优化工艺、降低成本有着重要意义,为此全世界范围内的学者都给出过不同的研究方法。但是现行的配合比设计方法仍存在较多问题亟待解决。究其原因主要是有关混凝土材料的基础理论性研究不足,导致现行的众多的配合比设计方法均不能以材料科学: 组成、结构与效能的科学方法来阐述混凝土的内在问题。
我们可以对国内外几种配合比设计方法进行简单的评价: 美国ACI 方法: 其优点在于简单易行,通过查表即可得出配合比,但是各个引数的选择理论依据不强,对于材料性状变化的敏感性差,是经验性配合比设计方法最为典型的案例。而英国BRE 方法,相比美国ACI 方法引数选择相似,但是其选择依据考虑的因素更多,缺点也比较明显,仍是图表选择的形式,可能导致普适性较差。法国Dreux 方法的优点在于各个引数考虑细致。但是,Dreux 级配曲线可能有一定局限性。法国 de. larrad 则在理论上更胜一筹,以物理模型和数学模型建立的设计方法。而我国现行的配合比设计方法更注重的是经验性设计。应该注意到,这样的配合比设计方法理论基础相对薄弱,经验性选择居多,并且计算结果偏差很大。具体表现在,强度公式引起的误差波动,其次用水量与砂率的选择依据也并不充分。
近年来,随着“人工神经网路”等资料分析方法研究的兴起,越来越多的人开始尝试用资料探勘与分析的方法来进行混凝土配合比的设计与优化。比如人工神经网路方法就具有非线性处理能力强、不需要明确的函式关系式等特点。一个三层BP 神经网路可以以任意精度近似任何连续函式。甚至有研究指出采用人工神经网路技术进行混凝土配合比设计,具有适应性强、准确有效的优点,是进行多组分混凝土配合比设计的一种切实可行的方法。
本文针对混凝土配合比设计的研究工作已经取得的进展,阐明混凝土配合比设计所存在的问题,分析并讨论资料分析在混凝土配合比设计中的地位与意义,为混凝土配合比设计的进一步研究与工程实践提供一定的参考价值。
1 资料分析与混凝土配合比设计
1. 1 人工神经网路
1. 1. 1 人工神经网路技术简介通常意义上的BP人工神经网路是以输入单元为自变数、输出单元为因变数、网路单元间的连线权值为调整参量,按最小误差原则逐步反馈修正而使网路达到最佳模拟状态的一种数学演算法,即误差反传误差反向传播演算法的学习过程,由资讯的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入资讯,并传递给中间层各神经元; 中间层是内部资讯处理层,负责资讯变换,根据资讯变化能力的需求,中间层可以设计为单隐层或者多隐层结构; 最后一个隐层传递到输出层各神经元的资讯,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出资讯处理结果。
当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的资讯正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网路学习训练的过程,此过程一直进行到网路输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
1. 1. 2 在混凝土配合比设计中的应用人工神经网路的特点是非线性处理能力强、不需要明确的函式关系式等,正是因为这些优点,人工神经网路技术慢慢渗透到了各行各业当中且有着非常广泛的应用。理论上讲,一般的三层BP 神经网路可以以任意精度近似任何连续函式。有科学研究指出,采用人工神经网路技术进行混凝土配合比设计,具有适应性强、准确有效的优点,是进行多组分混凝土配合比设计的一种切实可行的方法。刘国华等人曾以BP 网路表达的混凝土效能——配合比关系作为约束条件,以成本函式作为目标条件,采用Monte - Carlo 随机试验法建立直接优化设计模型,并对网路输入输出单元的选择和预测结果稳定性进行较深入的探讨,最终开发出了实用软体。
1. 1. 3 应用例项
用BP 人工神经网路技术建立一个混凝土配合比设计的预测模型,首先必须能够让输入单元反映出影响混凝土最终效能的各个因素,且输出单元要包括所设计混凝土的各项效能指标。因此输入单元主要包括各种原材料的用量和混凝土制作工艺,主要有以下几种: 胶凝材料水泥的品种、强度、初终凝时间; 砂的用量与细度模数; 石子的用量、颗粒级配和最大、最小粒径;矿物掺合料如膨润土、粘土、粉煤灰、矿渣、矿粉等的用量; 用水量; 外加剂 主要指减水剂用量及其减水率 。对于混凝土的制作工艺,主要是指其拌合方式,因为不同的拌合方式成本不同,得到的混凝土效能也有差异。而输出单元主要包括混凝土强度、流动度与和易性,其他各项效能因一般情况暂不要求顾不做考虑。
为了提高模型在实际运算中的效率,可根据不同要求对输入输出单元做适当取舍。将输入单元中原材料的影响分为用量与质量指标两类。对于原材料的用量,由于在具体工程中某些材料如矿物掺合料等不会被采用,因此可以忽略; 质量指标往往对于同一工程而言,同产地原材料效能变化不大,在计算中可视为常值不予考虑。如果样本中原材料种类过多,包含了预设输入单元以外的原材料,则视作无效样本,不予采用; 但当样本中原材料种类少于网路单元中原材料的种类时,此类样本中未使用的原材料用量可以以0 代替。当然,如果试验得到的混凝土效能种类少于网路输出单元的效能种类,则视为无效样本。
1. 2 模糊聚类分析
1. 2. 1 模糊聚类分析简介模糊聚类分析是用数学方法研究和处理所要研究物件的分类问题,即用数学定量地确定分析物件之间在性质、特征等方面的亲疏关系和相似性,从而实现对事物客观地分型划类的数学方法。它是一种非常有效的分类手段,广泛地应用于天气预报、地震预测、地质勘探、环境保护以及影象语言识别等领域之中; 但是模糊 *** 论不同于普通的 *** 论,它是一种全新的理论,因而理解起来需要作一下思维的变换。而聚类分析是数理统计中的一种多元分析方法,它是用数学方法定量地确定样本的亲疏关系,从而客观地进行型别的划分。在客观世界中,事物之间的界限有确切的亦有模糊的。
当分类要求涉及事物之间的模糊界限时,需运用模糊聚类分析方法。通常把被聚类的事物称为样本,将被聚类的一组事物称为样本集。模糊聚类分析有两种基本方法: 系统聚类法和逐步聚类法。聚类分析是用数学方法研究和处理所要研究物件的分类问题,即用数学定量地确定分析物件之间在性质、特征等方面的亲疏关系和相似性,从而实现对事物客观地分型划类的数学方法。用模糊聚类分析事物更加的灵活,客观和计算简便。
1. 2. 2 在混凝土配合比设计中的应用模糊聚类分析在混凝土配合比设计中的应用主要是采用基于模糊等价关系的动态聚类法,其计算过程主要是样本与聚类指标的选择、资料标准化、计算模糊相似关系、确定模糊等价关系和聚类,模糊聚类分析的结论并不表征物件绝对属于某一类,而是以清晰的阈值表征物件在一定程度上相对属于某一类。模糊聚类分析与BP 人工神经网路结合进行预测比单纯的模糊预测精度要高,所需的训练次数要少,而且预测效果要好。这是因为通过模糊聚类分析可以预先将各个模式分成若干类别,而如果单纯地通过隶属度进行预测计算则无法充分利用各个模式间存在的相容相斥关系,这样将会导致可利用的资讯不完整。
相反。如果能够很好地配合BP 人工神经网路的资讯处理机制,则可以充分增强神经网路的分类能力。除此之外,还可以使各个模式间的相容相斥资讯得以利用,预测精度会相应提高。模糊聚类由于可以从量上把握研究体系中的复杂和模糊不确定的关系,因此在混凝土配合比设计中应用模糊聚类方法可以解决那些往往无法定量讨论的问题。模糊聚类还可以通过对混凝土配合比基础理论的修正,来侧面优化通过人工神经网路建立的混凝土配合比设计系统。周双喜曾以钢渣粉、粉煤灰、矿渣粉、烧黏土等作为试验物件,把掺加不同掺合料胶砂的3d与28d 抗压、抗折强度作为样品的指标,通过模糊聚类分析了掺合料的活性,并由此避免了凭经验选择所带来的主观片面性。
李敏等人采用抗压强度损伤系数、外观损伤系数和耐久度损伤系数为一级评价指标,以爆裂度、裂缝宽度为二级指标,确定了评价因子的权重,建立了评价计算模型,实现了无损伤快速的对高强混凝土受火后的综合评价。田华等人指出通过选取两类指标: 最简单直观的水灰比、矿物掺合料用量、砂率、水泥强度、混凝土外加剂用量和骨料最大粒径或者体现混凝土强度、工作性、耐久性和经济性的抗压强度、坍落度、抗渗性和原材料,将模糊聚类分析法用于混凝土质量控制中可改进传统混凝土质量评定结果的不客观性。赵运德等人以人力、机械、材料、方法和环境为指标采用模糊聚类分析法,建立了一种快捷方便的混凝土质量评估模型,可预测混凝土质量评价中的影响因素,以确保工程质量的合格。
1. 3 灰色关联分析
