首页 > 期刊投稿知识库 > 高中数学立体几何教学论文

高中数学立体几何教学论文

发布时间:

高中数学立体几何教学论文

数学教学的知识具有抽象性、严谨性、广泛性、辩证性等基本特征,相比于其他的学科,数学教学知识素养具有更高的要求。下面是我为大家整理的高中数学小论文,供大家参考。

摘要:课堂作为学生接受知识的主要场所之一,教师的课堂教学效率问题备受瞩目。高中数学课堂教学效率的提高,在很大程度上可以激发学生学习数学的兴趣和信心。在此过程中,授课教师应根据教学任务和实际情况,借助多媒体技术和现代化教学手段来激发学生在数学学习中的兴趣,引导学生发现问题并解决问题,从而提高教学质量。

关键词:高中数学;教学;效率;策略

高中数学以其难度大、知识点多且课时量大的特点,在所有高中课程中一直占据着较大的比例。因此,高中数学的课堂教学效率决定着学生对数学这一学科的本质认知以及是否可以重拾或加深学习数学的兴趣,授课教师要怎样改变单一古板的教学模式,如何运用恰当有效的教学方法,将会对学生日后的数学学习产生深远影响。本文针对此问题提出三种策略以提高高中数学课堂的教学效率。

1兴趣创造知识

兴趣是做任何事情的根基,尤其是在探究数学的道路上。数学是一门相对枯燥乏味的科学,如何提起学生学习数学的兴趣是高中数学授课教师在准备教学过程中应首先考虑的问题,并且要将此问题融入到设计教学的内容、方法和手段中。授课教师应做到以下两点:第一,教师应从自身出发彻底改变传统的教学观念和教学模式,让填鸭式、题海式的教学模式远离高中数学课堂。并从学生的实际出发,选取适合高中生认知的方法开展教学。积极营造良好的课堂气氛,一改高中数学课堂压抑沉闷的教学氛围。第二,教师要将课堂还给学生。在新课程标准下,更加强调学生占据课堂学习的主体地位。学生本应是学习的主体,但一直以来的高中数学课堂都是老师教,学生学的单一模式,而这种模式不仅不利于教学质量的提高,而且会磨灭学生对数学学习的兴趣。因此,学生只有变被动为主动的接受知识,才能意识到自己是课堂教学的主体,是学习的主体,才会对学习内容产生兴趣并进行深入研究,并且乐于接受学习中的困难和挑战。综上,高中数学课堂教学效率的提升不仅得益于学生的课堂参与及课后探究,更离不开让学生积极主动去学习的动力——兴趣。

2不是替学生解决问题,而是教学生自己解决问题

高中数学在升学考试中一直占据着较大比例,因此,很多一线数学教师急于培养学生的应试能力,采取大量的题海战术,长此以往,在教师的认知中,学生可以不断在做题解题的过程中意会数学这一学科的真正本质,并掌握相应的解题方法,这是教师认知中普遍存在的错误。教师将解决问题的方法直接授予学生,不仅阻碍了学生思维的发展,而且扼杀了学生勇于创新的主动性和积极性。所以,高中数学课堂教学中,教师的任务不是替学生去解决问题,而是教学生自己去探索并解决问题。教师应鼓励学生的发散思维,多角度考虑问题,让学生养成良好的思维习惯,不拘泥于一种思维形式。鼓励学生自己发现问题,并试图用自己的办法去解决问题。要知道,经验和教训是需要通过尝试和努力之后自己总结出来的,而不是通过别人的行为或想法获取的。此时教师的角色便是积极引导,解答学生在探索过程中遇到的疑惑。

3将科学技术融入高中数学课堂

科学技术作为第一生产力,也要以其独到的形式融入到高中数学课堂,即多媒体技术的应用。数学作为一门较抽象且枯燥乏味的学科,尤其是学生在接触更加抽象、复杂的领域时,多媒体教学以及其他科技手段的引入,将抽象又枯燥的数字及图形变得活灵活现。比如高中几何教学中涉及的图形,以及高中代数教学中涉及的函数教学,其中有众多的数量关系问题,图形结合问题,代数和几何综合性的应用题,传统的这些教学,教师借助传统教学用具,在黑板上体现不直观、不具体,学生理解困难,教学质量不佳,但是,这些问题随着多媒体技术的融入,都迎刃而解。多媒体对图像的表达更加直观,学生对知识点的明确更加清晰,教学效果显著提升。例如,在解决函数问题上,教师可以通过多媒体展示动态函数图像,清晰的坐标图以及收缩可控的图像效果,都会深深印在学生的脑海中,而这样的教学效果是传统的黑板画图教学所达不到的。再比如空间立体几何教学,教师在黑板上很难体现出图形的空间感和立体感,而多媒体却可以弥补这一空缺。即使通过多媒体教学可以培养学生的主体参与意识可以达到师生互动的课堂效果,但多媒体只是填补传统教学漏洞的一种辅助教学手段,所以只有适度使用才能发挥其最大价值,才能更好地提升课堂教学效率,促进教师与学生之间更好的交流和沟通的形成。

4总结

综上所述,高中数学教师应积极构建和谐的师生关系,在教学中激发学生对数学学习的热情和兴趣,积极引导学生发现问题探究问题继而解决问题,并借助多媒体技术以及现代化手段让知识在学生大脑中留下生动形象的记忆,改变高中数学课堂的枯燥氛围。这需要授课教师和学生的积极配合,在完成教学任务的基础上,培养学生的学习能力,从而提高高中数学课堂学习效率。

参考文献:

[1]郝保奎.浅议提高高中数学课堂教学效率的方法[J].现代阅读(教育版),2013,(1):129.

