Ⅰ考查目标 计算机学科专业基础综合考试涵盖数据机构、计算机组成原理、操作系统和计算机网络等学科专业基础课程。要求考生比较系统地掌握上述专业基础课程的概念、基本原理和方法,能够运用所学的基本原理和基本方法分析、判断和解决有关理论问题和实际问题。 Ⅱ考试形式和试卷结构 一、试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、笔试 三、试卷内容结构 数据结构45分 计算机组成原理45分 操作系统35分 计算机网络25分 四、试卷题型结构 单项选择题80分(40小题,每小题2分) 综合应用题70分 Ⅲ考查范围 数据结构 【考查目标】 1.理解数据结构的基本概念;掌握数据的逻辑结构、存储结构及其差异,以及各种基本操作的实现。 2.掌握基本的数据处理原理和方法的基础上,能够对算法进行设计与分析。 3.能够选择合适的数据结构和方法进行问题求解。 一、线性表 (一)线性表的定义和基本操作 (二)线性表的实现 1.顺序存储结构 2.链式存储结构 3.线性表的应用 二、栈、队列和数组 (一)栈和队列的基本概念 (二)栈和队列的顺序存储结构 (三)栈和队列的链式存储结构 (四)栈和队列的应用 (五)特殊矩阵的压缩存储 三、树与二叉树 (一)树的概念 (二)二叉树 1.二叉树的定义及其主要特征 2.二叉树的顺序存储结构和链式存储结构 3.二叉树的遍历 4.线索二叉树的基本概念和构造 5.二叉排序树 6.平衡二叉树 (三)树、森林 1.书的存储结构 2.森林与二叉树的转换 3.树和森林的遍历 (四)树的应用 1.等价类问题 2.哈夫曼(Huffman)树和哈夫曼编码 三、图 (一)图的概念 (二)图的存储及基本操作 1.邻接矩阵法 2.邻接表法 (三)图的遍历 1.深度优先搜索 2.广度优先搜索 (四)图的基本应用及其复杂度分析 1.最小(代价)生成树 2.最短路径 3.拓扑排序 4.关键路径 四、查找 (一)查找的基本概念 (二)顺序查找法 (三)折半查找法 (四)B-树 (五)散列(Hash)表及其查找 (六)查找算法的分析及应用 五、内部排序 (一)排序的基本概念 (二)插入排序 1.直接插入排序 2.折半插入排序 (三)气泡排序(bubblesort) (四)简单选择排序 (五)希尔排序(shellsort) (六)快速排序 (七)堆排序 (八)二路归并排序(mergesort) (九)基数排序 (十)各种内部排序算法的比较 (十一)内部排序算法的应用 计算机组成原理
济南发:07:10D6001次2小时38分青岛到:09:48站次 站名 到达时间 开车时间 停车时间 运行时间1 济南 起点站 07:10 - -2 淄博 07:52 07:53 1分 42分钟3 潍坊 08:29 08:30 1分 1小时19分钟4 高密 08:57 08:58 1分 1小时47分钟5 青岛 09:48 终到站 - 2小时38分钟
最短路径问题是图论研究中一个经典算法问题,旨在寻找图中两节点或单个节点到其他节点之间的最短路径。根据问题的不同,算法的具体形式包括:
常用的最短路径算法包括:Dijkstra算法,A 算法,Bellman-Ford算法,SPFA算法(Bellman-Ford算法的改进版本),Floyd-Warshall算法,Johnson算法以及Bi-direction BFS算法。本文将重点介绍Dijkstra算法的原理以及实现。
Dijkstra算法,翻译作戴克斯特拉算法或迪杰斯特拉算法,于1956年由荷兰计算机科学家艾兹赫尔.戴克斯特拉提出,用于解决赋权有向图的 单源最短路径问题 。所谓单源最短路径问题是指确定起点,寻找该节点到图中任意节点的最短路径,算法可用于寻找两个城市中的最短路径或是解决著名的旅行商问题。
