首页 > 期刊投稿知识库 > 图像的提取方法研究论文

图像的提取方法研究论文

发布时间:

图像的提取方法研究论文

数字图像处理方面了解的了。

呵呵,你去你们学校图书馆网站上的论文库里下载一篇相关方面的硕士论文吧,多下几篇,凑一凑就能够数了

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1 指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2 人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

2.3 文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: TN957.52 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

2.1基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

2.2 边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

2.3基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

2.4结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

2.4.1基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

2.4.2基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

2.4.3基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

2.4.4基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

2.5图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

图像提取算法研究论文

这个你可以上中国期刊库网站查找一下。

如果是单纯的车牌识别算法的话 建议matlab中文论坛有3份1、贵州版本2、广西版本3、老衲版本 (已经发了,其他的你去论坛下载吧

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1 指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2 人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

2.3 文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

遥感图像道路提取研究论文

随心所欲的写咯

杨大志 付洛玲 段嵘峰 曹千红 管相荣

(河南省国土资源厅信息中心,郑州,450003)

摘要:本文采用面向对象分类的方法,使用专业遥感图像分类软件eCognition4.0,以河南省临颍县为研究区,对处理后的临颍县SPOT5影像进行多层次分割及合并,根据分类体系定义相应知识库,进行土地利用信息提取研究,探讨该方法在高空间分辨率遥感影像应用于土地利用/土地覆被自动分类中的应用潜能,为高分辨率影像用于土地利用分类信息提取提供新技术手段。

关键词:eCognition;SPOT5;自动分类;土地利用

土地资源利用状况调查、土地资源动态监测是土地管理工作的一个重要内容。近年来,随着空间遥感技术的发展,高分辨率遥感影像在土地资源调查、土地资源动态监测等领域中的应用日益广泛。高分辨率遥感数据与多光谱和高光谱分辨率数据相比,具有空间信息丰富、地物几何结构和纹理信息更加明显、波段较少的特点。对于高分辨率的遥感影像来说,利用传统的面向像元的图像分类方法来提取土地利用分类信息,易造成分类精度低,空间数据大量冗余以及资源的浪费[1~2]。实际上,靠传统的面向像元的遥感图像分类法来提取土地利用信息已不能满足实际运用的要求。因此,基于高分辨率遥感影像土地利用分类信息提取必须根据其特点采取新的技术方法,建立起图像数据与目标特性之间的物理—机理联系,而不仅仅是统计联系,才能充分挖掘高分辨率遥感影像所包含的信息,这是高分辨率卫星影像信息处理成败的关键[3]。面向对象分类技术作为一种新的遥感影像很好地解决了这个问题,而eCognition软件正是基于面向对象方法的影像分类技术。本文就是基于该软件以河南省临颍县土地利用分类信息提取为例对该方法进行了探讨。

1 研究区概况和资料基础

研究选取河南省临颍县作为研究区。临颍县位于河南省中部,颍河上游,属漯河市,面积821km2,人口65.76 万,辖15个乡镇,362个行政村。临颍县地处颍河冲积平原,西北部较高,东南部稍低。图1是河南省临颍县SPOT5遥感影像图。

本研究主要以下述资料为研究基础。

1.1 影像数据

本次遥感图像分类采用数据为SPOT5 (2.5 m分辨率)影像数据,景带号为279/281和279/282,接收时间为2004年9月。两景数据采用Erdas 8.7软件进行处理,通过配准校正融合,选择克拉索夫斯基椭球体和高斯—克吕格投影,通过裁切,得到临颍县遥感影像数据(见图1)。