[2]朱亚珍.提高高中数学课堂教学效率策略研究[J].数字化用户,2013,(4):87-88

摘要:当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。

关键词:高中数学;教育;创新能力

1.前言

创新是一个社会、一个国家发展的动力源泉,是我国站立在世界列强、屹立在民族之林的保证。我国的数学教育在世界上一直走在时代的前沿,但是我国学生的创新能力却存在普遍落后的现象。教育的发展要顺应时代的变化,尤其在我国处于一个转型期的关键时期,更要通过教育来培养出一批将来社会的栋梁人才。因为培养学生们的创新意识和创新能力,也成为了课堂上教学重点的重中之重。从数学课程来分析,创新能力主要表现在学生对教学知识的接受和学习能力,对既出数学问题的理解和分析能力,对应用数学的掌握和运用能力,这部分能力成为了高中数学教育中必须抓重的部分。为了达到学生创新能力的培养,需要教师们在课堂上不断的设立问题,打开学生们的大脑,鼓励学生的发散思维,让学生在分析和思考中,培养创新能力。本文将就如何提高高中数学教学中学生们的创新意识和创新能力进行论述。

2.高中数学教育学生创新意识的养成

创新意识的培养,就是为了使学生能够自觉的用创新的思维、用多种角度来解决高中数学学习中的问题。教师应该打破以往的教学模式,顺应时代的变化,采用现代化的教学手段,在理论方面实现创新的同时,注重实际的运用,使学生习惯用创新的思维和眼光去看待问题和解决问题。

(1)鼓励提问和质疑,培养创新的行为。所有的创新,离不开对事件本身的质疑。只有发现问题,才会想办法去解决问题,才会形成一定的创新意识。高中数学知识的教授对学生而言本来就存在很多难以接受的点,鼓励学生大胆的提问,对命题和真理大胆的质疑,而不是用搪塞的方法把学生的创新苗头给掐死在摇篮里。用宽容的态度,用引导的方式来处理学生们的提问和质疑,尝试一题多解的方法来拓宽学生的思维方式,用对命题真理推演的过程提高学生的发现和分析能力。通过这些,能有效的使学生们自觉的思考问题,形成自我主动性的创新,也就是潜移默化的培养出了创新意识。

(2)构建新型的课堂氛围。传统的教和学的方式已经很难适应新时代的教育需求,创新意识的养成离不开互动性的氛围,应该给予学生们主动思考的空间和时间,所以课堂气氛的营造是培养学生创新能力很重要的一点。教师在教学的过程中应当充分的和学生们进行互动,多提出问题,把自己定位成问题讨论的参与者,和学生们一起解决问题。同时对于学生们的理性思维问题,给予充分的帮助,让学生们体会到课堂的温馨,才会促使他们愿意在课堂上去共同解决问题。

3.高中数学教育学成创新能力的培养

数学教学是一个复杂的动态的教学模式,随着时代的发展,数学的教学模式也在一直发生改变。而培养创新能力是时代发展的结果,是社会进步的前提,所以在多变的高中数学教学中培养学生的创新能力,是新时代社会的需求。

(1)发展学生的探索能力。高中的数学学习不应该知识简单的接受和模仿,还应该多多自主探讨,尝试合作交流,培养自学的方式。多样性的学习,能放拓宽学生的思维方式,对创新能力的培养有着促进作用。发展学生的自学能力。自学能力是实现学生终生学习的基础,是学生不断进步、不断超越自己的基本能力。教师应该放开手脚,给予学生们充分的时间,引导他们自主学习。形成了自主学习,就形成了自主思考的能力,再结合平时课堂上正确的引导,这种自主思考能力能很快的转变为创新能力,成为学生终身受用的财富。提倡探索性学习。在教学的过程中,教师不能只扮演一个传授知识的角色,而应当以学生的兴趣为中心,利用数学的基本原理和相应的辅助教学手段,给学生们提出问题,一起进行探索性的解决问题,培养学生的思维能力。把理论知识和其他应用科学结合在一起,不断的为数学的教学注入活力,探索式的思考和解决问题,将有利于学生创新能力的培养。合作学习。善于合作的人,才能更适合社会的发展。教学过程中,教师应当注意避免学生一个人去面对问题,而是多方共同讨论,在合作讨论的过程中,学生们取长补短,形成了自主的学习,能为自己的思维方式进行自我的改善,这样能极大的激发学生的创新能力。

(2)利用解题教学方式。创新能力的培养,不但在于使学生们发现问题的本质,更注重的是使学生们自主解决生活的问题或者学术上的难题。所以教师应该在学生基本掌握了理论的基础上,自主学习解题的技巧,从多个角度来看到问题,形成良好的思维习惯。所以教师应该避免说教式教学,应该让学生们自己发现问题,然后从所学的知识中自主进行验证,这样即可以充分调动学生们的想象力,还能使学生们的思维方式拓宽,提高创新能力。

(3)教师教学观念的更新和学科的创新教育。数学是一门活学活用的学科,在高中数学教育中培养学生的创新能力,也就是培养学生们的思维方式,让他们形成自主的发现问题、解决问题的套路,最后形成一般规律。所以在这其中,教师必须具有创新意识,改变传统的教学思路,采用研究性教学。