问题描述 :在无向图 中, 为图节点的集合, 为节点之间连线边的集合。假设每条边 的权重为 ,找到由顶点 到其余各个节点的最短路径(单源最短路径)。
为带权无向图,图中顶点 分为两组,第一组为已求出最短路径的顶点集合(用 表示)。初始时 只有源点,当求得一条最短路径时,便将新增顶点添加进 ,直到所有顶点加入 中,算法结束。第二组为未确定最短路径顶点集合(用 表示),随着 中顶点增加, 中顶点逐渐减少。
以下图为例,对Dijkstra算法的工作流程进行演示(以顶点 为起点):
注: 01) 是已计算出最短路径的顶点集合; 02) 是未计算出最短路径的顶点集合; 03) 表示顶点 到顶点 的最短距离为3 第1步 :选取顶点 添加进
第2步 :选取顶点 添加进 ,更新 中顶点最短距离
第3步 :选取顶点 添加进 ,更新 中顶点最短距离
第4步 :选取顶点 添加进 ,更新 中顶点最短距离
第5步 :选取顶点 添加进 ,更新 中顶点最短距离
第6步 :选取顶点 添加进 ,更新 中顶点最短距离
第7步 :选取顶点 添加进 ,更新 中顶点最短距离
示例:node编号1-7分别代表A,B,C,D,E,F,G
(s.paths <- shortest.paths(g, algorithm = "dijkstra"))输出结果:
(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))输出结果:
示例:
找到D(4)到G(7)的最短路径:
[1] 维基百科,最短路径问题: ; [2]CSDN,Dijkstra算法原理: ; [3]RDocumentation: ; [4]RDocumentation: ; [5]Pypi:
现在,我们准备介绍计算机科学史上伟大的成就之一:Dijkstra最短路径算法[1]。这个算法适用于边的长度均不为负数的有向图,它计算从一个起始顶点到其他所有顶点的最短路径的长度。在正式定义这个问题(3.1节)之后,我们讲解这个算法(3.2节)以及它的正确性证明(3.3节),然后介绍一个简单直接的实现(3.4节)。在第4章中,我们将看到这种算法的一种令人惊叹的快速实现,它充分利用了堆这种数据结构。3.1单源最短路径问题3.1.1问题定义Dijkstra算法解决了单源最短路径问题。[2]问题:单源最短路径输入:有向图G=(V, E),起始顶点s∈V,并且每条边e∈E的长度e均为非负值。输出:每个顶点v∈V的dist(s,v)。注意,dist(s,v)这种记法表示从s到v的最短路径的长度(如果不存在从s到v的路径,dist(s,v)就是+∞)。所谓路径的长度,就是组成这条路径的各条边的长度之和。例如,在一个每条边的长度均为1的图中,路径的长度就是它所包含的边的数量。从顶点v到顶点w的最短路径就是所有从v到w的路径中长度最短的。例如,如果一个图表示道路网,每条边的长度表示从一端到另一端的预期行车时间,那么单源最短路径问题就成为计算从一个起始顶点到所有可能的目的地的行车时间的问题。小测验3.1考虑单源最短路径问题的下面这个输入,起始顶点为s,每个边都有一个标签标识了它的长度:从s出发到s、v、w和t的最短距离分别是多少?(a)0,1,2,3(b)0,1,3,6(c)0,1,4,6(d)0,1,4,7(正确答案和详细解释参见3.1.4节。)3.1.2一些前提条件方便起见,我们假设本章中的输入图是有向图。经过一些微小的戏剧性修改之后,Dijkstra算法同样适用于无向图(可以进行验证)。另一个前提条件比较重要。问题陈述已经清楚地表明:我们假设每条边的长度是非负的。在许多应用中(例如计算行车路线),边的长度天然就是非负的(除非涉及时光机器),完全不需要担心这个问题。