图1 河南省临颍县 SPOT5 遥感影像图

1.2 矢量数据

近年的土地利用数据库数据。

1.3 其他资料

与研究区有关的行政区划、农、林等方面的文献资料。

通过近年的土地利用数据库数据和影像数据研究可以发现临颍县土地利用类型较丰富,主要以农用地为主,地物类型比较全面,是研究土地利用/土地覆被的较好选择。

2 面向对象分类方法简介

面向对象的分类方法是一种智能化的自动影像分析方法,它的分析单元不再是单个像素,而是由若干个像素组成的像素群,即目标对象[4]。目标对象比单个像素更具有实际意义,特征的定义和分类均是基于目标对象进行的。通常面向对象的分类方法包括两个步骤:多分辨率分割和模糊逻辑分类[5]。

eCognition软件采用面向对象的遥感影像解译思想。首先根据像元光谱信息、局部区域纹理信息以及形状和尺度参数自动将影像分割为若干相对同质的区域,称为影像对象(Image objects),为下一步分类提供信息载体和构建基础[6],所有后续的分类工作都基于这些影像对象进行,分类结果避免了斑点噪声而具有很好的整体性,改变了以往面向像素进行分类的传统。同时,软件提供最邻近法和模糊隶属度函数两种解译方法。

本研究就是采用面向对象的分类方法,以eCognition 中membership function (隶属度函数)为主,模仿目视解译过程,从遥感信息机理与地学规律的综合分析入手,综合其他辅助信息进行分类。通过对辅助资料、外业调查成果以及软件的学习得到了临颍县各类典型地物分类的知识,并以相应的形式表示这些知识,集成影像亮度值、亮度值关系和几何形状以及纹理、邻近关系等特征,对试验区土地利用/覆被进行分类。

3 分类体系和技术流程

3.1 分类体系

根据临颍县土地利用实际情况,参照历年土地利用分类标准,本次信息提取分类采取的分类体系如图2所示。

3.2 技术流程

使用eCognition软件对研究区SPOT5影像数据进行土地利用信息提取研究分如下几步进行:①把处理好的影像数据输入到软件中,定制分割参数,对其执行分割,生成影像对象;②根据研究区地物类型创建分类层次结构;③确定合适的分类方法(包括最邻近法和模糊隶属度函数两种方法),选取相应地物类型样本或者分类特征,构建知识库,执行分类,并可根据目视解译结果和事先准备的调查区资料对分类结果进行人工干预,进一步提高分类精度;④对分类结果进行分类精度评价;⑤把分类结果输出,输出的格式可以为所需要的相应的矢量格式或栅格格式。本研究的技术流程如图3所示。

图2 研究区地物类型

图3 研究技术流程图

4 主要分类过程

4.1 定制分割参数

分割参数的定制相当重要,它关系到每一个分类对象的大小,直接影响到最后的分类结果。通过多次试验,本次分类决定采用多层次分割的方法进行:水体和非水体信息的提取以分割参数为80进行,其他参数均为默认;分类体系中其他类别信息的提取在首次分割基础上,以分割参数为65,其他参数也为默认对非水体进行多重分割,来进行其他地物类型的分类。

4.2 制定分类策略,创建类层次结构

在进行分类之前,首先要参照研究区地物类型,分析每种地物类型特征及其相互之间的关系,制定合适的分类策略,创建类层次结构。可利用的研究对象属性特征包括色调、形状、面积/大小和纹理等特征,各对象之间关系包括与父对象之间、与子对象之间以及与邻对象之间的关系三种类型。对象属性特征选取正确与否及其在多大程度上被正确表达对分类结果有着重要影响,它决定了最后分类正确与否和其精度。面向对象的分类方法可以模仿人类大脑认知过程,充分利用每种地物类型特征,按照由简单到困难的顺序逐步剥离提取分类体系中每种地物信息。通过研究本次分类所要提取信息自身特征及其相互之间关系,制定本次分类的分类策略,创建了类层次结构,如图4所示。

图4 类层次结构示意图

4.3 分类特征的选取

根据创建的类层次结构,选取合适的对象属性,对对象属性进行定义,提取出相应对象的土地利用信息。本次分类采用以下几步进行:

(1)提取水体信息 分割参数设为80,对影像进行分割,分割后,在整个研究区均匀选取样本,采用标准最邻近方法(Standard Nearest Neighbor)对遥感影像进行分类(类似于监督分类),提取水体信息。在此基础上,依据水体的形状特征,把水体分为河流水面和坑塘水面两类。根据实验,长宽比大于3是河流,小于3的是坑塘。