4.结语

当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。

参考文献

1、高中数学教师如何指导高一新生走进数学武增明上海中学数学2004-08-20

“哪里有数学,哪里就有美!”——古希腊数学家普洛克拉斯。 一提到美,人们总是不禁想到“绕梁三日”的音乐之美;或是想到“巧夺天工”的艺术之美,或是想到“江山如此多娇”的自然之美……然而,现在的绝大多数学生都不会把高中数学和美联系到一起,这也在一定程度上说明我们数学美学教育的欠缺。据调查分析,现在的学生对数学的兴趣是建立在他们优异的初中数学成绩上,而进入高中后,数学难度骤增,导致多数学生的数学成绩骤降,从而一下子失去了对数学的热爱。由爱转恨来的如此的突然就是由于他们对数学是一种“假”的兴趣。而在数学教育中渗透美学教育,能激发学生对数学的“真”的兴趣,而这样的兴趣正是学生最好的老师。 人的爱美天性在青少年时期表现尤为突出,数学教师应当抓住这个最佳时期,不失时机地向学生揭示数学之美,从而愉悦他们的心境,激发他们的兴趣,陶冶他们的性情,塑造他们的灵魂,进而让学生领悟数学美,欣赏数学美,创造数学美。大数学家克莱因认为:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。” 那什么是数学美呢?罗素说:“数学,不但拥有真理,而且也具有至高的美,真正雕刻的美,是一种冷而严肃的美!”数学美不同于绘画,音乐等艺术之美,也不同于鲜花,彩虹等自然之美,它是一种科学力量的感性与理性的显现,是一种人的本质力量通过数学思维结构的呈现,这是一种真实的美,是反映客观世界并能改造客观世界的科学美。数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有具体的公式、定理美,而且有结构、整体美;不仅有语言的简明、精巧美,而且有方法与思路的奇异、统一美;不仅有逻辑、抽象美,而且有创造、应用美。而作为新一代的教师,正是要不断的去挖掘数学美,不断的去传授数学美,让学生感受到数学美,从而激发学生学习数学的兴趣。 新课标背景下,更是要求教师要在数学教育过程中实施美学教育,培养学生的审美能力,从而形成美的心灵,美的灵魂。而如何将美学教育贯彻到数学教学中呢,笔者在近些年的教学过程中,对此感触颇多。 一:简洁的数学美 爱因斯坦说过:“美,本质上终究是简单性。”而数学中的简洁美简直是无处不在。欧拉公式——“V+F-E=2”堪称简洁美的典范。世间的凸多面体无穷无尽,但是他们的面数,顶点数,棱数都符合这个简单的公式。此外,为大家熟知的勾股定理,用一个简单的二次式“ ”描述了全体直角三角形的直角边和斜边的关系。微积分基本定理更是用一个简洁的式子“ ”描述了定积分和原函数之间的关系。纵观整个数学史,伟大的数学家们无不为了追求更加简洁更加通用的定理而付出毕生精力。其中一些像是哥德巴赫猜想这样的富含简洁美的猜想正被无数的数学爱好者们努力攻破着。 我国著名数学家陈省身说过:“数学世界中,简单性和优雅性是压倒一切的。”作为新一代的教育者的我们,必须善于挖掘教材中的简洁美,适时的总结数学公式的简洁与通用,让他们感受到数学的简洁美,从而抓住他们的心。 二.统一的数学美 浩瀚宇宙,包罗万物。宇宙中的天体无穷无尽,而探究宇宙的奥秘一直是人类的追求梦想。面对无数的天体运动,人们研究出它们运行的轨迹或是椭圆,或是双曲线,或是抛物线,而数学上用仅用一句话就能将其统一起来:“到定点的距离与它到定直线的距离比是常数e的轨迹。当时,轨迹是椭圆;当时,轨迹是抛物线;当时,轨迹是双曲线。”数学中的统一美可见一斑。此外,立体几何中,台体的表面积和体积公式更是将椎体和柱体的表面积和体积公式和谐的统一起来。三角函数中,“万能公式”更是将正弦、余弦、正切统一的用正切来表示。何其统一啊,何其美啊! 而统一美的在教学中尤为重要,教师不仅要善于发现总结统一美,更要及时的将其向学生传授,正是在各种各样的统一美的介绍和学习过程中,让学生进行分析比较,从而从本质上突破难点重点,感受数学的统一美。 三.奇异的数学美 毕达哥拉斯说:“凡物皆数。”他将自然界和数和谐统一起来了。有一次,他的朋友问他:“我和你交朋友,和数有关吗?”他回答说:“朋友是你灵魂的倩影,要象220与284一样亲密。”望着困惑不解的人们,毕达哥拉斯解释道: 220的全部真因子1、2、4、5、10、11、20、22、44、55、110之和为284;而284的全部真因子1、2、4、71、142之和又恰为220。这就是亲密无间的亲和数。真正的朋友也象它们那样。奇异的数学美让听者无不折服,至今还有不少学者对亲和数津津乐道。此外,他还用完美数——所有的真因子和等于本身的数来形容美满的婚姻。高中数学里,圆锥曲线部分,离心率e的值是0.9999的时候,轨迹还是一个椭圆;而当它变成1时,轨迹却是抛物线;当它再变成1.0001时,轨迹又变成了双曲线。丁点的变化,却导致图像的截然不同,真是奇异啊。数学中确实是存在着许多奇异美,而正要通过我们的悉心挖掘,让学生感受到数学的神奇。 四.自然的数学美 新课标提出:“数学源自生活,并应用于生活。”生活中的数学处处可见,例如,黄金分割数0.618, 它是最和谐的比例关系,具有很高的美学价值。人的肚脐高度和人体总高度之比接近等于0.618;主持人主持节目时,站在舞台的黄金分割点位置,不显得呆板,声音传播效果最好;在建筑造型上,黄金分割处布置腰线或装饰物,则可使整幢大楼显得雄伟雅致。蜜蜂房呈六角形,角度也很精确,钝角 109 ° 32 ′,这样的巢不但节省材料,而且结实坚固,令人类工程师惊叹不已!更另人惊奇的是蜜蜂还知道两点间的最短距离,蜜蜂在花间随意来去采集花蜜后它知道取最直接的路线回到蜂房。 而善于利用自然界以及生活中的数学实例,展示数学的美和自然生活的完美结合,往往能让学生感受到数学的实用性,让学生真正的对数学产生兴趣。 有人说:如果把数学当作诗集来读,那么摆在面前的任何一本数学教程,就会突然从一堆死气沉沉的公式变成洋溢着和谐、充满着绝妙和浸透了对称美的一部诗集。只要我们把数学美融于数学的教学中,那么不但我们的授课变的轻松自然,而且学生也会如释重负,不断提高对数学的兴趣,使教与学达到和谐、完美、统一。 诚然,数学中蕴含的美是博大精深的,数学美不仅以上几点,它几乎贯穿于数学的方方面面。此外数学定理公式的对称性,相似性,和谐性,传递性等都是美的体现;有时候甚至是数学问题都展示着美,解体方法也散发着美的味道。当然数学不像是一首好曲子或是一件旷世的艺术品一样能一眼品出它的美,特别对课业繁重的学生而言,他们受阅历水平,基础知识,数学训练等影响,很难把各色的数学美都品味出来。这就要求教师们需要精心研究,不断从相对枯燥的教材中去发现美,并不失时机的加以引导和培养。展望未来的教育趋势,美育教学和数学教学的结合是必要的,必然的,不仅仅为了唤醒学生日益减弱的数学兴趣,更是为了提高学生的审美能力,从而培养下一代的创造美的能力。

高中就写论文啦?