1. 3. 1 灰色关联分析简介灰色关联分析方法是根据各个因素之间发展趋势的相似相异程度 灰色关联度 作为衡量因素间关联程度的一种方法。灰色关联分析的基本原理是考察各行因素之间微观或巨集观的几何接近,以分析和确定各因素之间的影响程度或若干个子因素对主因素的贡献程度。灰色系统理论实际上提出了对各子系统进行灰色关联分析的概念,该理论企图通过一定的方法来寻求系统中各子系统 或因素 之间的数值关系。也正因为此,灰色关联度分析对于任意一个系统的发展变化态势都提供了数量化的度量。关联度是针对于两个系统之间的因素中随时间或不同物件而变化的关联性大小的量度。在系统发展过程当中,若两个因素变化的趋势具有一致性 同步变化程度高 ,则可以说二者关联程度大,因此可以得出在某个包含多种因素的系统中具体的某个因素是属于主要的、次要的还是影响比较小的。
1. 3. 2 在混凝土配合比设计中的应用
混凝土是一种可用于多种环境下的非均质材料,其效能受多种因素的影响,而应用灰色关联理论可以将混凝土多个影响因素的“影响力”进行量化、排序,不仅使人们在理论上更好的认识混凝土,而且有助于混凝土配合比设计方法在理论层面上的完善。冯庆革等人曾借助灰色关联理论计算出养护龄期为7、28d 的混凝土抗压和抗拉强度与10nm ~ 20nm 范围的孔关联度最大, 91d 时与大于400nm 的孔关联度最大。梁本亮的结论与按照单因素敏感性分析方法得出的结果一致,即应用灰色关联建立了氯离子浓度、水灰比、环境溼度和构件表面氯离子浓度与氯离子侵蚀寿命之间的关联度,得出混凝土结构氯离子侵蚀寿命影响因子敏感度中,以构件表面氯离子浓度为最高,其次是氯离子浓度和环境溼度,水灰比敏感度最低。
张永娟等人通过灰色关联理论分别分析了钢渣粉和矿粉颗粒与混凝土强度之间的关系,指出要想提高钢渣粉颗粒群的反应活性,应增加粒径为5μm ~ 30μm,尤其是粒径为5μm ~ 10μm 的颗粒含量,而矿渣粉则是0 ~20 μm范围内的颗粒对混凝土强度有积极作用。席峰等人通过分析聚苯乙烯泡沫混凝土的原材料用量与混凝土强度和密度的关联度,指出在密度不变的情况下,水灰比的改变和减水剂的使用对混凝土强度影响最大; 而在强度不变的情况下,砂石和EPS 的含量是影响密度的主要因素。
C. Y. Chang和他的团队曾将灰色关联和赋权技术结合起来确定了应用再生骨料生产混凝土的最佳引数。冯庆革等人通过灰色关联分析法计算出养护龄期为7、28d 的混凝土抗拉、抗压强度与10nm ~ 20nm 范围的孔关联度最大,91d时与大于400nm 的孔关联度最大。罗洵利用灰色关联法,分析了胶凝材料用量、水胶比、磨细矿渣掺量、矽灰掺量与混凝土坍落度和28d 强度的关联度,得出胶凝材料的用量对混凝土强度和流动性的影响最大的结论。袁晓露的团队还通过灰色关联法分析了水泥矿物组成与韧性间的主次相关性。陈志江等人利用灰色关联分析法得到了各个因素对混凝土碳化深度的影响,按照大小依次排序为: 水灰比、相对溼度、水泥用量、碳化时间。
2 总结
1 采用人工神经网路技术进行混凝土配合比设计,具有适应性强、准确有效的优点,是进行多组分混凝土配合比设计的一种切实可行的方法。
2 模糊聚类分析与BP 人工神经网路结合进行预测比单纯的模糊预测精度要高,所需的训练次数要少,而且预测效果要好。
3 灰色关联理论可以将混凝土多个影响因素的“影响力”进行量化、排序,不仅使人们在理论上更好的认识混凝土,而且有助于混凝土配合比设计方法在理论层面上的完善。
泡沫混凝土的种类很多,但最常用的是水泥泡沫混凝土。水泥泡沫混凝土根据其掺合料不同又可分为水泥-粉煤灰-石灰型、水泥-矿渣-石灰-石膏型、水泥-粉煤灰-砂-石灰型、水泥一砂一石灰型、水泥-矿渣-粉煤灰-石灰-植物纤维型[4]、水泥-砂-玻璃纤维型等类型。 水泥-矿渣-石灰-石膏型的泡沫混凝土了试验研究表明常压养护矿渣多孔混凝土是一种较理想的隔热保温材料(密度为910 kg/m3, 28d抗压强度为9.81MPa),同时在价格上优势明显,具有一定的市场竞争力。 水泥-粉煤灰-砂-石灰型的泡沫混凝土进行试验研究,获得最佳配合比粉煤灰60%,石灰5%,发泡液3kg,细砂15%,水泥20%所对应的性能为密度创6kglm3、 吸水率229岛、28d抗压强度3.4MPa。 水泥-粉煤灰-石灰型的泡沫混凝土进行试验研究,获得了密度为691kg/m3、抗压强度为3.4MPa、导热系数为0.210W/(m•K、抗15次冻融循环合格、碳化系数为0.89的理想的泡沫混凝土墙体材料。 水泥-砂-石灰型的泡沫混凝土进行试验研究,获得了密度为812kg/m³、抗压强度为2.8MPa、导热系数为0.108W/(m•K、抗15次冻融循环合格、干燥收缩率0.43mmlm的泡沫混凝土。 水泥-矿渣-粉煤灰-石灰-植物纤维型的泡沫混凝土进行了试验研究,获得了干密度648kg/m3、抗压强度3.6MPa、吸水率12.0%、抗25次冻融循环合格、干燥收缩0.72mm/m、工艺简单、价格低廉的优异产品。 对水泥-砂-玻璃纤维型的泡沫混凝土进行了试验研究,结果表明玻瑞纤维增加了泡沫混凝土的抗压和抗折强度,极大地改善了韧性,并在一定程度上抑制了早期干缩开裂。 缺点:(1)强度偏低:体积密度为800-859kg/m³的泡沫混凝土的抗压强度严重偏低,一般低于2.0MPa,有的甚至不足1.0MPa。但目前国内泡沫混凝土技术发展迅猛,北京有企业(如北京中科筑诚)已经将500公斤每立方的泡沫混凝土强度提高到2.5MPa. (2)开裂、吸水:硬化泡沫混凝土表面开裂,导致吸收大量外来水分。 应用: 泡沫混凝土以其良好的特性,广泛应用于节能墙体材料中,在其他方面也获得了应用。目前,泡沫混凝土在我国的应用主要是屋面泡沫混凝土保温层现浇、泡沫混凝土面块、泡沫混凝土轻质墙板、泡沫混凝土补偿地基。但是,充分利用泡沫混凝土的良好特性,可以将它在建筑工程中的应用领域不断扩大,加快工程进度,提高工程质量,具体如下: (1)用作挡土墙。主要用作港口的岩墙。泡沫混凝土 泡沫混凝土水泥地暖垫层在岸墙后用作轻质回填材料可降低垂直截荷,也减少了对岸墙的侧向载荷。这是因为泡沫混凝土是一种粘结性能良好的刚性体,它并不沿周边对岸墙施加侧向压力,沉降降低了,维修费用随之减少,从而节省很多开支。泡沫混凝土也可用来增进路堤边坡的稳定性,用它取代边坡的部分土壤,由于减轻了质量,从而就降低了影响边坡稳定性的作用力。 (2)修建运动场和田径跑道。使用排水能力强的可渗性泡沫混凝土作为轻质基础,上面覆以砾石或人造草皮,作为运动场用。泡沫混凝土的密度为800-900kg/m³此类运动场可进行曲棍球,足球及网球活动。或者在泡沫混凝土上盖上一层0.05m厚的多孔沥青层及塑料层,则可作田径跑道用。 (3)作夹芯构件。在预制钢筋混凝土构件中可采用泡沫混凝土作为内芯,使其具有轻质高强隔热的良好性能。通常采用密度为400 - 600kg/m³的泡沫混凝土。 (4)管线回填。地下废弃的油柜、管线(内装粗油、化学品)、 污水管及其他空穴容易导致火灾或塌方,采用泡沫混凝土回填可解决这些后患,费用也少。泡沫混凝土采用的密度取决于管子的直径及地下水位,一般为600-1100kg/m³。 (5)贫混凝土填层。由于使用可弯曲的软管,泡沫混凝土具有很大的 泡沫混凝土节能砖工作度及适应性,因此它经常用于贫混凝土填层。如对隔热性要求不很高,采用密度为1200kg/m³左右的贫混凝土填层,平均厚度为0.05m;如对隔热性要求很高,则采用密度为500kg/m³的贫混凝土填层,平均厚度为0.1- 0.2m。 (6)屋面边坡。泡沫混凝土用于屋面边坡,具有重量轻、 施工速度快、价格低廉等优点。坡度一般为10mm/m.厚度为0.03-0.2m,采用密度为800 - 1200kg/m³的泡沫混凝土。 (7)储罐底脚的支撑。将泡沫混凝土浇阶在钢储罐(内装粗油、化学品)底脚的底部,必要时也可形成一凸形地基,这样可确保整个箱底的支撑在焊接时年处于最佳应力状态,这一连续的支撑可使储罐采用薄板箱底。同时凸形地基也易于清洁。泡沫混凝土的使用密度为800-1000kg\m³。 (8)用于园林绿化。将泡沫混凝土做成容重在600-1000kg/m³,可用于园林假山,垃圾箱,桌凳等。 (9) 国防(现代战争是用信息和先进机动器械为攻击工具),该发泡水泥能用在被敌方轰炸破坏的军事工程如机场,重要交通公路等实行立即抢修,用我们的设备及工艺能把敌方破坏的工程迅速修复,实验得来的结果是修复后10分钟即能用于飞机起降,战车通过。 (10)其他。泡沫混凝土也可用于防火墙的绝缘填充,隔声楼面填充、隧道衬管回填;以及供电、水管线的隔离等方面。 物理性能: 泡沫混凝土通常是用机械方法将泡沫剂水溶液制备成泡沫,再将泡沫加入到含硅质材料、钙质材料、水及各种外加剂等组成的料浆中,经混合搅拌、浇注成型、养护而成的一种多孔材料。由于泡沫混凝土中含有大量封闭的孔隙,使其具有下列良好的物理力学性能。1、 轻质 泡沫混凝土的密度小,密度等级一般为300-1800kg/m3,常用泡沫混凝土的密度等级为300-1200 kg/m3,近年来,密度为 160 kg/m3的超轻泡沫混凝土也在建筑工程中获得了应用。由于泡沫混凝土的密度小,在建筑物的内外墙体、层面、楼面、立柱等建筑结构中采用该种材料,一般可使建筑物自重降低25%左右,有些可达结构物总重的30%-40%。而且,对结构构件而言,如采用泡沫混凝土代替普通混凝土,可提高构件的承截能力。因此,在建筑工程中采用泡沫混凝土具有显著的经济效益。