(2)提取植被信息,并进一步把植被分为耕地和林地 首先把提取出的水体信息保护起来,在首次分割的基础上对非水体进行再分割,分割参数设为65,其他参数为默认值,把非水体分为植被和非植被两类,然后根据耕地和林地的不同特征把其信息提取出来。

(3)对非植被信息进一步细分,从中提取出主要交通道路、城镇居民点工矿和裸地(已收获耕地) 信息 首先从非植被信息中提取出交通道路和非交通道路信息,然后把非交通道路细分为裸地(已收获耕地)和城镇居民点工矿两类。

此时,分类体系中的所有类别信息已经全部提取出来,可根据实际情况对分类结果进行手工编辑,进一步删除一些过小对象和纠正一些错分信息。当分得的各类信息结果都比较满意后,进行基于分类的融合,把小对象合并为大的对象,通过手工编辑和基于分类的融合后,得到最终分类结果如图5所示。

图5 遥感影像分类结果图

4.4 分类精度评价

得到分类结果后,要根据分类得到的结果进行分类精度评价。评价采用如下方法进行:在分割后的影像上均匀随机选取每个地类的目标对象,选取的目标对象数目根据分类结果得到的每个地类的目标对象数目而定,进行自动统计,得到统计结果。统计结果如表1所示。

表1 分类结果精度评价表

通过分类结果精度评价表可以发现,自动分类的最后分类精度超过了80%,这对于研究区来讲,分类结果还是比较令人满意的。同时,根据统计结果可以得到如下结论:耕地、城镇居民点、坑塘、河流信息提取的效果较好;相对而言,裸地和道路信息提取比较困难;林地信息由于同耕地信息相近,提取起来也有相当的难度,还有待于今后进一步研究。

通过研究表明,采用面向对象方法进行图像解译和信息的自动提取与面向像元方法相比具有较强优势。面向对象的分类方法可以灵活运用地物本身的几何信息和结构信息,纹理信息以及上下层关系信息、邻近关系信息等,更主要的是可以加载人的思维,构建知识库,从而提高了分类的精度,为各种不同地物的分类提供了更多的依据,比如通过影像的形状和纹理特征可以有效地识别河流、道路、建筑物的形状。利用eCognition对高分辨率遥感图像进行土地利用自动分类,快速简便,而且能够达到较高精度,节省了大量的人力物力,为大面积土地利用调查和监测提供了新的科学方法。

参考文献

丁晓英.eCognition在土地利用项目中的应用[J].测绘与空间地理信息,2005,28 (6):116~120

刘亚岚,阎守邕,王涛等.遥感图像分区自动分类方法研究[J].遥感学报,2002,6 (5):357~362

孙晓霞,张继贤,刘正军.利用面向对象的分类方法从IKONOS全色影像中提取河流和道路[J].测绘科学,2006,31 (1):62~63

eCognition 3 Made in Germany [Z]

Sun Xiaoxia.An object-oriented classification method on high resolution satellite data [Z].ACRS2004,Istanbul

杜凤兰.面向对象的地物分类方法分析与评价[J].遥感技术与应用,2004,19 (1):20~23

论文研究方法中的图像分析法

论文研究方法有很多,其中包括:调查法,是科学研究最常用的方法,常用问卷调查法。实验法,通过控制研究对象来发现和确认事物间的因果联系。观察法,研究者用自我感官和辅助工具直接观察被研究对象从而获得资料的一种方法,还有文献研究法、实证研究法、定件分析法、定量分析法、跨学科研究法、功能分析法、模拟法等。

毕业论文的研究方法有哪些啊

毕业论文的研究方法有哪些啊?那里罗列了一些大学论文的研究方法?下面我就给大家整理出来了毕业论文的研究方法有哪些啊?一起来了解看一看吧,阅读完之后希望能够对你有所帮助到呢!