在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读! 高中数学教学论文范文篇一:高中数学教学 反思 一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的 总结 和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善 教学 方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 高中数学教学论文范文篇二:高中数学信息技术的运用 一信息技术在高中数学教学中应用的必要性 信息技术在高中数学教学中的运用,能够形成动态的数学知识,帮助学生更好地理解有关知识,提高学生对问题的观察、分析和解决能力。高中数学的内容与图形有关的较多,高中生的各方面能力发展还不完善,教师要进行适当的引导,帮助其理解难度较大的图形问题,运用信息技术,能够使这些抽象的知识具体化,使原本静态的图形“动起来”,将复杂的问题简单化。如在教学立体图形三视图时,以长方体为例,教师借助多媒体教学设备向学生展示一些生活中的长方体,让学生对长方体的直观图有所了解,然后从这些生活物品中分离出的长方体直观图,让学生对长方体的高、长、宽有初步的认识,同时让学生找出屏幕上长方体的高、长、宽,并进行三视图的绘画。此外,还可以让学生找出生活中的长方体,培养学生的空间 想象力 。因此,在高中数学教学中运用信息技术有助于提高教学的质量,培养学生的综合能力,对教学有很大的促进作用。 二高中数学教学中运用信息技术的策略分析 1.对软件进行模拟,将抽象的数学知识具体化 高中数学的教学,其实质是学生在教师的正确引导下,探究解决问题的办法,并进行创新的过程。信息技术的应用,给高中数学教学提供了丰富的教学资源。如在教学空间四边形时,假如教师单纯地在黑板上为学生展示空间四边形的平面图,学生很容易形成空间四边形的对角线是相交的这一错误观念。教学时借助几何画板可为学生画出立体的空间四边形,并向学生展示旋转的空间四边形。通过这种方式,使学生对空间四边形有了形象具体的认识,使学生的空间感得到增强,提高了其想象力和观察力,对异面直线的知识有了更好的理解。 2.利用信息技术设置有效的教学情境,激发学生的学习兴趣 在传统的高中数学教学中,教师通常是通过对旧知识的复习引入本节知识的内容,有时直接提出本节课程要学习的知识,数学知识的抽象性较强,理解起来有一定的难度,这种方式使课堂变得枯燥乏味,很难调动学生学习的积极性,不能激发起学生的兴趣。学生只有对数学产生了兴趣,学习才会有动力,才能主动学习,教学中忽视对学生兴趣的培养将会降低教学的最终效果。利用信息技术,将声音、动画和视频进行有效的结合,为学生设置生动的教学情境,将学生吸引到课堂中,可激发学生的学习兴趣。如在“等比数列求和”的教学过程中,借助信息技术为学生讲述象棋发明的小 故事 。将学生的注意力吸引到教学中,从而引出本节要学习的等比数列求和知识,有效地激发学生对要学习知识的兴趣,让学生进行思考,国王是否有足够的能力满足发明者提出的要求,让学生自主研究等比数列的求和方法。 三总结 本文首先阐述了信息技术在高中数学教学中运用的必要性,再结合笔者的实际教学情况,说明了应用信息技术的具体策略,希望能够帮助广大的高中数学教师在教学中运用好信息技术,提高数学课的教学效果。 高中数学教学论文范文篇三:高中数学新课程实践 一、高中数学教学内容的转变 现在新课程高中数学教材分为选修和必修,有不同的版本,其中又分为不同的模块,不同的学生可以根据自己的发展和需要选学不同的模块和内容,满足个性化的发展,摒弃了以前的高中数学教材以往所有高中生一种教材的教学诟病。其特点突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的 文化 价值;注重现代信息技术与课程的整合,较好的把握了新的课程标准对高中数学内容的要求。例如,必修3中新增了算法的内容。“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。此外,学习和体会算法的基本思想对于理解算理、提高 逻辑思维 能力、发展有条理的思考和表达也是十分重要和有效的。在教学中,我们要让学生结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。 二、高中数学教学方式的转变 在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。 三、高中数学教学结构的转变 传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。 四、高中数学教学手段的转变 随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、 网络技术 的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。 五、高中数学教学评价的转变 如今新的课程标准下,充分发挥了评价的整体性、激励性、发展性功能,注重评价主体多元、评价内容多元、评价方法多元、评价标准多元。一改以往以分数论英雄的学生学习成果评价体系和教师教学效果评价体系。作为高中数学教学的评价,要求建立合理、科学的评价体系,既关注数学学习结果,也关注数学学习过程,既关注数学学习的水平,也关注数学学习活动中的情感态度变化,再者,客观上,由于所选模块的不同,班与班,学生与学生失去可比性,在新的评价体系中,还引入了模糊的等级评价以及评价内容的多元化,如选课时数、平时成绩、模块成绩等占不同比例,对评价发生了巨大变化。新课程下的高中数学教学评价更趋科学合理,对转变应试 教育 为素质教育有积极的推动作用,当然对未来高考的改革、人才的选拔方式也提出了更高的要求。总之,高中课程改革是一项复杂的系统工程,任重道远。就高中数学课程改革而言,目前遇到的困难只是暂时的,我们不能怨天尤人。高中数学课程必须改,但怎么改,不仅是专家的事,每一个高中数学教师都要自觉学习、贯彻课改新理念,反思、改进自己的教学行为,客观冷静地分析和对待高中课程改革中出现的新情况,争取尽快走出一条适合自己的改革之路。

高中生数学小论文立体几何范文

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。708字

这篇挺合适的,改改应该可用: 立体几何的归纳推理,定义,归纳法 学生姓名:林新彰 就读学校:国立台南第一高级中学 指导教授:柯文峰教授 壹,学习目的 Laplace曾说过,在数学里发现真理的主要工具是归纳和类比.我们可从立 方体,三稜柱,五稜柱,方锥,八面体,来推知F + V = E + 2的欧拉公式,这 就是归纳的基本要件,从塔顶及截角立方体之几何图形做类比.我们学习几何 学的目的,从实质来看,是为了将周遭摸得到看得到的东西,作研究推理,深 一层则是为了,促进平面空间的概念,增加思考逻辑的灵活性归纳法部份,则 是将算术,几何,集合等数学单元,作直觉性的观察今日所知的数之多种性质, 大部份系经由观察法所发现,而严格证明则需经过数十年甚至数百年才诞生. 贰,学习方法 藉由教授的讲解,同伴的讨论,或者上去黑板试著讲解给新来的学弟妹听, 能更进一步的去探索逻辑,几何和立体几何的观念,也能从归纳推理的过程中 得知公式的来龙去脉,而不是只知道F + V = E + 2的欧拉公式. 参,学习过程与结果 一,观察归纳法即科学家处理经验的步骤.在使用观察归纳法建立猜测时,必 须坚守以下三原则:第一,必须能随时修正自己的见解.第二,如果有不 得不改变自己的见解时,就必须当机立断改正.第三,不在没有充份理由 支持下,盲目的改变见解.即使多数人我们持有不同意见,也不西瓜靠大 边. 二,在分割元素这个部份看似没啥新鲜的(当它分割元素的个数不大时) ,但到 了大一点点的数时,就开始搅尽脑汁,还是没什麼头绪.还好最后从分割 个数少的,推到个数大的.举例来说,从直线被点分割的个数1,2,3,4, 5,6,…,推到平面被直线分割的个数1,2,4,7,11,16,…,最后就 可以推到空间被平面分割的个数1,2,4,8,15,26,…. 肆,讨论及建议 一,使用观察归纳法也须有耐心,不太快下结论.例如:法国数学家费马认为 2的2之n次方 + 1皆为质数.但他只算n = 1,2,3,4均为质数,就推 测当n = 5,6...等等皆对.但欧拉却真的把n = 5代入,发现它可被 641整除,因而不是质数. 二,从实作我们可以学到很多东西,就速成的眼光而言,实作是花时间的,但 实作却有慢工出细活的优点.举个例子来说,碳60,俗称巴克球,是最近 才发现的碳之同素异形体.有一天上课时,柯教授叫我和另一名同伴作一 个巴克球,费了九牛二虎之力摺一个歪七扭八的球形,但藉由它,我得知 它有12个正五边形,20个正六边形,并得到一些附属品90个sigma键及 30个pi键.