2、 保温隔热性能好 由于泡沫混凝土中含有大量封闭的细小孔隙,因此具有良好的热工性能,即良好的保温隔热性能,这是普通混凝土所不具备的。通常密度等级在300-1200 kg/m3范围的泡沫混凝土,导热系数在0.08-0.3w/(m·K)之间,热阻约为普通混凝土的10-20倍。采用泡沫混凝土作为建筑物墙体及屋面材料,具有良好的节能效果。3、 隔音耐火性能好 泡沫混凝土属多孔材料,因此它也是一种良好的隔音材料,在建筑物的楼层和高速公路的隔音板、地下建筑物的顶层等可采用该材料作为隔音层。泡沫混凝土是无机材料,泡沫混凝土不会燃烧,从而具有良好的耐火性,在建筑物上使用,可提高建筑物的防火性能。4、 整体性能好 可现场浇注施工,与主体工程结合紧密。5、低弹减震性好 泡沫混凝土的多孔性使其具有低的弹性模量,从而使其对冲击载荷具有良好的吸收和分散作用。6、防水性能强 现浇泡沫混凝土吸水率较低,相对独立的封闭气泡及良好的整体性,使其具有一定的防水性能。 7、耐久性能好与主体工程寿命相同。8、生产加工方便 泡沫混凝土不但能在厂内生产成各种各样的制品,而且还能现场施工,直接现浇成屋面、地面和墙体。9、环保性能好 泡沫混凝土所需原料为水泥和发泡剂,发泡剂大都接近中性,不含苯、甲醛等有害物质,避免了环境污染和消防隐患。10、施工方便 只需使用水泥发泡机可实现自动化作业,可泵送实现垂直高度200米的远距离输送,工作量为150—300立方/工作日。11、其它性能 泡沫混凝土还具有施工过程中可泵性好,抗压强度高(0.5-22.2Mpa),冲击能量吸收性能好,可大量利用工业废渣,价格低廉等优点。 参考文献:[1]关博文,刘开平等.泡沫混凝土研究及应用新进展[J]广东建材,2008(2):19-21 [2]张磊,杨鼎宜.轻质泡沫混凝土的研究及应用现状[J]混凝土, 2005(8): 44-48. [3]闰振甲,何艳君.泡沫混凝土实用生产技术[M]。北京:化学1业出版社, 2006 [4]刘子全,王波等。泡沫混凝土的研究开发进展[J]。混凝土,2008(12) : 24-26. [5]谢明辉.大掺量粉煤灰泡沫混凝土的研究[D)。吉林:吉 林大学, 2006 [6]陆爱萍,郭玉顺等.矿渣多孔混凝土性能及其改性研究[1].房材与应用,1997 (I): 20-25 [7]高波.粉煤灰发泡混凝土的试验研究与工程应用[D]西安:西安理工大学, 2004. [8]宋旭辉等.利用沙漠细砂生产泡沫混凝土的研究[J]. 混凝土,2007(12): 55-57. [9]高波,王群力等.免蒸复合发泡混凝土墙体砌块[J].粉煤灰综合利用,2003(4) :39-40. [10]詹炳根,郭建雷等.玻璃纤维增强泡沫混凝土性能试验研究[J]合肥工业大学学报(自然科学版),2009(2):226-229
摘要:简要介绍了预应力混凝土工程技术发展现状及发展趋势。目前,我国混凝土的年用量约为24
—30亿立方米,用于房屋建筑和土木工程的水利、交通、市政等所有行业,从结构材料类型方面来讲,混凝土及预应力混凝土结构约占全部工程结构的90%以上,混凝土及预应力混凝土将是现阶段乃至未来二十年内我国主导的工程结构材料。
关键词:预应力混凝土;工程技术;发展现状;未来趋势
1.预应力混凝土定义
为了避免钢筋混凝土结构的裂缝过早出现,充分利用高强度钢筋及高强度混凝土,可以设法在混凝土结构构件受荷载作用前,预先对受拉区混凝土施加压力后的混凝土就是预应力混凝土。预压应力用来减小或抵消荷载所引起的混凝土拉应力,从而将结构构件的拉应力控制在较小范围,甚至处于受压状态,以推迟混凝土裂缝的出现和开展,从而提高构件的抗裂性能和刚度。
2. 预应力混凝土工程技术发展现状综述
近年来,在巨大工程建设任务,特别是重点建设项目和大型工程的带动下,我国的混凝土及预应力混凝土工程技术水平有了很大的提高。目前,我国混凝土的年用量约为24—30亿立方米,用于房屋建筑和土木工程的水利、交通、市政等所有行业,从结构材料类型方面来讲,混凝土及预应力混凝土结构约占全部工程结构的90%以上。混凝土及预应力混凝土将是现阶段乃至未来二十年内我国主导的工程结构材料。
3.预应力混凝土工程技术发展简述
(1)先张预应力技术
目前我国先张预制预应力构件用量逐年减少,先张预应力施工工艺落后,预应力空心板仍使用中低强度预应力筋,没有形成利用高强材料的先张成套技术。但在山东等地预制预应力技术正在复苏,新技术、新工艺正在开发应用。
(2)后张无粘结预应力技术
目前我国已开发并应用了成套无粘结预应力技术,相关标准也已进行了更新,如《无粘结预应力混凝土结构技术规程》、《无粘结预应力钢绞线》和《无粘结预应力筋专用防腐润滑脂》等标准。在工程应用中也取得不少成就,如解决超长结构设计、楼板减轻重量、实现双向大柱网等,目前使用该技术的工程已达数千万平方米。特别是近几年对无粘结筋防腐和耐久性的研究和改进,使该技术可用于二、三类工作环境。我国后张无粘结预应力技术总体上达到国际先进水平。
(3)后张有粘结预应力技术
后张有粘结预应力技术目前在我国建筑、桥梁、特种结构等工程中广泛应用。使用该技术的建筑最大柱网达到42m*34m,最大单体建筑面积达65万㎡,最高的塔式结构达450m。目前我国已成功地开发并应用了多种相关技术,如成孔技术、高强材料生产技术、高强材料张拉锚固技术及相关设备、产品等。我国后张有粘结预应力技术的总体上达到国际先进水平,当然在施工设备配套系列及施工工艺工法细化方面与国外还有一定差距。
4.我国预应力混凝土技术未来发展趋势
(1)新材料技术开发应用
预应力混凝土材料技术的发展从来都是预应力混凝土技术革命的先驱。预应力混凝土钢
浅谈预应力混凝土工程技术发展现状及未来
2
筋除了目前使用的高强度钢材外,未来新型预应力混凝土钢筋都是强度高、自重轻、弹性模量大的聚碳纤维,玻璃纤维和聚醋纤维类非金属预应力混凝土钢筋。
(2)多层大跨结构中预应力混凝土技术发展方向
建筑业是我国国民经济重要支柱产业之一,旺盛的建筑需求,日新月异的生产工艺变革以及人们对物质文化生活需求的迅速提高,使建筑结构正面临新的挑战。近推荐建筑结构正在向大柱网、大开间、大跨度、多功能方向发展。人们总是想在有限的建筑面积和空间内获得最好的使用功能和最佳的投资回报。预应力混凝土正以其跨度大、自重轻、节约材料、节省层高、改善功能等突出优点。迎合了近代建筑结构的发展趋向。
(3)高层建筑结构中预应力混凝土技术发展方向
近年来,预应力混凝土在高层建筑中的应用于有很大发展,尤其是无粘结预应力混凝土平板和预应力混凝土扁梁用于高层建筑的楼闰,具有降低层高,简化模板,加快施工等明显效果。受到建设单位、设计和施工单位的普遍欢迎。预应力混凝土除用于楼盖外,有时还用来解决大跨度,大空间部位柱网转换时的转换梁,转换桁架,以及复杂柱网情况下的转换板。此外8-18m跨度的预应力混凝土空心板,外墙用的装饰保温复合预应力混凝土墙板在高层建筑中的应用前景很广阔。
(4)预制现浇相结合的装配整体式结构将加速发展
随着大柱网、大开间多层建筑和高层建筑迅猛发展,长跨预应力混凝土空心板、T形板、大型预应力混凝土墙板等必将逐步兴起,预制梁板现浇柱,或预制梁、板、柱现浇节点相结合的各种装配整体式建筑结构体系预期会迅速发展,这种结构体系可以把预制与现浇二者的优点结合起来,避免纯装配式建筑对产品尺寸的高精度要求,结构整体性差和节点耗钢量大等缺点,叉避免了现浇结构现场湿作业工程量大,受制于现场施工及气候条件,耗用大量模板、支撑等缺点。
(5)预应力技术在桥梁结构领域的发展趋势
在桥梁结构领域中,预应力技术既是一种结构手段,又是与施工方法结合形成一整套以节段式施工为主体的预应力施工方法或专利,主要有预应力悬臂分段施工技术,分段顶推施工技术,移动模架逐孔施工技术,块体节段拼装技术,大节段预制吊装技术等。这些施工技术与预应力技术是紧密相关的,现有桥梁的改造、加固技术亦是研究开发方向
1 引言 科技和社会的进步使对居住环境有了更高的要求,不仅要求建筑外表具有形式美,而且要求建筑给人们提供一个安全、舒适、便捷的生活空间,尤其是安全。所以当建筑物出现裂缝的时候,常常会对人们的心理产生不良的影响。建筑裂缝产生的原因很多,有自身的原因也有外界影响的因素,从而产生建筑裂缝。有的裂缝对建筑结构并不造成威胁,但有些裂缝对建筑物有很大的影响,往往会影响人们的正常生活。对于建筑裂缝预防往往比治理更重要,而且要容易一些。所以建筑裂缝的预防往往是建筑中需重点注意的地方。随着我国建筑业的发展,建筑裂缝的预防也越来越完善,争对各种建筑裂缝都有一定的预防方法,建筑物业越来越稳固。