大学毕业论文的论文的研究方法有哪些呢?

调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法、调查方法是科学研究中常用的基本研究方法.它综合运用历史法、观察法等方u法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有i计划的、周密的和系统的了解,并对调查搜集到的超多资科进行分析、综合,比较、归纳,从而为人们带给规律性的如识。

调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法.即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。

论文的研究方法之实验法

实验法是透过主支变革、挖制研究对象来发现与确认事物间的因栗联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不下预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。第二,控制件。科学实验要求根据研究的需要。借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。第三,因果性。实验以发现确认事物之间的因果联系的有效工具和必要途径。

论文的研究方法之观察法i观察法是指研究者根漏必须的研究日的、研究提继或观察表,用自我的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有日的性和计划性,系统件和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩人人们的感件性认识。②启发人们的思维。③导致新的发现。

论文的研究方法之文献研究法

文献研究法是根据必须的研究日的或课题,透过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:①能了解有关问题的历史和现状,帮确定研究课题。②能构成关于研究对象的一般印象,有助于观察和访问。③能得到现实资料的比较资料。①有助于了解事物的全貌。

论文的研究方法之实证研究法

实证研究法是科学实践研究的一种特殊形式。其依据现有的.科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,透过有日的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要日的在于说明各种自变量与某一个因变量的关系。

毕业论文的研究方法有哪些啊

论文的研究方法之定件分析法

定件分析法就是对研究对象进行质的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精,去伪存真,由此及彼、由表及里,到达认识事物本质、描示内在规律。

论文的研究方法之定量分析法

在科学研究中,透过定量分析法能够使人们对研究对象的认识进一步精确化,以使更加科学地揭示规律。把握本质,理清关系,预测事物的发展趋势。

论文的研究方法之跨学科研究法

运用多学科的理论,方法和成果从整体上对某一课题进行综合研究的方法,也称交义研究法。科学发展运动的规律证明,科学在高度分化中又高度综合,构成一个统一的整体。据有关专家统,此刻世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言,方法和某些概念方面,有日益统一化的趋势。

论文的研究方法之个案研究法

个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其构成过程的一种研究方法。个案研究有三种基本类型:(1)个人调查,即对组织中的某一个人进行调查研究;(2)团体调查。即对某个组织或团体进行调查研究:(3)问题调查,即对某个现象或问题进行调查研究。

论文的研究方法之功能分析法

功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。它透过说明社会现象怎样满足一个社会系统的需要(即具有怎样的功能)来解释社会现象。

论文的研究方法之数量研究法

数量研究法也称统计分析法和定量分析法,指透过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和描示事物间的相互关系、交化规律和发展趋势,借以到达对事物的正确解释和预测的一种研究方法。

论文的研究方法之模拟法(模望方法)模拟法是先依照原型的主要特征,创设一个相似的模型,然后透过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。