关于高中数学立体几何学习的研究与实践如需要全文,可以再联系

不会吧,高中也写论文

高中立体几何垂直证明论文

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。708字

从定义证明:直二面角所对的2个半平面互相垂直。线面推面面:一个平面经过另一个平面的垂线,则两平面相互垂直2的推论:一个平面引一垂线,平行另一平面,则两平面相互垂直线线推面面其一:两个平面分别引垂线,如果两垂线垂直,则两平面相互垂直线线推面面其二:一个平面引垂线,分别与另一个平面内2个交线垂直,则两平面互相垂直从面面平行推垂直,两个面相互垂直,第三个面和其中一个面平行,则第三个面和另一个面垂直求出其中一个面的法向量,在另一个面内如有现成平行于该法向量的向量,则秒证【向量法推荐】过两平面的交线任意引2条垂线,证明这两条垂线上的非0向量点乘为0【向量法推荐】求出两个平面的法向量,证明它们点乘为0【计算量大,万不得已才用!】

证明:已知直线L1 L22相交于O点且都与直线L垂直,L3是L1 L2所在平面内任意1条不与L1 L2重合或平行的直线(重合或平行直接可得它与L1平行) 在L3上取E、F令OE=OF, 分别过E、F作ED、FB交L2于D、B (令OD=OB)则⊿OED ≌⊿ OFB (SAS) 延长DE、BF分别交L1于A、C 则⊿OEA≌⊿OFC(ASA)(注意角AEO与角CFO的补角相等所以它们相等). 所以OA=OC,所以⊿OAD≌⊿OBC(SAS)所以AD=CB 因为L3垂直于L1 L2所以MA=MC,MD=MB 所以⊿MAD≌⊿MCD(SSS)所以 角MAE= 角MCF 所以⊿MAE≌⊿MCF(SAS) 所以ME=MF,所以⊿MOE≌⊿MOF(SSS),所以角MOE=角MOF 又因为 角MOE与 角MOF互补,所以角MOE=角MOF=90度,即L⊥L3

高中几何数学论文

去CNKI中搜索去

在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读! 高中数学教学论文范文篇一:高中数学教学 反思 一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的 总结 和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善 教学 方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 高中数学教学论文范文篇二:高中数学信息技术的运用 一信息技术在高中数学教学中应用的必要性 信息技术在高中数学教学中的运用,能够形成动态的数学知识,帮助学生更好地理解有关知识,提高学生对问题的观察、分析和解决能力。高中数学的内容与图形有关的较多,高中生的各方面能力发展还不完善,教师要进行适当的引导,帮助其理解难度较大的图形问题,运用信息技术,能够使这些抽象的知识具体化,使原本静态的图形“动起来”,将复杂的问题简单化。如在教学立体图形三视图时,以长方体为例,教师借助多媒体教学设备向学生展示一些生活中的长方体,让学生对长方体的直观图有所了解,然后从这些生活物品中分离出的长方体直观图,让学生对长方体的高、长、宽有初步的认识,同时让学生找出屏幕上长方体的高、长、宽,并进行三视图的绘画。此外,还可以让学生找出生活中的长方体,培养学生的空间 想象力 。因此,在高中数学教学中运用信息技术有助于提高教学的质量,培养学生的综合能力,对教学有很大的促进作用。 二高中数学教学中运用信息技术的策略分析 1.对软件进行模拟,将抽象的数学知识具体化 高中数学的教学,其实质是学生在教师的正确引导下,探究解决问题的办法,并进行创新的过程。信息技术的应用,给高中数学教学提供了丰富的教学资源。如在教学空间四边形时,假如教师单纯地在黑板上为学生展示空间四边形的平面图,学生很容易形成空间四边形的对角线是相交的这一错误观念。教学时借助几何画板可为学生画出立体的空间四边形,并向学生展示旋转的空间四边形。通过这种方式,使学生对空间四边形有了形象具体的认识,使学生的空间感得到增强,提高了其想象力和观察力,对异面直线的知识有了更好的理解。 2.利用信息技术设置有效的教学情境,激发学生的学习兴趣 在传统的高中数学教学中,教师通常是通过对旧知识的复习引入本节知识的内容,有时直接提出本节课程要学习的知识,数学知识的抽象性较强,理解起来有一定的难度,这种方式使课堂变得枯燥乏味,很难调动学生学习的积极性,不能激发起学生的兴趣。学生只有对数学产生了兴趣,学习才会有动力,才能主动学习,教学中忽视对学生兴趣的培养将会降低教学的最终效果。利用信息技术,将声音、动画和视频进行有效的结合,为学生设置生动的教学情境,将学生吸引到课堂中,可激发学生的学习兴趣。如在“等比数列求和”的教学过程中,借助信息技术为学生讲述象棋发明的小 故事 。将学生的注意力吸引到教学中,从而引出本节要学习的等比数列求和知识,有效地激发学生对要学习知识的兴趣,让学生进行思考,国王是否有足够的能力满足发明者提出的要求,让学生自主研究等比数列的求和方法。 三总结 本文首先阐述了信息技术在高中数学教学中运用的必要性,再结合笔者的实际教学情况,说明了应用信息技术的具体策略,希望能够帮助广大的高中数学教师在教学中运用好信息技术,提高数学课的教学效果。 高中数学教学论文范文篇三:高中数学新课程实践 一、高中数学教学内容的转变 现在新课程高中数学教材分为选修和必修,有不同的版本,其中又分为不同的模块,不同的学生可以根据自己的发展和需要选学不同的模块和内容,满足个性化的发展,摒弃了以前的高中数学教材以往所有高中生一种教材的教学诟病。其特点突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的 文化 价值;注重现代信息技术与课程的整合,较好的把握了新的课程标准对高中数学内容的要求。例如,必修3中新增了算法的内容。“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。此外,学习和体会算法的基本思想对于理解算理、提高 逻辑思维 能力、发展有条理的思考和表达也是十分重要和有效的。在教学中,我们要让学生结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。 二、高中数学教学方式的转变 在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。 三、高中数学教学结构的转变 传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。 四、高中数学教学手段的转变 随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、 网络技术 的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。 五、高中数学教学评价的转变 如今新的课程标准下,充分发挥了评价的整体性、激励性、发展性功能,注重评价主体多元、评价内容多元、评价方法多元、评价标准多元。一改以往以分数论英雄的学生学习成果评价体系和教师教学效果评价体系。作为高中数学教学的评价,要求建立合理、科学的评价体系,既关注数学学习结果,也关注数学学习过程,既关注数学学习的水平,也关注数学学习活动中的情感态度变化,再者,客观上,由于所选模块的不同,班与班,学生与学生失去可比性,在新的评价体系中,还引入了模糊的等级评价以及评价内容的多元化,如选课时数、平时成绩、模块成绩等占不同比例,对评价发生了巨大变化。新课程下的高中数学教学评价更趋科学合理,对转变应试 教育 为素质教育有积极的推动作用,当然对未来高考的改革、人才的选拔方式也提出了更高的要求。总之,高中课程改革是一项复杂的系统工程,任重道远。就高中数学课程改革而言,目前遇到的困难只是暂时的,我们不能怨天尤人。高中数学课程必须改,但怎么改,不仅是专家的事,每一个高中数学教师都要自觉学习、贯彻课改新理念,反思、改进自己的教学行为,客观冷静地分析和对待高中课程改革中出现的新情况,争取尽快走出一条适合自己的改革之路。