毕业论文~大体积混凝土施工 班级: 学号: 姓名:目录一、施工方案的合理选择……………………………………………………1二、连续浇捣混凝土时在拌合及运输方面应采取的措施…………………………….2三、在施工过程中钢筋工程及模板工程的质量控制………………………………..2四、外加剂的合理选择………………………………………………………………..6五.高温条件下的混凝土浇筑质量……………………………………………………6大体积混凝土施工中的质量控制摘要:大体积混凝土的施工技术要求较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证大体积混凝土顺利施工。 关键词:大体积混凝土 施工方案 高温条件 钢筋模板一、施工浇筑方案的选择:大体积混凝土的施工技术要求比较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证大体积混凝土顺利施工。1、 材料选择本工程采用商品混凝土浇筑。对主要材料要求如下:(1)水泥:考虑普通水泥水化热较高,特别是应用到大体积混凝土中,大量水泥水化热不易散发,在混凝土内部温度过高,与混凝土表面产生较大的温度差,使混凝土内部产生压应力,表面产生拉应力。当表面拉应力超过早期混凝土抗拉强度时就会产生温度裂缝,因此确定采用水化热比较低的矿渣硅酸盐水泥,标号为525#,通过掺加合适的外加剂可以改善混凝土的性能,提高混凝土的抗渗能力。(2)粗骨料:采用碎石,粒径5-25mm,含泥量不大于1%。选用粒径较大、级配良好的石子配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温升。(3)细骨料:采用中砂,平均粒径大于0.5mm,含泥量不大于5%。选用平均粒径较大的中、粗砂拌制的混凝土比采用细砂拌制的混凝土可减少用水量10%左右,同时相应减少水泥用量,使水泥水化热减少,降低混凝土温升,并可减少混凝土收缩。(4)粉煤灰:由于混凝土的浇筑方式为泵送,为了改善混凝土的和易性便于泵送,考虑掺加适量的粉煤灰。按照规范要求,采用矿渣硅酸盐水泥拌制大体积粉煤灰混凝土时,其粉煤灰取代水泥的最大限量为25%。粉煤灰对水化热、改善混凝土和易性有利,但掺加粉煤灰的混凝土早期极限抗拉值均有所降低,对混凝土抗渗抗裂不利,因此粉煤灰的掺量控制在10以内,采用外掺法,即不减少配合比中的水泥用量。按配合比要求计算出每立方米混凝土所掺加粉煤灰量。。2、混凝土配合比(1)混凝土采用搅拌站供应的商品混凝土,因此要求混凝土搅拌站根据现场提出的技术要求,提前做好混凝土试配。(2)混凝土配合比应提高试配确定。按照国家现行《混凝土结构工程施工及验收规范》、《普通混凝土配合比设计规程》及《粉煤灰混凝土应用技术规范》中的有关技术要求进行设计。(3)粉煤灰采用外掺法时仅在砂料中扣除同体积的砂量。另外应考虑到水泥的供应情况,以满足施工的要求。二、连续浇捣混凝土时在拌合及运输方面应采取的措施1、混凝土浇筑(1)混凝土采用商品混凝土,用混凝土运输车运到现场,每区采用2台混凝土输送泵送筑。(2)混凝土浇筑时应采用“分区定点、一个坡度、循序推进、一次到顶”的浇筑工艺。钢筋泵车布料杆的长度,划定浇筑区域,每台泵车负责本区域混凝土浇筑。浇筑时先在一个部位进行,直至达到设计标高,混凝土形成扇形向前流动,然后在其坡面上连续浇筑,循序推进。这种浇筑方法能较好的适应泵送工艺,使每车混凝土都浇筑在前一车混凝土形成的坡面上,确保每层混凝土之间的浇筑间歇时间不超过规定的时间。同时可解决频繁移动泵管的间题,也便于浇筑完的部位进行覆盖和保温。(3)混凝土浇筑时在每台泵车的出灰口处配置1~2台振捣器,因为混凝土的坍落度比较大,在1.5米厚的底板内可斜向流淌1米远左右,2台振捣器主要负责下部斜坡流淌处振捣密实,另外2~4台振捣器主要负责顶部混凝土振捣。(4)由于混凝土坍落度比较大,会在表面钢筋下部产生水分,或在表层钢筋上部的混凝土产生细小裂缝。为了防止出现这种裂缝,在混凝土初凝前和混凝土预沉后采取二次抹面压实措施。(5)现场按每浇筑100立方米(或一个台班)制作3组试块,1组压7d强度,1组压28d强度归技术档案资料用;l组作仍14d强度备用。三、在施工过程中钢筋工程及模板工程的质量控制根据平面控制网,在防水保护层上放出轴线和基础墙、柱位置线;每跨至少两点用红油漆标注。顶板混凝土浇筑完成,支设竖向模板前,在板上放出该层平面控制轴线。待竖向钢筋绑扎完成后,在每层竖向筋上部标出标高控制点。1、机具准备1)、剥肋滚压直螺纹机械连接机具由该项技术提供单位配备。高峰期钢筋施工时至少保证5台钢筋剥肋滚压直螺纹机,其技术参数如下表示:设备型号 GHG40型滚丝头型号 40型可加工范围 16~40整机质量(kg) 5902)限位挡铁:对钢筋的夹持位置进行限位,型号划分与钢筋规格相同。3)螺纹环规:用于检验钢筋丝头的专用量具。4)力矩扳手力矩扳手精度为±5%5)辅助机具砂轮切割机:用于钢筋端面整平用于检验钢筋丝头的专用量具6)、钢筋焊接机具电焊机、控制箱、焊接夹具、焊剂罐等焊接电流:焊接电源400~450A;施工手续现场钢筋工人员必须佩戴上岗证,焊工必须有岗位资格证(有效)参加钢筋机械接头加工人员必须进行技术培训,经考试合格后方可执证上岗。未经培训人员严禁操作设备。钢筋连接及锚固要求A.竖向钢筋D≥18mm,采用电焊压力焊;横向D≥18mm采用机械连接;D<18mm用搭接。B.相关要求(1)钢筋锚固必须符合GB5001-2002的规定,提供参考值如表:名称部位 锚固长度 末端弯钩长度 d<25 d≥25 基础DL 35d ≥10d底板 35d 40d ≥10d墙柱插筋 直接插至底板下表面 ≥10d(2)钢筋搭接长度必须符合GB50010-2002或按GB50204-2002附录B:纵向受力钢筋的最小搭接长度(3)机械连接接头按加工标准,见4.1.2D项所述钢筋的加工钢筋加工的形状、尺寸必须符合设计要求:A.钢筋调直采用冷拉方法进行钢筋调直,I级钢筋冷拉率为4%,由于钢筋加工区场地有限,钢筋冷拉长度为27m,冷拉后为28.08m;钢筋冷拉采用两端地锚承力,标尺测伸长,并记录每根钢筋冷拉值。B.钢筋弯曲1)钢筋弯钩或弯折:I级钢筋末端做180°弯钩,其圆弧弯曲直径2.5d(d为钢筋直径),平直部分长度为3d;Ⅱ级钢筋做90°或135°弯折时,其弯曲直径为4d。2)箍筋末端的弯钩:I级钢筋弯钩的弯曲直径≥受力钢筋直径或箍筋直径的2.5倍,弯钩平直长度为箍筋直径的10倍,弯钩角度45°/135°。C.焊接接头1)施焊前检查设备、电源,随时处于正常状态,严禁超荷工作;2)钢筋安装之前,焊接部位和电极钳口接触的(150mm区段)钢筋表面的锈斑、油污、杂物等,应清除干净,钢筋端部若有弯折、扭曲,应予以矫直或切除,但不得锤击矫直。3)选择焊接参数主要参数为:焊接电流,焊接电压和焊接通电时间(参见施工工艺标准)。焊剂应存放于干燥的库房内,防止受潮。如受潮,便用前须经250~300℃烘焙2小时,并进行记录。D.机械连接 钢筋端面整平→剥肋滚压螺纹→丝头质量检查→带帽保护→丝头质量抽检→存放待用。b.操作要点钢筋端面平头:采用砂轮切割机平头(严禁气割),保证钢筋端面与母材轴线垂直。剥肋滚压螺纹:使用钢筋滚压直螺纹机,将待加工钢筋加工成直螺纹;丝头质量检查:对加工的丝头进行质量检验(按以上丝头设计表);带帽保护:用专用的钢筋丝头塑料保护帽进行保护,防止螺纹损伤;丝头定量抽检:项目部质检部组织自检,存放待用:按规格型号及类型进行分类码放。钢筋绑扎及安装(1) 底板、基础梁钢筋防水保护层上放线,基础标高放线→搭设梁脚手架→南北向梁上铁放置、绑扎→东西向梁上钢筋放置、绑扎→放南北向梁箍筋→放置三道柱箍→东西向板梁钢筋下铁放置、绑孔→南北向板梁下铁放置、绑扎→放置底板、基础梁垫块→拆除基础梁脚手架→调整基础梁位置→墙柱插筋放线→放置墙柱插筋并临时固定→放置三道墙体水平筋→底板上铁标高放线→放置马凳→南北向底板上铁放置、绑扎→东西向底板上铁放置、绑孔→调整、固定墙柱插筋。a.底板、基础梁钢筋排列顺序为:东西向筋上铁在上,下铁在下;南北向钢筋在东西向钢筋中间;若基础梁上下铁不只一排,东西向筋与南北向钢筋交错布置;b.底板钢筋的弯钩,下排均朝上,上排均朝下;c.钢筋网的绑扎:所有钢筋交错点均绑扎,而且必须牢固;同一水平直线上相邻绑扎成“八”字型,朝向混凝土内部,同一直线上相临绑扣露头部分朝向正反交错;d.箍筋接头(弯钩叠合处)沿受力方向错开布置,箍筋转角与受力筋交叉点均应扎牢,绑扎箍筋时绑扣相互间应呈“八”字形 本工程主要是防护墙及顶板的支模及混凝土的浇筑,要确保混凝土的密实度防止射线泄漏, 防护墙、顶板模板在施工中的稳定性做到不变形、胀板。其它辅助用房按常规工程施工方法便可。 ⑴ 模板安装及支撑工程 本工程防护墙厚度有0.5m 、2.5m,高度3.8m、4.3m,为了保证工程需要,采用支模方法如下:模板采用20mm 厚竹胶合板、横档用80× 80 枋木间距400mm,拉丝及内撑均用Ф 16钢螺丝两用/ 梅花状0.80 × 0.80m 一道作为墙体拉结、墙体高度在2.0 米以上拉丝间距可墙大至1.20 × 1.20m 一道,立档采用宽160mm 槽钢、间距600,经计算防护墙体的侧压力在高3.5 米以下为16.5T/m2,因此,斜支撑需用200mm 槽钢间距为1200。立柱水平拉杆用40 × 40 角钢、十字交叉拉结。同时,在墙体转角位置由于拉丝不能固定,立档及斜撑槽钢按外侧壁的间距加密一倍安装。 为保证F 轴防护墙外侧模板的平整、垂直,除了在墙体用钢螺栓拉结外,在地梁上预埋Ф 16a1200 钢筋,作水平拉结,防止斜撑滑移。 ⑵ 顶板模板有支撑 本工程的顶板厚度不同, 梁部X 机房厚500,60CO 机房1000、直加机房2500,经计算,直加机房顶板的最大荷载重是65800N/m 2, 因此, 对模板、杉木支撑的要求很高, 为保证其模板的稳定生刚性, 采用支模如下。 模板为20mm 竹胶合板,下用80 × 80 枋木拼密。 模枋条用工字钢1 2 # , 固定在支顶上。 支顶用Ф 108 无缝钢管。间距800mm。顶板厚度为0.5 — 1.0 米的支撑,间距可增大到1 米。 为确保整体稳定性, 防护墙、枯板部分的模板均采用满堂红支顶一次成型,互成连整体 外加剂:设计无具体要求,通过分析比较及过去在其它工程上的使用经验,每立方米混凝土2kg,减水剂可降低水化热峰值,对混凝土收缩有补偿功能,可提高混凝土的抗裂性。具体外加剂的用量及使用性能,商品混凝土站在浇筑前应报告送达施工单位4.外加剂的合理选择外加剂:设计无具体要求,通过分析比较及过去在其它工程上的使用经验,每立方米混凝土2kg,减水剂可降低水化热峰值,对混凝土收缩有补偿功能,可提高混凝土的抗裂性。具体外加剂的用量及使用性能,商品混凝土站在浇筑前应报告送达施工单位(1)选择水泥。选用杭州水泥厂水化热较低的#425矿渣硅酸盐水泥。其早期的水化热与同龄期的普通硅酸盐水泥相比,3d的水化热约可低30%。 (2)掺加磨细粉煤灰。在每立方米混凝土中掺加粉煤灰75kg,改善了混凝土的粘聚性和可泵性 ,还可节约水泥50kg。根据有关试验资料表明,每立方米混凝土的水泥用量每增减10kg,其水化热引起混凝土的温度相应升降1~1.2℃,因此可使混凝土内部温度降低5~6℃。 (3)选用优质外加剂。为达到既能减水缓凝,又使坍落度损失小的要求,经比较,最后选用了上海产效果明显优于木钙的E.A—2型缓凝减水剂,可减少拌和用水10%左右,相应也减少了水泥用量,降低了混凝土水化热。 (4)充分利用混凝土后期强度。实践证明,掺优质粉煤灰混凝土后期强度较高,在一定掺量范围内60d强度比29d约可增长20%左右。同时按《粉煤灰混凝土应用技术规范(GBJ 146— 90 )》,地下室内工程宜用60d龄期强度的规定。为了进一步控制温升,减少温度应力,根据结构实际承受荷载情况,征得设计单位同意,将原设计混凝土28d龄期C30改为60d龄期C30(即用28d龄期C25代替设计强度),这样可使每立方米混凝土的水泥用量减少50kg,混凝土温度相应随之降低5~6℃。5.高温条件下的混凝土浇筑质量1.,考虑高温和远距离运送造机坍落度18±2cm, 水泥用量控制在370kg/m.3以下。由于降低水泥用量可降低混凝土温度16~18℃。 成的坍落度损失较大,取出2. 用原材料降温控制混凝土出机温度 根据由搅拌前混凝土原材料总热量与搅拌后混凝土总热量相等的原理,可求得混凝土的出机温度T,说明混凝土的出机温度与原材料的温度成正比,为此对原材料采取降温措施:①将堆场石子连续浇水,使其温度自浇水前的56℃降至浇水后的29℃ ,且可预先吸足水分,减少混凝土坍落度损失;②黄砂在钱塘江码头起水时,利用江水淋水冷却,使之降温。③虽混凝土中水的用量较少,但它的比热最大,故在搅拌混凝土用的3只贮水池内加入冰块,使水温由31℃降到24℃,总共用去冰块75t。这样一来,经计算出机温度T为32.8℃,37次实测的平均实测值33.2℃,送达现场的实测温度为34.60℃,从而使入模温度大为降低。 3 保持连续均衡供应控制混凝土浇筑温度 (1)为了紧密配合施工进度,确保混凝土的连续均匀供应,经过周密的计算和准备,安排南星桥和六堡两个搅拌站同时搅拌,配备了18辆6m.3搅拌车和两只移动泵,在三天四夜里始终保持了稳定的供应强度,基本上做到了泵车不等搅拌车,搅拌车不等泵车,未发生过一次由于相互等待而造成堵泵现象。 (2)本工程基坑挖深8.7m,坑内实测最高气温达62℃,为避免太阳直接暴晒,温度过高,造成浇筑困难,采取在整个坑顶搭盖凉棚,并安设了通风散热设施,使坑内浇筑温度大幅度降低,接近自然气温,不仅控制了最高温升,而且改善了工人劳动条件,得以顺利浇筑。 3)为不使混凝土输送管道温度过高,在管道外壁四周用麻袋包裹,并在其上覆盖草包并反复淋水、降温。 (4)考虑混凝土的水平分层浇筑装拆管道过于频繁,施工组织工作难于实施,故采取斜面分层浇筑,错开层与层之间浇筑推进的时间以利下层混凝土散热,但上下层之间严格控制,不得超过混凝土初凝时间,不得出现施工“冷缝”。由于泵送混凝土的浆体较多,在浇筑平仓后用直尺刮平。约间隔1~2h,用木蟹打压两次,以免出现表面收水裂缝。4 加强混凝土保湿保温养护 混凝土抹压后,当人踩在上面无明显脚印时,随即用塑料薄膜覆盖严实,不使透风漏气、水分蒸发散失并带走热量。且在薄膜上盖两层草包保湿保温养护,以减少混凝土表面的热扩散 , 延长散热时间,减少混凝土内外温差。经实测混凝土3天内表面温度在48~55℃之间,且很少发现混凝土表面有裂缝情况。 5 通过监控及时掌握混凝土温度动态变化 (1)温度监控的最终目的是为了掌握混凝土内部的实际最高温升值和混凝土中心至表面的温度梯度,保证规范要求的内部与表面的温差小于25℃及降温速率。 (2)温度是直接关系整个混凝土基础质量的关键。为了客观反映混凝土温度状况,进行原材料温度 、出机温度、入模温度、自然温度、覆盖养护温度、混凝土内部温度、棚内温度等7个项目的测试,便于及时调整温控措施。(3)主楼基础的混凝土温度按不同平面部位和深度共布置了25个测点(图1),由专人负责连续测温一周,每间隔2h测一次,比规范规定每8h测2次的频度要大些。效果及结论 (1)混凝土强度按《混凝土强度检验与评定标准(GBJ 107-87)》进行了测试,有关结果 如表1,属合格。(2)由于采用了“双掺技术”(缓凝减水剂和磨细粉煤灰),延缓了凝结时间,减少了坍落度损失,改善了混凝土和易性和可泵性。使得混凝土在高温、远距离运送条件下仍能顺利泵送 ,也未发生堵泵。 (3)混凝土出机温度和入模温度共实测37次,原材料温度测试20次,混凝土内外温度连续测一周,混凝土中心最高温度出现在浇注后的3~4d之间,与文献介绍的一致。内外温差仅为1 5℃,且低于规范规定不得大于25℃的要求。 (4)经各有关单位的严格检查和近年来的使用,未发现有害裂缝(仅表面有个别收水裂缝)。 混凝土密实平整光洁,无蜂窝麻面
这方面的文章不太好写 ,你可以去找别人帮你写一下。他们的文章写的不错,完成文章,满意再付费的.Q Q 好友查找一下就可以 一零三七二五二六五七 混凝土,简称为“砼(tóng)”:是指由胶凝材料将集料胶结成整体的工程复合材料的统称。通常讲的混凝土一词是指用水泥作胶凝材料,砂、石作集料;与水(加或不加外加剂和掺合料)按一定比例配合,经搅拌、成型、养护而得的水泥混凝土,也称普通混凝土,它广泛应用于土木工程。
浅谈再生混凝土的性能特点及其应用工学论文
在日常学习和工作中,说到论文,大家肯定都不陌生吧,论文是探讨问题进行学术研究的一种手段。你所见过的论文是什么样的呢?以下是我为大家收集的浅谈再生混凝土的性能特点及其应用工学论文,希望对大家有所帮助。
摘要 :
新建筑工程的建设和旧建筑工程的拆除都会产生大量的建筑垃圾,既造成环境污染又浪费大量资源,如何处理日益增多的建筑废弃垃圾,减轻对环境的污染,已成为各个国家必须面对的重要课题.通过分析再生混凝土的物理、力学性能、耐久性能、剪切性能以及抗震性能,探讨了再生混凝土的应用前景。
关键词 :再生混凝土;性能指标;建筑垃圾;应用前景
引言
目前我国正处于大兴土木的建设时期,土木建筑的快速发展带动了国民经济,也成为了消耗资源和产生垃圾最多的行业.为了有效减少环境污染破环,减少废弃混凝土的数量,做到可持续协调发展,目前解决该问题的方法只有再生利用,于是跟再生混凝土有关的一些技术和研究也快速发展起来。
再生骨料或再生混凝土骨料[1-2]是指将废弃混凝土块破碎、分级,并按一定的级配混合后形成的骨料,而利用再生骨料作为部分或全部骨料配制的混凝土,称为再生骨料混凝土,简称再生混凝土.再生混凝土是建筑材料的循环再利用,是与生态环境发展相协调的重要一部分,也 符合国家的可持续发展战略.本文主要讨论再生混凝土基本性能,探讨再生混凝土应用工程的发展前景。
1、再生混凝土研究现状
1.1国外研究现状国外对于再生混凝土的研究比较早,可以追溯到二次世界大战期间,连年的战争破坏了大量的建筑物,同时也产生了大量的废弃物,因此许多欧洲国家均不同程度地面临着如何处理废弃物的问题[2].20世纪50年代,苏联和德国为了处理大量废弃混凝土同时为城市重建提供新的原材料,相继开展了再生混凝土技术的研究工作.1977年日本政府制定了JIS TR A 0006《再生骨料和再生混凝土使用规范》;1991年日本政府又制定了《资源重新利用促进法》,规定建筑施工过程中产生的渣土、混凝土块、沥青混凝土块、木材、金属等建筑垃圾,必须送往“再生资源化设施”进行处理。
对于废弃物再利用,美国政府也制定了《超基金法》,规定:“任何生产有工业废弃物的企业,必须自行妥善处理,不得擅自随意倾倒.”这个规定给再生混凝土的发展提供了操作依据和法律保障.