但是,我们要记住,图的路径也可以表示抽象的决策序列。例如,也许我们希望计算涉及购买和销售的金融交易序列的利润。这个问题相当于在一个边的长度可能为正也可能为负的图中寻找最短路径。在边的长度可能为负的应用中,我们不应该使用Dijkstra算法,具体原因可以参考3.3.1节。[3]3.1.3为什么不使用宽度优先的搜索如2.2节所述,宽度优先的搜索的一个“杀手”级应用就是计算从一个起始顶点出发的最短路径。我们为什么需要另一种最短路径算法呢?记住,宽度优先的搜索计算的是从起始顶点到每个其他顶点的边数最少的路径,这是单源最短路径问题中每条边的长度均为1这种特殊情况。我们在小测验3.1中看到,对于通用的非负长度边,最短路径并不一定是边数最少的路径。最短路径的许多应用,例如计算行车路线或金融交易序列,不可避免地涉及不同长度的边。但是,读者可能会觉得,通用的最短路径问题与这种特殊情况真的存在这么大的区别吗?如图3.1所示,我们不能把一条更长的边看成3条长度为1的边组成的路径吗?图3.1路径事实上,“一条长度为正整数的边”和“一条由条长度为1的边所组成的路径”之间并没有本质的区别。在原则上,我们可以把每条边展开为由多条长度为1的边组成的路径,然后应用宽度优先的搜索对图进行展开来解决单源最短路径问题。这是把一个问题简化为另一个问题的一个例子。在这个例子中,就是从边的长度为正整数的单源最短路径问题简化为每条边的长度均为1的特殊情况。这种简化所存在的主要问题是它扩大了图的规模。如果所有边的长度都是小整数,那么这种扩张并不是严重的问题。但在实际应用中,情况并不一定如此。某条边的长度很可能比原图中顶点和边的总数还要大很多!宽度优先的搜索在扩张后的图中的运行效率是线性时间,但这种线性时间并不一定接近原图长度的线性时间。Dijkstra算法可以看成是在扩张后的图上执行宽度优先的搜索的一种灵活模拟,它只对原始输入图进行操作,其运行时间为近似线性。关于简化如果一种能够解决问题B的算法可以方便地经过转换解决问题A,那么问题A就可以简化为问题B。例如,计算数组的中位元素的问题可以简化为对数组进行排序的问题。简化是算法及其限制的研究中非常重要的概念,具有极强的实用性。我们总是应该寻求问题的简化。当我们遇到一个似乎是新的问题时,总是要问自己:这个问题是不是一个我们已经知道怎样解决的问题的伪装版本呢?或者,我们是不是可以把这个问题的通用版本简化为一种特殊情况呢?3.1.4小测验3.1的答案正确答案:(b)。从s到本身的最短路径的长度为0以及从s到v的最短路径的长度为1不需要讨论。顶点w稍微有趣一点。从s到w的其中一条路径是有向边(s,w),它的长度是4。但是,通过更多的边可以减少总长度:路径s→v→w的长度只有1+2=3,它是最短的s−w路径。类似地,从s到t的每条经过两次跳跃的路径的长度为7,而那条更迂回的路径的长度只有1+2+3=6。3.2Dijkstra算法3.2.1伪码Dijkstra算法的高层结构与第2章的图搜索算法相似。[4]它的主循环的每次迭代处理一个新的顶点。这个算法的高级之处在于它采用了一种非常“聪明”的规则选择接下来处理哪个顶点:就是尚未处理的顶点中看上去最靠近起始顶点的那一个。下面的优雅伪码精确地描述了这个思路。