这篇挺合适的,改改应该可用: 立体几何的归纳推理,定义,归纳法 学生姓名:林新彰 就读学校:国立台南第一高级中学 指导教授:柯文峰教授 壹,学习目的 Laplace曾说过,在数学里发现真理的主要工具是归纳和类比.我们可从立 方体,三稜柱,五稜柱,方锥,八面体,来推知F + V = E + 2的欧拉公式,这 就是归纳的基本要件,从塔顶及截角立方体之几何图形做类比.我们学习几何 学的目的,从实质来看,是为了将周遭摸得到看得到的东西,作研究推理,深 一层则是为了,促进平面空间的概念,增加思考逻辑的灵活性归纳法部份,则 是将算术,几何,集合等数学单元,作直觉性的观察今日所知的数之多种性质, 大部份系经由观察法所发现,而严格证明则需经过数十年甚至数百年才诞生. 贰,学习方法 藉由教授的讲解,同伴的讨论,或者上去黑板试著讲解给新来的学弟妹听, 能更进一步的去探索逻辑,几何和立体几何的观念,也能从归纳推理的过程中 得知公式的来龙去脉,而不是只知道F + V = E + 2的欧拉公式. 参,学习过程与结果 一,观察归纳法即科学家处理经验的步骤.在使用观察归纳法建立猜测时,必 须坚守以下三原则:第一,必须能随时修正自己的见解.第二,如果有不 得不改变自己的见解时,就必须当机立断改正.第三,不在没有充份理由 支持下,盲目的改变见解.即使多数人我们持有不同意见,也不西瓜靠大 边. 二,在分割元素这个部份看似没啥新鲜的(当它分割元素的个数不大时) ,但到 了大一点点的数时,就开始搅尽脑汁,还是没什麼头绪.还好最后从分割 个数少的,推到个数大的.举例来说,从直线被点分割的个数1,2,3,4, 5,6,…,推到平面被直线分割的个数1,2,4,7,11,16,…,最后就 可以推到空间被平面分割的个数1,2,4,8,15,26,…. 肆,讨论及建议 一,使用观察归纳法也须有耐心,不太快下结论.例如:法国数学家费马认为 2的2之n次方 + 1皆为质数.但他只算n = 1,2,3,4均为质数,就推 测当n = 5,6...等等皆对.但欧拉却真的把n = 5代入,发现它可被 641整除,因而不是质数. 二,从实作我们可以学到很多东西,就速成的眼光而言,实作是花时间的,但 实作却有慢工出细活的优点.举个例子来说,碳60,俗称巴克球,是最近 才发现的碳之同素异形体.有一天上课时,柯教授叫我和另一名同伴作一 个巴克球,费了九牛二虎之力摺一个歪七扭八的球形,但藉由它,我得知 它有12个正五边形,20个正六边形,并得到一些附属品90个sigma键及 30个pi键.

高中就写论文啦?