1.2国内研究现状
我国对再生混凝土的研究工作起步相对较晚,目前还停留在实验室研究阶段,不过政府对再生混凝土研究工作相当重视,相继投入了不少的资金,也取得了一些成果.同济大学对再生混凝土技术进行了大量的研究工作[2-3],包括再生混凝土的强度和工作性能、废弃混凝土破碎及再生工艺研究、再生混凝土耐久性研究、再生混凝土梁柱试验研究、再生混凝土框架节点试验研究、再生混凝土框架结构抗震性能的研究等.2007年同济大学编写了地方标准《再生混凝土应用技术规程》(DG/TJ 08-2018-2007),为再生混凝土的应用提供了技术指导。
另外,中科院、东南大学、浙江大学和北京工业大学等相关科研单位也对再生混凝土开展了大量的研究工作,并开发了相关的再生混凝土技术。
2、再生混凝土性能特点
2.1物理力学性能东南大学陈亮等对再生骨料混凝土技术开发与研究的最新进展进行了综述与对比分析[3],分析结果表明再生混凝土的破坏过程和破坏模式与普通混凝土基本一致.从破坏形态来看,再生混凝土的破坏基本上始自粗骨料和水泥凝胶体面的黏结破坏,再生混凝土的长期抗压强度发展规律与普通混凝土有所差异.分析还指出,全部采用废混凝土作骨料的再生混凝土与相同配合比的普通碎石混凝土相比,抗压强度降低9%,抗拉强度降低7%,抗压弹性模量降低28%,抗拉弹性模量降低34%,说明再生混凝土脆性降低,韧性增加.而全部采用废弃混凝土作骨料的再生混凝土较相同配合比的普通混凝土极限拉应变增大28%,拉伸弹模降低34%,抗压强度比有所增加,说明再生混凝土的抗裂性能较好。
中国科学院武汉岩土力学研究所骆行文等通过一系列试验,分析研究了不同再生混凝土取代率对静力力学性能的影响,研究了再生混凝土声波传播特征参数随再生混凝土轴向压缩变形的变化规律[4].指出随着再生混凝土取代率的增加,再生混凝土的应力峰值在减小,再生混凝土的弹性模量和变形模量也在降低.分析还表明再生混凝土声波传播速度随着再生混凝土的轴向压缩变形先增大后减小,在再生混凝土轴向压缩过程中,超声波在再生混凝土中波幅先增大后减小。
同济大学肖建庄通过不同再生粗骨料取代率下再生混凝土的单轴受压应力应变全曲线试验,分析了再生粗骨料取代率对再生混凝土的应力应变全曲线形状和再生混凝土抗压强度、弹性模量、峰值及极限应变的影响[5].研究表明,再生混凝土的应力应变全曲线的总体形状与普通混凝土的相似,但曲线上各特征点的应力和应变值有所区别;再生混凝土的棱柱体抗压强度与立方体抗压强度的比值高于普通泥凝土;再生混凝土的峰值应变大于普通混凝土;再生混凝土的弹性模量明显低于普通混凝土.分析还指出再生混凝土应力应变全曲线的上升段和下降段可以分别用3次多项式和有理分式分别进行拟合。
浙江大学徐亦东等采用优质矿物掺合料和高效减水剂成功配制出C40—C60高性能再生混凝土,并采用电液伺服压力试验机对高性能再生混凝土进行单轴受压试验,测得其应力应变曲线并进行理论分析,总结出了再生混凝土单轴受压应力应变全曲线的数学表达式,与试验结果吻合较好[6-7]。
西班牙加泰罗尼亚理工大学M.Etxeberria等设计4种不同的再生混凝土粗集料取代率,通过4种混凝土的搭配比例来得到相同的抗压强度,分析了再生混凝土的力学性能[8].试验中,回收集料处于吸水状态,但不饱和,以控制新拌混凝土的性能、有效水灰比和更低的强度偏差.结果表明采用中低抗压强度的集料生产再生混凝土,其必要性已被证实归结于水泥的用量,测定了再生混凝土相对较低的弹性模量,此结果验证了几位学者提出的数学模型的有效性。
葡萄牙里斯本理工大学N.Fonseca等通过不同的养护条件分析了再生混凝土的物理力学性能,分析了再生混凝土的抗压强度、劈裂强度、弹性模量和磨耗值,分析结果表明影响再生混凝土物理力学的养护条件大体上跟普通混凝土一致[9]。
意大利马尔凯理工大学Valeria Corinaldesi等采用取代率为30%的再生集料配制再生混凝土,分析了梁柱结合处再生混凝土在周期荷载下适用于结构的可行性[10].当取代率为30%时,再生混凝土与普通混凝土有几乎相同的抗压强度,然而,再生混凝土的抗拉强度、劈裂强度和弹性模量比普通混凝土偏低.基于周期荷载试验结果,通过参数裂缝类型、分布能、延展性和设计值来评价梁柱结点处的性能,结果显示,利用再生混凝土浇筑的结点具备充足的结构性能。
2.2耐久性能
武汉大学刘数华、饶美娟对再生混凝土的变形性能主要包括弹性行为、干缩与徐变、温度变形性能,再生混凝土的耐久性包括渗透性、抗冻耐久性和抗化学侵蚀性能[11].对再生混凝土的变形性能和耐久性能进行深入分析,结果表明,再生骨料对再生混凝土变形性能和耐久性能虽有不同影响,但亦可满足于工程应用。
湖南省高速公路管理局龚先兵和长沙理工大学刘朝晖、李九苏对道路再生骨料混凝土的耐久性进行系统试验研究,包括抗硫酸盐侵蚀试验、抗冻性试验和干缩性试验,结果表明,再生骨料混凝土的耐久性能能够满足道路工程的需要[12]。
浙江大学徐亦冬,沈建生根据再生骨料的特性并结合当今的研究热点“高性能混凝土”技术,使再生混凝土向高性能化的方向发展[13].研究表明,尽管再生骨料属于低品质骨料,但通过将粉煤灰、矿渣及硅灰等矿物掺合料应用于再生混凝土中,充分利用粉体的优化组合以及界面强化效应,可使再生混凝上具有良好的工作性及较高的强度等级。
安徽水利水电学院的魏应乐对再生混凝士的抗渗性、抗冻融性、抗碳化、氯离子渗透性、硫酸盐侵蚀、耐磨性进行了分析,并提出了减小水灰比、掺加粉煤灰、采用二次搅拌工艺、减小再生骨料最大粒径、采用半饱和面于状态等改善再生混凝土耐久性的措施[14].研究结果表明,再生混凝土的抗渗性、抗冻融行、抗硫酸盐侵蚀性、抗氯离子渗透性和耐磨性均较普通混凝土弱。
美国威斯康星大学麦迪逊分校A.Gokce等在中干试验环境下,对引气型再生混凝土和非引气型再生混凝土进行自由状态下冻融耐久性试验[15],结果表明,直接冻融坚固性试验为判断再生混凝土集料的坚固性提供了更为实际的试验条件,硫酸盐坚固性试验不能预测再生混凝土集料的冻融难易程度。
英国诺桑比亚大学Alan Richardson等基于质量损失和极限抗压强度2个指标,采用对比试验,对再生混凝土的冻融耐久性试验进行研究[16],结果表明,再生混凝土与普通混凝土几乎有着相似的耐久性,原因归结于在分批前对再生集料仔细的选择和处理.耐久性是材料的一个重要指标,再生集料需要被大量的测试以便用于工业生产,本文表明了未来应用的可能性。
2.3抗剪性能
广西大学黄莹、邓志恒等通过对四点受力等高变宽梁进行剪切试验,探讨水灰比相同的条件下,再生骨料取代率对再生混凝土剪切性能的.影响[17].研究表明,再生混凝土剪切破坏形态和普通混凝土相似,但其抗剪强度和变形能力均低于普通混凝土.在对再生混凝土抗剪强度、剪切变形和剪切模量分析的基础上,绘制了再生混凝土的剪应力应变曲线,建议了剪应力应变曲线方程和剪切模量的计算公式。
广东省建筑科学研究院黄健和同济大学建筑工程系肖建庄、雷斌对影响再生混凝土梁抗剪承载力的各因素作了定性分析,得出再生混凝土梁抗剪机理,包括剪跨比、混凝土强度及配箍率在内的诸多因素对再生混凝土梁抗剪承载力的影响趋势与普通混凝土梁基本一致的结论[18].同时指出增大荷载分项系数可明显提高再生混凝土梁抗剪可靠度指标,但在配箍率较小时,荷载分项系数提高至1.5时再生混凝土梁抗剪可靠度也不能满足可靠度要求.增大再生混凝士抗压强度平均值,使其标准值达到与普通混凝土相同的水平,再生混凝土梁的抗剪可靠度均可满足规范要求,这是提高再生混凝土梁抗剪可靠度指标的最佳途径。
西安建筑科技大学刘丰、白国良等试验采用等高变宽梁,考虑混凝土强度等级和再生骨料取代率,研究了再生混凝土梁的抗剪强度和变形及其发展规律[19],得出了再生混凝土梁抗剪极限承载力与取代率没有直接关系的结论,同时还得出再生混凝土梁的切应力主应变曲线接近直线,试验所得抗剪强度相对普通混凝土较低的结论。
郑州大学的张雷顺通过13根再生混凝土梁与普通混凝土梁的对比试验,对再生粗骨料取代2.4抗震性能同济大学建筑工程系的肖建庄、朱晓晖完成了3种不同再生粗骨料取代率再生混凝土框架边节点在恒定竖向轴压荷载和水平低周反复荷载作用下的抗震性能试验研究[23],指出再生混凝土节点的破坏过程与普通混凝土相类似,虽然再生混凝土节点的抗震性能略低于普通混凝土,但再生混凝土节点的延性等抗震性能仍满足相应抗震设防要求,说明再生混凝土可用于有抗震设防要求的框架节点中。
同济大学结构工程研究所的孙跃东等通过对3榀1∶2比例框架模型在不同的竖向轴压荷载和水平低周反复荷载作用下的抗震性能的对比试验,研究了再生混凝土框架在低周反复荷载作用下以及不同轴向力作用下对再生混凝土框架抗震性能的影响[24].结果表明,再生混凝土框架,在不同轴力和低周反复荷载作用下,其受力特性、破坏形态和破坏机制没有明显的差别,破坏机构均表现为明显的“强柱弱梁”类型;再生混凝土框架具有较好的抗震性能,结构进入弹塑性阶段后,框架的滞回曲线均比较丰满,表明框架都具有良好的耗能能力;框架的位移延性系数为3.76~4.34,表明框架延性良好,再生混凝土框架的位移延性小于普通混凝土框架,随着轴向荷载的增加,框架的延性降低。
北京工业大学建筑工程学院的张建伟、曹万林等进行了7个剪跨比为1.5的中高剪力墙低周反复荷载试验研究[25],在试验的基础上,分析了各剪力墙的承载力、延性、刚度、滞回特性、耗能及破坏特征.研究表明,再生细骨料掺量的增加,使再生混凝土中高剪力 墙的抗震性能有所降低以及随着配筋率的提高,其承载力、延性、耗能能力有所提高.同时指出轴压比的提高,使再生混凝土剪力墙的承载力提高,弹塑性变形能力降低。
北京工业大学的尹海鹏等进行了1根普通混凝土柱和3根不同取代率的再生混凝土柱模型的低周反复荷载试验研究[26],模型按1/2缩尺.试验结果表明,随着再生骨料取代率的增加,其混凝土的弹性模量明显减小,试件初始刚度明显下降、承载力呈下降趋势、耗能值下降,抗震能力呈下降趋势,并指出再生混凝土柱可用于多层结构轴压比较小的柱的抗震设计。
3、存在问题及应用前景
3.1存在问题最近几年再生混凝土研究工作取得了一些成就,不过,鉴于再生骨料自身的局限性和目前我国对再生混凝土利用的实际情况,还存在一些障碍和不足,主要表现在以下几个方面。
(1)目前合适的处理废弃混凝土的设备与相关技术较少,对废弃混凝土再生利用的认识还不到位.