论文的研究方法之探索件研究法

探索性研究法是高层次的科学研究活动。它是用已知的信息,探索、创造新知识。

产生出新颖而独特的成果或产品。

足迹提取的方法研究论文

相比于指纹痕迹、枪弹痕迹、工具痕迹或DNA鉴定,足迹检验有着非常显著的特点。第一,足迹在现场的出现率非常高,提取率也非常高。指纹痕迹鉴定或DNA鉴定固然是非常成熟的人身同一认定的技术,但由于遗留条件有限,往往在现场勘查中的提取率不高,现在的现场勘察中一般取到的指纹几率,全国的水平大概也只是14%,而DNA的提取率还要远低于指纹提取率。相比指纹痕迹或DNA提取率,足迹出现几率则高很多,不管嫌疑人是否为了反侦查而戴手套,作案时间是否相对短暂,他都会留下对应的足迹。第二,足迹相对于其他痕迹更不易伪装。即使嫌疑人作案不戴手套,为避免留下指纹会对很多动作特别注意,但嫌疑人只要作案就必然在现场行走,只要行走就会反映出正常的行走特征,所以相比其他痕迹,足迹痕迹更难进行伪装。第三,足迹检验是进行现场分析的最有效手段。现场勘察的一个重要工作就是从技术角度确定侦查方向,准确判断案件性质,判断现场来去路线,判断作案过程及人数等。由于足迹在现场的出现率非常高,所以从技术角度对现场的基本要素进行判断,最重要的依据还是足迹,比如分析判断作案人数,最重要的技术依据就是现场足迹种类的多少。嫌疑人在现场遗留的指纹,并不能反映出全部的作案过程,但是嫌疑人在现场的任何一个动作都会留下相应的足迹,只要保证在足迹的提取过程中不失误,就会比较完整地发现整个作案过程。所以,通过对足迹的发现、提取、检验是进行现场分析最有效的手段之一。第四,它能够反映犯罪嫌疑人的很多个人特点。能通过对足迹大小压力情况等的初步检验来判断穿鞋人年龄、身高、体态、职业等特点,为侦查破案提供更多的线索。第五,与指纹、DNA一样,足迹检验除可以进行物的同一认定外,还可进行人身认定。包括鞋的认定和赤足迹或袜印的认定。犯罪人作案时身体造成的痕迹,如手印、足迹、气味等。这些痕迹不仅能反映作案者的某些生理特征,而且能反映当时一定的心理状态。如犯罪行为人出入现场一般会在现场留下足迹,我们根据提取的足迹特征,常常能作出这样的分析:足轻、足慢,步态清晰者为初入作案现场,边走边窃听周围有无动静;步幅大而且力重者为逃出现场时,或因作案成功而兴奋,或因恐惧而心怯;步态混乱者大多出于恐惧或有意制造假象。