中学立体几何论文参考文献

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。708字

数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了

对数量积性质的新认识 【摘 要】:教学活动要遵循内在规律,只有当一切外在事实(知识)通过教师的主导作用,最后被主体(学生)认识之后,这外在东西才会为主体真正占有,这种转化只有在参与实践中才能体会并重新构建、形成知识体系。我们的教材中的好多知识表面上是孤立的,若我们的的教师在引领学生认知这些内容的同时,有“意识”的揭示这种“知识链”,内化我们学生的理解,让学生对知识的构建“水到渠成”!这不失为一种有效教学的好途径。【关键词】:数量积 向量 角度 距离作为新课程改革,高中数学教材的两个显著变化就是“向量和导数”的引入。其目的也很明确:为研究函数、空间图形,提供新的研究手段,即充分体现它们的工具性。但这种“工具性”,只有在深刻理解的基础上才能用好,而要想用活,这又需要我们在实践中不断“开发”新的认识,丰富知识网络,形成较完善的“认知模块”、“知识体系”。例如全日制普通高级中学教科书《数学•第二册(下B)》P33¬中,关于空间向量的数量积有这样三条性质:(1) ,(2) ,(3) 。作为“工具性”,性质(2)(3)比较明显,会立即得到充分的应用。可是对于性质(1),当时,在上新授课时我总认为:这条性质没有什么“本质上”的用处,有点像“房间里的摆设”——配角。但是随着时间的推移,笔者发现了她的奥妙之处:在后继的有关空间问题中的“三大角度”和“三大基本距离”的坐标法的研究中有着奇妙无穷的用途,并带来意想不到的“知识链”反应,极大地丰富了关于空间向量的“数量积”这一运算的“认知模块”的内涵。本文便梳理和佐证这一认知,以飨读者。(一)性质的产生与内含已知向量 和轴l, 是l上与l同方向的单位向量,作点A在l上的射影 ,作点B在l上的射影 则 叫向量 在轴l上或在 方向上的正射影,简称射影。 可以证明得, (证明略,图如下所示。)此性质的内含理解有四点:①结果是一个数量(本身含正负号);②其正负号由向量 所成角的范围决定;③加上绝对值 便是一条线段长度(这里 刚好组成一个直角三角形的两条直角边);④可以推广为求一条线段在另一条直线上的正射影(此线段所在直线与已知直线的位置关系可以异面直线)。(二)性质的“知识链”对教材引进空间向量的“坐标法”来解决空间中“三大角”问题,我们的学生可以说是欣喜若狂啊,因为学生觉得这种方法好!可操作性强!(只要能建系,有坐标就行!)但在实际应用中,学生觉得这些结论不易理解,加上这些结论只能逐步形成和完善,靠死记硬背吧,今天记了明天又忘了!等到用时,仍是“生硬、呆板”,甚至张冠李戴。如何突破这一问题?我认为其根本原因是:在学生的认知结构里,这一性质未能如愿地形成“知识链”。那么,这一性质是怎样与相关问题产生“对接或联系”的呢?(1)它是空间三大角(即线线角、线面角、二面角的平面角)用向量法求解的“对接点”。1.1线线角 的求法的新认识:我们把这两条线赋予恰当的两个向量,问题就化归为两个向量的夹角(两个向量所成的角的范围为 ),即 ,我们能否加以重新认识这个公式呢?如图,,此时OB1可以看作是 与 方向上的单位向量 的数量积 ,这就是由数量积这条性质滋生而成的;故此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。1.2线面角 的求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,此时OP又可以看作是 在 上的投影,即 与 方向上的单位向量 的数量积 , ,故 (这里刚好满足三角函数中正弦的定义:对边比斜边)。1.3二面角的平面角 的求法的新认识: = (其中 是两二面角所在平面的各一个法向量)此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。★三大角的统一理解: 、 、 、其从上述梳理完全可以看出其本质特征:这里的“空间角”的求法,完全与直角三角形中的三角函数的“正弦或余弦的定义”发生了对接——对边或邻边就是斜边的向量在此边向量上的投影,即斜边向量与对边或邻边方向上的单位向量的数量积,而理解与掌握这里的“空间角”的直角三角形的构图,学生完全可以达到“系统化”和“自主化”,因为直角三角形中的三角函数定义,他们太熟悉了!即将知识的“生长点”建立在学生认知水平的“最近发展区”,那学习就会水到渠成! (2)它又是空间三大距离(即点线距、点面距、异面直线间距离)用向量法求解的“联系点”。空间中有七大距离(除球面上两点间的距离外)基本上可转化为点点距、点线距、点面距,而点线距和点面距又是重中之重!另外两异面直线间的距离,高考考纲中明确要求:对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离。因此对异面直线间的距离的考查有着特殊的身份。教材按排中引进了向量法来解决距离问题,也给问题的解决带来新的活力!不用作出(或找出)所求的距离了。2.1点面距求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,即 在 上的投影,即 与 方向上的单位向量 的数量积 。2.2点线距求法的新认识:1)新认识之一:如图,若存在有一条与l相交的直线时,就可以先求出由这两条相交直线确定的平面的一个法向量 ,则点P到l的距离 。2)新认识之二:若不存在有一条与l相交的直线时,我们可以先取l上的一个向量 ,再利用 来解,即: ,而数量OB可以理解为 在l上的向量 的投影,也即为: 。2.3异面直线间距离求法的新认识: 从这几年的高考《考纲说明》观察,我们不难发现,对异面直线间距离的考查本意不能太难,但若出现难一点的考题,命题者又能自圆其说的新情况。实际上,这种自圆其说法归根到底在于高考考纲中的说法:只要求会计算已给出公垂线或在坐标表示下的距离。那也就是说,在不要作出公垂线(也许学生作不出!)的情况下,也可以求出它们的距离的!那就是用向量法!如图所示:若直线l1与直线l2是两异面直线,求两异面直线的距离。 略解:在两直线上分别任取两点A、C、B、D,构造三个向量 ,记与两直线的公垂线共线的向量为 ,则由 ,得 ,则它们的距离就可以理解为: 在 上的投影的绝对值,即: 。 ★三大距离的统一理解: (点面距)、 (异面距)、 (点线距之一)、 且 (点线距之二)、其本质特征是:一个向量在其所求的距离所在直线的一个向量上的投影,也即数量积此性质的直接应用。由上述的剖析过程不难再看出:空间中的三大角与三大基本距离的计算,都隐藏于这个“特定”的数量积的性质之中,体现在这个公式结构的“统一美”之中,把问题的本质揭示得“淋漓尽致”,而又不失自然!这给“立体几何” 中向量的工具性的体现,增色了几分美感与统一感!(三)性质的应用例1、(2005年山东省(理科)高考第20题)如图,已知长方体 直线 与平面 所成的角为 , 垂直 于 , 为 的中点.(I)求异面直线 与 所成的角;(II)求平面 与平面 所成的二面角;(III)求点 到平面 的距离.解:在长方体 中,以 所在的直线为 轴,以 所在的直线为 轴, 所在的直线为 轴建立如图示空间直角坐标系;由已知 可得 , ,又 平面 ,从而 与平面 所成的角为 ,又 , , ,从而易得 (I) 因为 所以 ,易知异面直线 所成的角为 (II) 易知平面 的一个法向量 ,设 是平面 的一个法向量, 由 即 所以 即平面 与平面 所成的二面角的大小(锐角)为 (III)点 到平面 的距离,即 在平面 的法向量 上的投影的绝对值,所以距离 = 所以点 到平面 的距离为 例2、(2005年重庆(理科)高考第20题)如图,在三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1,已知AB= ,BB1=2,BC=1,∠BCC1= ,求:(Ⅰ)异面直线AB与EB1的距离;(Ⅱ)二面角A—EB1—A1的平面角的正切值. 解:(I)以B为原点, 、 分别为y、z轴建立空间直角坐标系.由于BC=1,BB1=2,AB= ,∠BCC1= ,在三棱柱ABC—A1B1C1中有B(0,0,0),A(0,0, ),B1(0,2,0),A1(0,2, ) ,设 ; ,则 得, (令y=1),故 =1(II)由已知有 故二面角A—EB1—A1的两个半平面的法向量为 。 。通过上述几个高考题的分析,我们不难看出:立体几何中的几何法的“难在找(或作)所求的角度或距离”,通过这个数量积的性质的转化(方法的转化与知识之间的转化),其“难”渐渐地溶解于“转换与化归”之中及学生的细心地“计算”之中,从而也焕发了数量积这条性质的奥妙之处,也就更体现了“向量”这个工具在立体几何中应用的优越性、工具性。因为”程序化”的计算使我们的学生的“信心”倍增!同时让我们的学生也懂得了“知其所以然”,再也不用为记这一个“好结论”而烦恼了!参考文献:1、2005年普通高等学校招生全国统一考试大纲 (高等教育出版社)2、《浙江省高考命题解析——数学》 (浙江省高考命题咨询委员们编著)3、基础教育课程改革教师通识培训书系第二辑《课程改革发展》(中央民族大学出版社 周宏主编)

美术论文参考文献摘抄

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。下面是我整理的美术论文参考文献摘抄,欢迎大家分享。

[1]彭吉象.艺术学概论[M].北京:北京大学出版社,2006.