(2)废弃混凝土来源广泛且非常复杂,如何合理分级处理是需要解决的关键问题。
(3)相应的标准规范太少,实际操作时比较困难,目前还难以大面积推广。
3.2应用前景
再生骨料混凝土与普通混凝土相比,虽然在物理力学性能等指标上稍有逊色,但毋庸置疑的是,再生混凝土具有广阔的应用前景.具体应用时,可根据结构所处的部位进行选择性替代[27-28].对于主要的承重结构,再生粗骨料取代率可以适当减少,设定限值或容许范围.对于一般结构工程,例如人行道板、桥梁护栏、防护砌块和其它附属结构,取代率可根据情况适当增大。
摘要:
为了有效减轻不断增加的废弃混凝土带来的环保压力,减少资源浪费,建议对废弃混凝土回收处理成再生骨料,部分或全部代替天然骨料来配置再生混凝土,使废弃混凝土变成土木工程领域的绿色资源。文章从再生骨料生产工艺、性能,再生混凝土物理性能、力学性能及其耐久性等方面介绍了再生混凝土技术在国内外的研究进展,主要从材料、结构、力学性能,耐久性方面分析了再生混凝土的基本特性及其研究存在的问题,指出了需进一步深入研究的方向,为再生混凝土技术在科研与工程应用中提供参考意见。
关键词:
再生混凝土;再生骨料;力学性能;耐久性
1、再生混凝土简介及其研究的必要性
再生混凝土(Recycled Concrete),是指将废弃混凝土块经裂解、破碎、清洗与筛分后,制成混凝土骨料,部分或全部代替天然骨料配制而成新混凝土。它是再生骨料混凝土(Recycled Aggregate Concrete,RAC)的简称。
近年来,我国建筑垃圾逐年上升,建筑垃圾数量已占到城市垃圾总量的30%~40%,其中主要是废弃混凝土,这些垃圾严重影响了城市生活环境,造成了很大的环境污染。目前国内处理这些废弃混凝土的方法有两种:一、运往郊外堆存。这会成为新的垃圾源,显然不可取;二、作为回填材料简单地使用。这会浪费资源,不符合我国建设资源节约型社会要求。据估计,2008年发生的汶川特大地震,产生的建筑垃圾约3亿吨,地震所造成的建筑垃圾量远远超过中国每年建筑施工所产生的建筑垃圾的总和,地震所造成的建筑垃圾量十分庞大,如何对其进行资源化利用,是摆在我们面前的一个新的课题,也是一个挑战。再生混凝土技术是一个很好的解决方法,通过对废弃混凝土的再加工来恢复其原有性能,形成新的建材产品,从而既能对有限的资源进行再利用,又解决了部分环保问题。这既是发展绿色混凝土,实现建筑资源环境可持续发展的重要途径,也是建设资源节约型、环境友好型社会的具体体现。
2、再生骨料的生产工艺及性能
2.1 再生骨料的生产工艺
对废弃混凝土进行充分再利用的前提是要保证再生骨料生产工艺是经济可行的。再生骨料的生产需要解决一系列问题,包括对废弃混凝土块或钢筋混凝土块的回收、破碎与筛分等。简单的混凝土破碎及筛分工艺如图1所示。
2.2 再生骨料的性能
经过破碎处理的废弃混凝土,生产出的再生骨料含有30%左右的硬化水泥砂浆,这些水泥砂浆大多独立成块,只有少量附着在天然骨料的表面,导致了再生骨料密度小,吸水率高,粘结能力弱的特点。一般地,再生骨料棱角较多,表面比较粗糙。对废弃混凝土块进行再生破坏过程中,由于积累了损伤,会使再生骨料内部产生大量的微裂纹。研究表明,同天然骨料相比,再生骨料孔隙率较高,密度较小,吸水性增强和骨料强度较低。
3、再生混凝土物理性能及力学性能
3.1 再生混凝土物理性能
由于再生骨料的表观密度比天然骨料小,因此再生混凝土的密度比普通混凝土低。随着再生骨料掺量的增加,再生混凝土的密度有规律地减小,如果再生混凝土全部采用再生骨料,则其密度比普通混凝土相比,降低了7.5% 。再生混凝土有自重低的特点,这能降低结构自重,提高构件的抗震性能。同时,由于再生骨料孔隙较高,使得再生混凝土具有良好的保温性能。
3.2 再生混凝土的强度
再生混凝土的强度与基体混凝土(相对于再生混凝土而言,用来生产再生骨料的原始混凝土称为基体混凝土)的强度、再生骨料破碎工艺、再生骨料的替代率以及再生混凝土的配合比等密切相关。由于基体混凝土的强度等级、使用环境各不相同,裂解、破碎的'工艺及质量控制措施的差异,导致再生混凝土强度变化的规律性不明显,不同的研究者所得的结论也有所差异。Hansen的试验结果表明,随着基体混凝土强度的降低,再生混凝土的强度也下降。一般情况下,再生骨料混凝土的抗压强度基体混凝土或相同配比的普通混凝土的抗压强度更低,降低范围为0%-30%,平均降低15%。邢振贤等全部采用废弃混凝土再生骨料制作出再生混凝土,指出再生混凝土的抗弯强度约为基准混凝土强度的75%-90% 。和配合比相同的基准混凝土相比,抗压强度降低了9%,抗拉强度降低了7%。
应该注意的是,再生骨料表面包裹着水泥砂浆,使再生骨料与新的水泥砂浆之间弹性模量基本一样,界面结合可能得到一定的加强。以此同时,再生骨料表面的大量微裂缝会吸入新的水泥颗粒,使得接触区的水化更加完全,最终形成致密的界面结构。由于界面结合得到加强,一定程度的补偿了因再生骨料强度较低而导致的再生混凝土性能的劣化。
3.3 再生混凝土的弹性模量
由于再生骨料中有大量的老旧砂浆附着于原骨料颗粒上,导致再生混凝土的弹性模量通常较低,一般约为基体混凝土的70%-80%。再生混凝土弹性模量低,变形大,因此它的抗震性能和抵抗动荷载的能力较强。水灰比对再生混凝土的弹性模量影响较大,当水灰比由0.8降低到0.4时,再生混凝土的抗压弹性模量增加33.7%。
3.4 再生混凝土的干缩与徐变
再生混凝土的干缩量和徐变量比普通的混凝土增加了40%-80%。再生骨料的品质、基体混凝土的性能以及再生混凝土的配合比决定了干缩率的增大数值。Yamato等人研究表明,当天然骨料与再生骨料共同使用时,再生混凝土的干缩率会增加;水灰比增加时,再生混凝土的干缩率也会增加。
4、再生混凝土的耐久性
4.1 再生混凝土的抗渗性
与混凝土渗透性有关因素主要分为两类。
(1)混凝土拌和料的组分、拌和物配合比以及工艺参数,即拌和料的制备、成型和养护等;
(2)混凝土随时间而发生的变化,即在外部环境、结构应力、流体性能和渗透条件等因素作用下,混凝土内部发生的物理和化学变化。
由于再生骨料的孔隙率较大,因此再生混凝土的抗渗性比普通混凝土低。但是往再生混凝土里掺加粉煤灰之后,由于粉煤灰能使再生骨料的毛细孔道细化,因而很大地改善了再生混凝土的抗渗性。
4.2 再生混凝土的抗硫酸盐侵蚀性
再生混凝土的孔隙率及渗透性较高,它的抗硫酸盐侵蚀性比普通的混凝土差。同样的,往里面掺加粉煤灰,能够减少硫酸盐的渗透,使其抗硫酸盐侵蚀性有较大改善。
4.3 再生混凝土的抗裂性
与普通混凝土相比,再生混凝土极限伸长率增加了27.7%。再生混凝土弹性模量较低,拉压比较高,因此再生混凝土抗裂性比基体混凝土更好。
4.4 再生混凝土的抗冻融性
再生混凝土的抗冻融性比普通混凝土差。Yamato等人研究表明,再生骨料与天然骨料共同使用时或者减小水灰比可提高再生混凝土的抗冻融性。
5、结语
通过对再生混凝土的研究,我们得出以下结论与建议,希望能够引起行业或者有关部门的重视。
第一,再生混凝土技术可以从根本上解决废弃混凝土的出路问题,既能减轻废弃混凝土对环境的污染,又能节省天然骨料资源,具有显著的社会、经济和环境效益,是发展绿色混凝土的主要途径之一,符合我国可持续发展战略的要求。
第二,在工程应用研究中,不单要对如何提高再生混凝土的强度进行研究,而且还要对其耐久性如抗渗性、抗裂性等加强研究,来逐步提高再生混凝土的性能。
第三,同普通混凝土相比,再生混凝土的配合比设计和施工工艺均有许多不同之处,应区别对待。
第四,对再生混凝土进行合理设计,基本上能够达到普通混凝土的性能要求。为了更好地推广应用再生混凝土技术,我们还需要对其结构性能(抗弯,抗剪,抗冲切及抗震等)和设计方法多加强研究。
第五,再生混凝土与普通混凝土在原材料、配合比以及施工工艺等方面有重大差异,按照现行普通混凝土的标准、规程等显然是有许多不足之处的;另一方面,国内的水泥、骨料与国外使用的水泥、骨料在成分和性能上差别也较大,因而更不能直接使用国外的相关标准。因此,建议结合再生骨料分级情况,尽早制定出适合国内情祝的再生混凝土的有关标准和规程。
第六,通过对再生混凝土的经济性进行综合研究,在我国广泛推广应用再生混凝土,同样需要xx积极的产业政策扶持和国家的法律法规保障。
参考文献
[1] 苏南,王博麟.废混凝土回收粗粒料品质与再生混凝土工程性质之探讨[J].中国土木水利工程学刊,2009,12(03):435-444.
[2] 吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报,2011 (01):1~5.
[3] 邢锋,冯乃谦,丁建彤.再生骨料混凝土[J].混凝土与水泥制品, 1999(02):10~13.
[4] 孙跃东,肖建庄.再生混凝土骨料[J].混凝土,2014(06):33-36.
[5] 邢振贤,周日农.再生混凝土性能研究与开发思路[J].建筑技术开发,2005,25(05):28-31.
[1]陈强. 钢筋混凝土粘结性能和梁裂缝的数值模拟[D].浙江大学,2011.[2]陈红梅. 钢筋混凝土桥梁病害分析及其维修加固[D].大连理工大学,2011.[3]于秋波. HRB500级钢筋部分预应力混凝土梁受力性能研究[D].郑州大学,2008.[4]宋立元. 海洋钢筋混凝土结构氯离子腐蚀耐久性研究[D].大连理工大学,2009.[5]师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D].天津大学,2009.[6]何庆锋. 钢筋混凝土框架结构抗倒塌性能试验研究[D].湖南大学,2010.[7]易伟建,何庆锋,肖岩. 钢筋混凝土框架结构抗倒塌性能的试验研究[J]. 建筑结构学报,2007,05:104-109+117.[8]马千里. 钢筋混凝土框架结构基于能量抗震设计方法研究[D].清华大学,2009.[9]杨伟. 钢筋混凝土结构损伤性能设计及整体抗震能力分析[D].哈尔滨工业大学,2010.[10]蔡斌. 钢筋混凝土结构可靠性若干问题研究[D].吉林大学,2011.[11]朱红兵. 公路钢筋混凝土简支梁桥疲劳试验与剩余寿命预测方法研究[D].中南大学,2011.[12]徐伟栋. 配置高强钢筋的混凝土柱抗震性能研究[D].同济大学,2007.[13]陈磊. 基于ANSYS的钢筋混凝土结构试验有限元分析[D].西安理工大学,2004.[14]张素芬. 钢筋混凝土框架结构抗连续倒塌分析[D].湖南大学,2008.[15]张普,朱虹,孟少平,吴刚,吴智深. FRP片材增强钢筋混凝土梁刚度与变形计算[J]. 建筑结构学报,2011,04:87-94.[16]王东升,司炳君,孙治国,李晓莉,艾庆华. 地震作用下钢筋混凝土桥墩塑性铰区抗剪强度试验[J]. 中国公路学报,2011,02:34-41.[17]何庆锋,易伟建. 考虑悬索作用钢筋混凝土梁柱子结构抗倒塌性能试验研究[J]. 土木工程学报,2011,04:52-59.[18]周颖,吕西林. 智利地震钢筋混凝土高层建筑震害对我国高层结构设计的启示[J]. 建筑结构学报,2011,05:17-23.[19]孙治国,王东升,郭迅,李晓莉. 钢筋混凝土墩柱等效塑性铰长度研究[J]. 中国公路学报,2011,05:56-64.[20]张元鹏. 多层钢筋混凝土框架结构抗连续倒塌性能评估[D].湖南大学,2009.