研究背景是指论文课题在国内外现状、发展历程之类的;而意义主要是指这个东西在当下还不行,就诸多不足而言还存在着研究的价值和意义,那么论文研究背景和意义怎么写?下面我们就来给大家看看研究背景和意义的具体写作方法。 一、论文研究背景和意义怎么写? 在写作之前,我们先来看看二者之间的区别: 1、内容不同 研究背景就是主要是国内外现状、发展历程之类的;而意义要是指这个东西在当下还不行,就诸多不足而言还存在着研究的价值和意义,在某些方面可以改进。 2、行文顺序不同 背景就是对现状的描述,而意义则是对背景研究的结果。所以在论文中研究背景在研究意义前面。 二、研究背景如何进行写作呢? 论文研究背景主要有以下几个写作点: 1.交代社会大环境 2.再交代这个行业的大环境 3.再交代目前急需解决的问题 研究背景写作的主要内容和要求如下: 选题的意义与价值 本部分是要点出为什么要写本篇论文的问题,也就是写作的意图、缘由。意义与价值如果能区分开,就分开论述;如果不能,就合在一起说明。一般而言,主要从2个大的方面去写。一是理论意义与价值;二是实践意义与价值。 1.理论意义与价值 一般有以下几种情况: (1)就哲学的高度而言,需要研究的价值意义 (2)就专业或学科角度而言,需要研究的价值意义 (3)就某个理论角度而言,需要研究的价值意义 2.实践意义与价值 主要包括: (1)就实际的工作实践活动未来发展趋势、前景而言,需要研究的价值意义 (2)就实际的现在工作的实践活动而言,需要研究的价值意义 (3)就实际的现在工作的实践活动改进而言,需要研究的价值意义 三、论文的意义如何进行写作? 1.(你的选题)是前人没有研究过的,也就是说研究领域中一个新颖有意义的课题,被前人所忽略的 2.前人有研究过,或者说阐述过但是没有阐述论证的足够全面,你加以丰满,或者驳斥前人的观点, 总之,意义和目的一定要叙述的清晰并且是有一定新意的 其次注意自己所使用的理论,你是用什么理论证明你的观点 也要叙述清楚,否则难以有说服力 在做文献综述和国内外研究水平的评价等等也要有翔实的根据 这样才能衬托出你的选题的意义所在。 研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。 主要内容包括: (1)研究的有关背景(课题的提出):即根据什么、受什么启发而搞这项研究。 (2)通过分析本地(校)的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。 以上就是"论文研究背景和意义怎么写?的全部介绍,希望对大家写论文研究背景和意义有所帮助。
就是说与你相关的研究的发展情况、最新进展、研究的热点难点
论文研究背景的写作主要有以下几个要点:
1、社会大环境如何【可利用国家数据网站发布的数据做支撑】;
2、行业环境如何【可以利用行业报告做支撑】;
3、目前需要解决的问题【自己论述】。
这些内容首先需要使用比较宽泛的语言进行论述,然后利用大环境的数据做支撑;行业环境写作也是这样,先论述行业环境情况,然后引用行业数据报告作支撑;解决问题也就是其应用现实生活那些方面,还有在理论方面具有哪些指导意义。
扩展资料:
选题的意义与价值
选题的意义与价值写作要点在于论文为何写作本论文,告知写作的原因和意图。也就是论述论文的意义和价值,一般明确下面两个写作要点会使得写作难度降低,如下:
一、理论方面
一般有以下几种情况:
1、就哲学的高度而言,需要研究的价值意义。
2、就专业或学科角度而言,需要研究的价值意义。
3、就某个理论角度而言,需要研究的价值意义。
二、实践方面
主要包括:
1、就实际的工作实践活动未来发展趋势、前景而言,需要研究的价值意义。
2、就实际的现在工作的实践活动而言,需要研究的价值意义。
3、就实际的现在工作的实践活动改进而言,需要研究的价值意义。
什么专业~这种题目竟然也可以作为毕业论文来搞——