[2]冯友兰.中国哲学简史[M].天津:天津社会科学院出版社,2005.

[3]张法.中国艺术_历程与精神[M].北京:中国人民大学出版社,2003.

[5]王瑞成、宋清秀.中国文化简史[M].上海:上海文艺出版社,2001.

[6]贺西林、赵力.中国美术史简编[M].北京:高等教育出版社,2003.

[7]中央美术学院人文学院美术史系、外国美术史教研室.外国美术简史[M].北京:中国青年出版社.2007.

[8]孔六庆.中国画艺术专史_花鸟卷[M].南昌:江西美术出版社,2008.

[9]陈传席.中国绘画美学史[M].北京:人民美术出版社,2002.

[10]王伯敏.中国绘画史[M].上海:上海人民美术出版社,1982.

[11]张建军.中国画论史[M].济南:山东人民出版社,2008.

[12]周积寅.中国画论辑要[M].南京:凤凰出版传媒集团,2005.

[13]顾丞锋.西方美术理论教程[M].北京:北京大学出版社,2008.

[14]王朝闻.美学概论[M].北京:北京人民出版社,1981.

[15]宗白华.美学散步[M].上海:上海人民出版社,2005.

[16]李泽厚.华夏美学[M].天津:天津社会科学院出版社,2001.

[17]朱光潜.西方美学史[M].北京:人民文学出版社,1963.

[18]朱狄.当代西方美学[M].武汉:武汉大学出版社,2007.

[19]邓福兴.中国古代美术批评史纲[M].哈尔滨:黑龙江美术出版社,2000.

[20]徐书城.宋代绘画史[M].北京:人民美术出版社,2000.

[1] 孟艳双. 北宋山水画审美思想在现代城市山水画中的运用研究[D]. 燕山大学 2014

[2] 陈跃. 数学多媒体教学初探[J]. 职业. 2010(23)

[3] 伍健. 多媒体数学教学软件的创新与应用[J]. 南昌高专学报. 2011(02)

[4] 葛晋,张文敏. 多媒体数学教学探析[J]. 承德石油高等专科学校学报. 2006(02)

[5] 金昊. 多媒体技术辅助立体几何图形教学研究[D]. 山东师范大学 2013

[6] 田毅. 现代信息技术与数学教学[J]. 科技情报开发与经济. 2005(23)

[7] 李芹. 多媒体技术在数学教学中的应用[J]. 南昌高专学报. 2005(04)

[8] 吴华,宋西红,盛晓明. 网络多媒体课件系统与数学教学的整合[J]. 数学教育学报. 2004(01)

[9] 周建明,薛有奎. 多媒体数学教学尝试[J]. 潍坊教育学院学报. 2000(03)

[10] 孙济生,刘向群. 多媒体技术在现代教育中的应用[J]. 教育信息化. 2004(10)

[11] 彭慧. 多媒体在数学教学中应用的探索[J]. 成功(教育). 2011(03)

[12] 周杨静,刘志峰. 设计类课程多媒体教学质量保障机制研究[J]. 电脑知识与技术. 2009(06)

[13] 马晨. 多媒体技术在中学教学中的应用及对策研究[D]. 山东师范大学 2007

[14] 蔡静. 多媒体背景下的展示设计研究[D]. 南京艺术学院 2009

[15] 乔韦. 当代中国山水画形式美表现分析[D]. 西北民族大学 2014

[16] 姚佳. 浅谈写意人物画之“意”与漫画之“漫”的联系[D]. 西北民族大学 2014

[17] 刘莉. 色彩运用在冯远写意人物画中的情感体现[D]. 西北民族大学 2014

[18] 孔瑞娜. 藏族题材写意人物画初探[D]. 西北民族大学 2014

[19] 高燕. 中学语文多媒体技术优化教学效能研究[D]. 湖南师范大学 2010

[20] 沈霞. 多媒体技术在新职业英语教学应用中的设计研究[D]. 北京工业大学 2012

[1] 陈萍. 莆仙宫庙壁画艺术研究[D]. 福建师范大学 2012

[2] 郑芳芳. 明清易代背景下的清前期人物画研究[D]. 福建师范大学 2012

[3] 骈岑. 3~6岁儿童绘画表现能力发展的研究[D]. 上海师范大学 2014

[4] 林颖. 中国高等师范院校中国画教育的若干问题思考[D]. 福建师范大学 2012

[5] 黄菁. 民间美术在水墨人物画创作中的运用与拓展[D]. 福建师范大学 2012

[6] 王雅欣. 探寻学龄前校外儿童水粉画教学的新思路[D]. 福建师范大学 2014

[7] 王艳梅. 清代杨柳青人物题材吉祥画的艺术特色[D]. 福建师范大学 2012

[8] 王盼美惠. 5-6岁幼儿绘画表征特征研究[D]. 南京师范大学 2014

[9] 陈艺红. 男权世界中的女性世界[D]. 福建师范大学 2010

[10] 刘德宾. 中国画与中国戏曲的艺术特征探微[D]. 福建师范大学 2005

[11] 张玲. 从林风眠的调和论看近现代中国画的中西融合[D]. 福建师范大学 2004

[12] 毛蓉蓉. 中国人物画造型的传承与时代性[D]. 福建师范大学 2009

[13] 黄霖清. 论形成(影响)现当代中国人物画造型特点的.若干因素[D]. 福建师范大学 2009

[14] 柳健. 以幼儿认知能力培养为目标的色彩启蒙教育研究[D]. 聊城大学 2014

[15] 秦芳. 以绘画视知觉视角下研究4-5岁幼儿绘画语言表达特点[D]. 新疆师范大学 2014

[16] 王蓉蓉. 三大学术思想对中国传统绘画的影响[D]. 福建师范大学 2008

[17] 郑艳. 中国“学院派”美术教育与传统美术教育之间的架构[D]. 福建师范大学 2008

[18] 倪婷婷. 德化现代陶瓷艺术性弱化问题研究[D]. 福建师范大学 2012

[19] 张永海. 画中的人生与如画的人生[D]. 福建师范大学 2008

[20] 洪文峰. 花枝春满 天心月圆[D]. 福建师范大学 2010

[21] 吴晨阳. 一脉相承-浅析两宋至现代闽籍中国画人物画家绘画风格中“线”的继承性[D]. 福建师范大学 2011

[22] 曾春丽. 初探福建工艺美术对福建本土中国画画家画风的影响[D]. 福建师范大学 2011

  • 索引序列
  • 高中数学立体几何教学论文
  • 高中生数学小论文立体几何范文
  • 高中立体几何垂直证明论文
  • 高中几何数学论文
  • 中学立体几何论文参考文献
  • 返回顶部