随着人类的发展,统计的重要性已经越来越得到人们的认识了。人类活动的一切领域几乎都已经无法离开统计。下文是我为大家蒐集整理的关于的内容,欢迎大家阅读参考! 篇1 数理统计在痕迹检验的运用 摘要:数理统计是一门研究随机现象统计规律性的学科。本文以足长推断身高为例,表明了数理统计的方法在痕迹检验中的运用。痕迹检验可以运用数理统计的方法对某些可测量特征进行统计分析,从而对现场发现的证据进行进一步分析。数理统计是对痕迹检验方法的补充。 关键词:数理统计;痕迹检验;足长;身高 数理统计是以概率论为基础,根据试验或观察得到的资料,来研究随机现象统计规律性的学科;数理统计在自然科学、工程技术、管理科学及人文社会科学中得到越来越广泛和深刻的应用。痕迹检验是一门综合运用痕迹检验的相关理论和方法,研究各种犯罪痕迹的形成与变化规律,以及发现、显现、提取、分析、鉴定犯罪痕迹的方法,进而揭露和证实犯罪,为侦查、起诉、审判提供线索和证据的学科。痕迹检验不仅可以运用形态学比较地方法进行研究;也可以运用数理统计的方法对遗留在现场的痕迹进行科学、严谨的统计推断,从而分析出造痕体的某些特征,如通过足长推断身高、步幅特征的定量化检验等等。我们以足长推断身高为例,阐明数理统计方法在痕迹检验的具体应用。 1资料采集与处理 采集志愿者的赤足长与身高的资料如表所示。所有样本资料中,赤足长的测量[1],均按照同样的方法进行,即分别确定赤足足迹跟后缘向后最突出点和第二趾头中心点,将两点的连线作为赤足足迹的测量基线;垂直于测量基线且与赤足足迹最长趾的前缘和跟后缘相切的两条直线间的距离定为赤足长。每个样本的赤足长和身高资料,需测量3次取均值做统计分析。值得注意的是,对于可疑资料如个高脚短或个矮脚长样本资料的取舍要慎重,必须遵循一定的原则。取舍的原则: 1测量中发现明显的系统误差和过失错误,由此产生的测量资料应随时剔除; 2采用离群资料的统计检验法,取舍可疑资料。在足长推断身高的试验中,可疑资料的取舍一般采用三倍标准差法。 2相关分析 相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变数之间的相关关系的一种统计方法。利用足长推断留痕人身高时,我们需要对足长和身高两个变数之间依存性进行分析。如果足长和身高这两个变数依存性高相关系数接近+1或-1,就可对资料进行深入的统计分析,得到变数之间相互依赖的定量关系。相关分析可以采用专业的统计分析软体进行如SAS、SPSS等,也可使用Excel统计分析工具进行[2]。经过相关分析,足长和身高相关系数为0.93,存在显著相关性,呈线性正相关。因此,可以利用足长和身高资料进行进一步的统计分析,建立相应的回归模型。 3建立回归模型 回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法,运用十分广泛。回归分析按照涉及的变数的多少,分为一元回归和多元回归分析;线上性回归中,按照自变数的多少,可分为简单回归分析和多重回归分析;按照自变数和因变数之间的关系型别,可分为线性回归分析和非线性回归分析。因为足长与身高两者呈线性正相关,所以我们对足长和身高两组资料采用一元线性回归的方法进行统计分析。回归模型中,y表示因变数,x表示自变数,R2为方程的确定性系数;R2值越接近1,表明方程中x对y的解释能力越强。如图所示,足长与身高的一元线性回归分析可得回归方程式:y=838x+12.7,其中R2=0.86968,数值接近1,说明利用足长可以推断留痕人的身高,身高=838×足长+12.7。 4结论 在痕迹检验中,一个物证会出现很多特征,如何有机的将这些特征整合起来,使物证变得强而有力,是困扰著刑侦人员的难题。数理统计方法应用可以发现可测量特征与特征之间是否存在内在联络、联络是否紧密等现象。因此,痕迹检验的方法不仅仅是形态学上简单比较,还可以运用数理统计的方法对某些可测量特征进行统计分析。数理统计方法的应用,是对痕迹检验方法的改进与补充。 参考文献 [1]史力民,马建平.足迹学[M].北京:中国人民公安大学出版社,2014. [2]李洪武.EXCEL多元回归分析在痕迹资料处理上的应用[J].辽宁警专学报,20066:35-37. 篇2 办公系统计算机网路安全问题与防范措施 【摘要】随着全球资讯化、网路化的发展,人们对于计算机网路依赖性也在不断增大,很多部门也建立了自己的办公系统网路。因此,计算机网路的安全就显得越来越重要。本文主要针对现代办公计算机出现的一些问题进行讨论,并提出了相应的防范措施。我们需要对计算机网路中的各种安全问题予以足够的重视,进而探索出相应的防范措施,最终促进计算机网路安全效能的不断提升。 