Ⅰ考查目标 计算机学科专业基础综合考试涵盖数据机构、计算机组成原理、操作系统和计算机网络等学科专业基础课程。要求考生比较系统地掌握上述专业基础课程的概念、基本原理和方法,能够运用所学的基本原理和基本方法分析、判断和解决有关理论问题和实际问题。 Ⅱ考试形式和试卷结构 一、试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、笔试 三、试卷内容结构 数据结构45分 计算机组成原理45分 操作系统35分 计算机网络25分 四、试卷题型结构 单项选择题80分(40小题,每小题2分) 综合应用题70分 Ⅲ考查范围 数据结构 【考查目标】 1.理解数据结构的基本概念;掌握数据的逻辑结构、存储结构及其差异,以及各种基本操作的实现。 2.掌握基本的数据处理原理和方法的基础上,能够对算法进行设计与分析。 3.能够选择合适的数据结构和方法进行问题求解。 一、线性表 (一)线性表的定义和基本操作 (二)线性表的实现 1.顺序存储结构 2.链式存储结构 3.线性表的应用 二、栈、队列和数组 (一)栈和队列的基本概念 (二)栈和队列的顺序存储结构 (三)栈和队列的链式存储结构 (四)栈和队列的应用 (五)特殊矩阵的压缩存储 三、树与二叉树 (一)树的概念 (二)二叉树 1.二叉树的定义及其主要特征 2.二叉树的顺序存储结构和链式存储结构 3.二叉树的遍历 4.线索二叉树的基本概念和构造 5.二叉排序树 6.平衡二叉树 (三)树、森林 1.书的存储结构 2.森林与二叉树的转换 3.树和森林的遍历 (四)树的应用 1.等价类问题 2.哈夫曼(Huffman)树和哈夫曼编码 三、图 (一)图的概念 (二)图的存储及基本操作 1.邻接矩阵法 2.邻接表法 (三)图的遍历 1.深度优先搜索 2.广度优先搜索 (四)图的基本应用及其复杂度分析 1.最小(代价)生成树 2.最短路径 3.拓扑排序 4.关键路径 四、查找 (一)查找的基本概念 (二)顺序查找法 (三)折半查找法 (四)B-树 (五)散列(Hash)表及其查找 (六)查找算法的分析及应用 五、内部排序 (一)排序的基本概念 (二)插入排序 1.直接插入排序 2.折半插入排序 (三)气泡排序(bubblesort) (四)简单选择排序 (五)希尔排序(shellsort) (六)快速排序 (七)堆排序 (八)二路归并排序(mergesort) (九)基数排序 (十)各种内部排序算法的比较 (十一)内部排序算法的应用 计算机组成原理
我求5000字的论文,关于学习与不学习的争吵,你有没的
机械创新设计是一个极其重要而又困难的实践性较强的研究课题。目前创新设计方法研究虽然已取得一些成果,但创新学还处于发展初期,各种不同理论及工具不断涌现,远没有形成普遍可以接受的统一的理论体系。本文认为,要进行机械创新设计要有两个必要条件:一是充分获取适用的知识;二是要使用符合创新设计思维并能激发创新思维的设计系统。设计过程充满了矛盾,所获取的知识应有助于矛盾的迅速解决,这就要求知识获取工具紧密集成到设计过程中,因此要统一研究知识获取工具与设计系统。另外,人类的创新设计思维模式是在长期的成功设计经验中总结形成的,因此设计系统必需符合创新设计思维规律。创新设计思维规律应作为算机辅助创新设计系统的理论基础。基于上述考虑,本文从创新设计思维的研究出发,融合知识获取方法,研究创新设计理论,进而开发机械产品创新设计系统。1 机械创新设计思维规律我们常把思维的过程称为“思路”,是因为可用路径问题来说明人类思维过程。本文提出两个机械创新设计思维原则:一是最短路径原则。设计者得到产品的功能要求后,往往首先检索出最佳设计实例,这样可以最迅速接近目标,然后运用价值工程方法,找出价值较低的极少数组件作为研究对象,再分析所得对象存在的矛盾,尝试作最小变动以解决矛盾,如矛盾没有解决则拟作更大变动或扩大研究对象范围,最后得出最优结果。通过这样途径所消耗的能量最少,体现了最短路径原则。二是相似性联想。