行业主要上市公司:旭建新材(430485)、丰众建科(871465)、索纳塔(839089)、鑫力新材(873146)等
本文核心数据:加气混凝土砌块产量、加气混凝土砌块产值、加气混凝土砌块前景预测
加气混凝土砌块产量持续增长
加气混凝土砌块是以硅质材料(如石英砂、粉煤灰、高炉矿渣、铁尾矿等)和钙质材料(如水泥、石灰等)为原材料,加入适量的 发气剂,经磨细配料、混合搅拌、浇注发泡、配体静停、切割和压蒸养护等工序加工制成,是一种轻质多孔、保温隔热、防火性能良好、可钉、可锯、可刨和具有一定抗震能力的新型建筑材料。
1958年,原建工部建筑科学研究院开始研究,1962年起建筑科学研究院与北京有关单位研究并试制了加气混凝土制品,并很快在北京矽酸盐厂(现北京轻质材料厂)和贵阳灰砂砖厂进行工业性试验获得成功。1965年引进瑞典西波列克斯公司专利技术和全套装备,在北京建成我国家加气混凝土厂——北京加气混凝土厂,标志着我国加气混凝土进入工业化生产时代。到“十二五”、“十三五”期间,我国加气混凝土工业得到快速发展,生产规模日益扩大,技术装备和产品档次有了较快提升,品种和质量有了较大的提高。
据统计,随着国内企业开始引入国外先进设备以及自主研发新设备进程的加快,国内加气混凝土砌块行业面临着产能过剩压力持续增大。2017年,我国加气混凝土砌块行业实际产量约1.25亿立方米;2020年,产量增长至1.9亿立方米,同比增长18.75%。
行业产值近五百亿元
据中国加气混凝土协会数据显示,2019年,中国加气混凝土砌块行业产值约为460亿元。2020年,中国加气混凝土砌块行业产值约为480亿元。
政策助力行业发展
从近几年的政策砌块来看,在绿色建筑的推动下,环保节能型产品逐渐成为主流。加气混凝土砌块凭借其优秀的属性成为绿色建筑材料之一,将应用到各种装配式建筑、绿色建筑中。在政策的引导下,未来加气混凝土砌块将迎来广阔的市场。
行业产值有望突破千亿
2021年是国家“十四五”规划的开局之年,以国内大循环为主体、国内国际双循环相互促进的新发展格局将逐渐建立。在当前碳中和、碳达峰的大背景下,绿色建筑、绿色建材和装配式建筑的发展需求愈发强烈,这为加气混凝土砌块行业发展提供了机遇。根据2020年加气混凝土砌块行业的产值4.35%的增长速率来看,未来加气混凝土行业的增长在政策市场的利好推动下将进一步增速,有望达到10%以上的增长速率。到2026年,中国加气混凝土砌块行业市场规模有望突破千亿。
以上数据参考前瞻产业研究院《中国加气混凝土砌块行业市场前景预测与投资战略规划分析报告》。
背景:当今科技发展越来越迅速,建筑结构形式也随之变得多样化,框架结构是由许多梁和柱共同组成的框架来承受房屋全部荷载的结构。高层的民用建筑和多层的工业厂房,砖墙承重已不能适应荷重较大的要求,往往采用框架作为承重结构。混凝土框架结构广泛用于住宅、学校、办公楼,其作为一种常用的结构形式,具有空间分隔灵活,自重轻,节省材、传力明确、结构布置可以灵活地配合建筑平面布置、抗震性和整体性好的优点。国内外的研究状况:1.在设计的计算理论方面:在工程结构设计规范中已采用的基于概率论和数理统计分析的可靠度理论,概率极限状态计算体系要不断完善;混凝土的微观断裂机理、混凝土的多轴强度理论及非线性变形的计算理论等方面也需要更大的突破,并应用于工程结构设计中。2.在计算机软硬件方面。电子计算机的普及和多功能化,CAD、PKPM等软件系统的开发,缩短了建筑结构设计的时间和工作量,提高了经济效益。3.在材料研究方面。混凝土主要是向高强、轻质、耐久、易成型及具备某种特殊性能的高性能混凝土方向研发。钢筋的研发方向则是高强、防腐、较好的延性和良好的粘结锚固性能。4.在结构形式方面。预应力混凝土结构由于抗裂性能好,可充分利用高强度材料,各种应用发展迅速。一些高性能新型组合结构具有充分利用材料强度、较好的适应变形能力(延性)、施工较简单等特点,也得到广泛应用。5.在实验技术方面。通过对混凝土结构设计理论和设计方法及设计软件等方面大量研究,先进的现代化城市技术保证了实验研究更精确、更系统。
中国期刊全文数据库 共找到 381 条[1]李玉,何平,谢喜山. 后浇混凝土与砖砌体粘结面抗剪强度的试验研究[J]. 四川建筑科学研究, 2006,(02) . [2]黄文明. 泵送混凝土的施工工艺分析[J]. 安徽建筑工业学院学报(自然科学版), 2005,(01) . [3]王顶堂. 大体积混凝土裂缝控制技术应用研究[J]. 安徽建筑工业学院学报(自然科学版), 2008,(06) . [4]王文中,王国荣,殷济波,殷风雨. 芜湖临江桥主塔C50预拌混凝土的设计及应用[J]. 安徽建筑, 2008,(01) . [5]黄志福. 论机制砂在高速公路中应用的经济效益[J]. 安徽建筑, 2009,(02) . [6]钟庆华,赵成宇,高卉. 船闸工程“双掺”泵送混凝土配合比试验研究[J]. 安徽水利水电职业技术学院学报, 2005,(04) . [7]王朋. 大体积混凝土施工温度控制计算[J]. 安徽水利水电职业技术学院学报, 2008,(03) . [8]张宏梅,王耀华,毕亚军,陆明. 含钢丝网遮弹层的结构靶的力学性能与枪弹射击试验研究[J]. 兵工学报, 2005,(02) . [9]韩延清. 水泥GB法与ISO法对比试验与应用[J]. 本溪冶金高等专科学校学报, 2002,(01) . [10]赵军,张海军,田向阳. 基于耐久性的混凝土配合比设计方法[J]. 平顶山工学院学报, 2003,(01) . >>更多 中国博士学位论文全文数据库 共找到 7 条[1]陈斌. 混凝土配合比优化及结构早期裂缝防治研究[D]. 浙江大学, 2005 . [2]牟晓光. 高强预应力钢筋粘结性能试验研究及数值模拟[D]. 大连理工大学, 2006 . [3]王雨利. 低强度等级泵送高石粉机制砂混凝土的研究[D]. 武汉理工大学, 2007 . [4]曾磊. 型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D]. 西安建筑科技大学, 2008 . [5]王立军. 混凝土强度无损检测试验及人工智能系统模型研究[D]. 天津大学, 2008 . [6]张德成. 硫铝酸盐水泥基高性能混凝土的结构—性能及工程应用研究[D]. 武汉理工大学, 2009 . [7]伍崇明. 核工程抗强辐射屏蔽混凝土试验研究[D]. 中南大学, 2008 . 中国优秀硕士学位论文全文数据库 共找到 62 条[1]李小法. 太原滨河小区高层住宅现浇混凝土楼板裂缝的预防及治理[D]. 天津大学, 2004 . [2]潘振. 钢筋混凝土简支梁试验系统的研制开发[D]. 南京林业大学, 2004 . [3]吴蓉. 商品混凝土回弹法测强曲线的研究[D]. 郑州大学, 2004 . [4]刘红军. 框架结构梁柱节点施工质量控制的研究[D]. 天津大学, 2003 . [5]刘卫华. 组合模块式加筋土挡墙墙面板与筋带的摩擦性质研究[D]. 长安大学, 2004 . [6]宗荣. 聚丙烯纤维混凝土使用性能研究[D]. 长安大学, 2004 . [7]陈(韦华). 5万吨级扩建码头施工(技术)工艺研究[D]. 河海大学, 2004 . [8]黄祚继. 临淮岗船闸底板混凝土裂缝控制方法研究[D]. 河海大学, 2005 . [9]武欣慧. 基于人工神经网络的普通混凝土强度预测的研究[D]. 内蒙古农业大学, 2005 . [10]宗永红. 乌鲁木齐地区碱-骨料反应及预防措施的研究[D]. 新疆大学, 2005 . >>更多 中国重要会议论文全文数据库 共找到 17 条[1]范孟岭,卓晓明. 商品混凝土在公路工程中的应用[A]. 2007'中国商品混凝土可持续发展论坛论文集[C], 2007 . [2]康忠寿. 高强混凝土的配合比设计[A]. 预制混凝土桩——中国硅酸盐学会钢筋混凝土制品专业委员会、中国混凝土与水泥制品协会预制混凝土桩委员会2007-2008年年会论文集[C], 2008 . [3]张波,张方. 聚羧酸盐高效减水剂、大掺量复合掺合料及机制砂在大体积混凝土中的应用[A]. 2008中国商品混凝土可持续发展论坛暨第五届全国商品混凝土技术交流大会论文集[C], 2008 . [4]江守恒,朱卫中. 大体积混凝土实体强度发展规律及其表征[A]. 2008中国商品混凝土可持续发展论坛暨第五届全国商品混凝土技术交流大会论文集[C], 2008 . [5]刘本刚. 浆水回收再利用在混凝土中的试验与应用[A]. 2008中国商品混凝土可持续发展论坛暨第五届全国商品混凝土技术交流大会论文集[C], 2008 . [6]江涛. 商品混凝土质量教训35例[A]. 2008中国商品混凝土可持续发展论坛暨第五届全国商品混凝土技术交流大会论文集[C], 2008 . [7]曹志强,张广山,华玉,马卫华,柳丽霞. CFRP约束受损混凝土圆柱的应力-应变关系研究[A]. 第五届全国FRP学术交流会论文集[C], 2007 . [8]陈喜旺,丁宏,黄天贵,史忠,李路明. 海洋冻融环境防腐阻锈混凝土的研究与应用[A]. “全国特种混凝土技术及工程应用”学术交流会暨2008年混凝土质量专业委员会年会论文集[C], 2008 . [9]蒋学茂,任学军,苏话诚. 泵送混凝土在超高层建筑施工中的应用[A]. 建设工程混凝土应用新技术[C], 2009 . [10]卫海亮,陈江,卢则阳. 烟台世茂海湾工程大体积混凝土施工温控监测及分析[A]. 建设工程混凝土应用新技术[C], 2009 .
从目前的情况看,设计.上对混凝土裂缝有一定范围。从我国的“混凝土结构设计规范《GBJ10- -89)”表3.3.4规定看,其裂缝宽度在不同的环境下,不同的混凝土结构物其裂缝的宽度也有所不同的控制标准,允许裂缝宽度为0.2~0.3mm.而从国外的情况看,不同的国家对混凝土构筑物的裂缝宽度也有不同的规定,如1970年欧洲混凝土专业委员会的规范所收集各个国家的标准设计裂缝规定如下:美国AGl规范规定 裂缝为0.108mm;法国,规范规定裂缝为0. 27mm;