【关键词】办公系统;网路安全;资讯保安;防范措施 在现代社会,无论是个人、企业还是 *** 部门,对计算机网路的依赖性都日益增多,因而,计算机网路的稳定和安全问题的影响也越来越大,一旦疏于防范,极易给人们的生活和工作造成困扰,甚至带来重大的经济损失。下文以常见的微软win-dows系列系统,如winXP,win7,win8等,为例对其进行说明。 1现代办公计算机出现的常见问题及解决方案 电脑不能正常开机:面对此类问题,我们可以采用中医上的“望闻问切”法。“望”即观察电脑板卡,插座插头是否插入正确,晶片有无断开等现象出现,记忆体硬碟是否插入正确。“闻”即看主机板,板卡有无烧焦的气味以判断其是否损坏。“问”即询问使用电脑的人让其提供有用资讯帮助电脑的维修。“切”即用手触碰先活动的晶片等看是否接触良好。针对具体原因实际情况进行维修,否则应交于专门的维修部进行维修。电脑不能正常上网:①检视调变解调器、路由到电脑直接的线路是否正确。此类问题只需按照正确的线路进行连线即可。②固定IP被占用,这是区域网最容易出现的问题。面对此类问题,重启电脑,让路由重新分配IP,若仍未连上网路则只需将网络卡禁用,然后再重启,让其重新分配IP,DNS等资讯。 2计算机网路中存在的安全问题 2.1自然威胁 计算机如果工作于恶劣的自然环境中,很可能受到电磁等干扰,从而影响计算机的正常使用。同时,如果计算机装置得不到正常的维护,如遇到装置老化等问题,也会对计算机的效能造成不好的影响。这些问题都会对计算机网路中资料的传输造成不同程度的威胁。 2.2非授权访问 在计算机使用过程中,有些非法使用者通过一些非法手段未经允许进入使用者的内部网路。对入侵物件的档案进行非法的读写或者蓄意破坏,更有甚者,可能破坏内部网路,使其丧失服务的功能。 2.3系统漏洞 系统漏洞又称“后门”。早在计算机网路发展的初期,网路黑客就已经开始利用系统漏洞对计算机进行入侵。利用系统“后门”能使黑客在最短时间内获得系统的许可权,然后利用一些手段不易被系统管理员察觉,自由进出计算机系统。这种漏洞的危害有时是不可估量的。 2.4计算机病毒 在所有威胁电脑保安的因素中,计算机病毒对网路带来的威胁最为严重。计算机病毒的本质是一段程式,在其进入计算机系统后将会影响计算机的正常使用,有时会对计算机的资料储存进行破坏。并且,一些病毒软体在感染了之后难以被使用者及时发现,将长时间地威胁著使用者的上网安全。 2.5邮件威胁 由于计算机网路的开放性,很多不发分子会利用其进行政治或宗教等活动。有的垃圾邮件中或包含间谍软体,对使用者的密码及个人资讯进行盗取,进行,盗窃等活动。 3计算机网路安全防范措施 3.1定期的对计算机进行资料备份和维护 计算机在使用的过程中,难免受到不可抗力的因素,如自然老化,断电资料丢失等,及时的对储存资料进行备份,即使计算机系统受到的破环或者攻击也无需担心,只需将备份资料重新拷入计算机中即可。同时,定期的对计算机装置进行维护,可以过早的发现问题,将损失消除在萌芽状态。 3.2合理配置防火墙 防火墙就像在使用者的PC与网路之间设定一个过滤器,所有的网路通讯都必须经过它。防火墙可以对网路资讯进行过滤,将各种不安全的资讯阻挡在防火墙之外。防火墙会对要想访问PC及其所处内网的请求进行筛选,允许有访问许可权者进行访问,将没有许可权者阻挡在防火墙之外。同时,对使用者访问的资讯进行检测,进行病毒预警,将有病毒的资讯隔离在内网之外。 3.3对重要档案进行加密 档案加密主要是通过特定的演算法对目标档案进行处理,变成无法识别的程式码称为密文,要想检视明文,也就是加密前的内容,使用者必须输入正确的金钥。通过加密手段,即使档案被不法分子拦截或窃取没有金钥也无法检视内容。 3.4及时下载系统补丁和防毒软体 计算机系统的维护不是一件一劳永逸的事,随着计算机技术的发现,可能会发现系统的更多漏洞,或者出现更多的病毒。我们可以通过一些卫士软体,如360安全卫士,COPS等,对系统漏洞进行扫描,病毒库进行更新等。及时的对系统进行打补丁和升级病毒库可以有效的避免恶意攻击者对计算机的侵害。 4结语 综上所述,计算机网路安全问题影响着使用者的资讯、资金和财产等的安全,因此,我们需要对计算机网路安全问题的种类进行研究,并且对相应的防范措施进行分析,最终促进计算机网路安全效能的提升,为使用者提供一个良好的网路环境。我们相信,只有如此,计算机网路安全问题才能够被控制在一定的范围内,计算机使用者的网路使用安全才能够得到相应的保障。 参考文献 [1]王涛.浅析计算机网路安全问题及其防范措施[J].科技创新与应用,20132.

  • 索引序列
  • 图像的提取方法研究论文
  • 图像提取算法研究论文
  • 遥感图像道路提取研究论文
  • 论文研究方法中的图像分析法
  • 足迹提取的方法研究论文
  • 返回顶部