汤川秀树的定同理论认为,联想能力就是找出事物彼此相似性的创造力,相似性是指事物间的内在联系。要用计算机系统来辅助设计师从自然界中发现形态各异的事物的相似性是很困难的,因此本文只研究从机械产品实例中挖掘相似性,以促进机械创新设计。机械设计过程是从功能要求到作用原理,再到物理结构的映射过程[1]。在CBR系统中,功能要求、作用原理与物理结构可作为实例索引,因此可统称它们为索引项目。同一索引的不同类索引项目之间的联想可称为纵向联想,而不同索引的同类索引的联想可称为横向联想。判断联想是否合理的依据是相似性,相似性由已有产品实例确定。比如,“超声波研磨机产品实例”使“超声波振动”作用原理与“研磨”功能要求纵向地产生了内在联系;又如,多种产品实例可满足同一功能要求,那么它们用于实现该功能的作用原理及物理结构具有相似性。功能要求是联想的起点,经验丰富的设计师通常记忆有大量的设计实例,因而掌握纵向及横向相似性,所以能迅速地进行横向及纵向的联想,能触类旁通,得出具有相似作用原理及物理结构的实例(简称相似实例)并进行组合优化,最后得到最优解。 这两项原则已被多种设计方法不自觉地采用了,基于实例推理不但能迅速接近最优解,体现最短路径原则;物场分析法(简称TRIZ)分析了上百万设计实例,确定功能要求与作用原理及物理载体的内在联系,以及不同作用原理或物理载体的可替代关系,使设计师可根据功能要求找到适当的作用原理及物理载体,体现相似性联想原则。2 计算机辅助创新设计系统 两项创新设计思维原则充分体现在计算机辅助创新设计系统的设计中,系统还利用了多种创新设计方法及人工智能技术。计算机辅助创新设计系统的流程如图1所示,它包含如下关键技术:2.1 实例检索 利用基于实例推理(CBR)技术时首先要深入研究它的优缺点。CBR是一种以实例为知识载体的知识供应方法。当前它仍有如下不足:首先,系统为了达到实用通常建立庞大的实例库,这导致管理困难,系统运行效率低;其次,通过检索得到的只是一个或很少实例,而其它不符合检索要求但含有适用知识的实例没有利用,支持创新的力度不够;最后,实例调整严重依赖领域知识,难度大,所以很多CBR系统简化为实例检索系统[2]。导致这三项缺点的深层原因是实例是独立的,不同实例所蕴含的知识难以组合利用。为了克服这个矛盾本文提出通过相似性联想找出相似实例,并利用遗传算法进行组合优化,实现实例知识的重用。本系统的实例检索功能用商品化PDM系统IMAN中的产品结构与配置管理功能及搜索功能来实现,实例的可视化表示与管理依靠IMAN的产品结构树功能实现。2.2可视化的实例模型表达及矛盾分析概念设计技术的发展方向为研究一种统一的设计方案表达方法[3]。文献[4]对日本学者吉川弘之提出的FBS图进行扩充,使用两个框架分别描述一个设计方案的功能层次与结构层次,并存储功能单元与结构单元的对应关系,使计算机理解产品的结构及其功能。这种方法的缺点是结构与功能的关系不够直观,因此本系统在功能层次图与结构层次图的基础上增加功能关系图,以语义网络的方式描述结构及之间的作用关系,使结构与功能处于同一张图中,设计者可直观地理解产品原理,根据功能关系图并运用价值工程方法分析实例存在的矛盾。实现创新的关键是正确分析产品中所存在的矛盾[5]。产品设计中的基本矛盾是产品功能成本比不能满足用户要求,它有两种表现形式,一是未能实现某些产品功能质量目标;二是某些功能质量得到改善而某些功能质量却恶化。矛盾分析结果用于指导新作用原理、新物理结构的联想,进而找出相似实例。2.3基于WEB的创新设计知识库本系统的创新设计知识库包括作用原理库、物理结构库与实例库。当系统根据相似性搜索到新作用原理或物理结构后,相应的实例自动调出。作用原理库与物理结构库的开发借鉴了TRIZ的成果,再针对机械领域补充整理出二百四十余种作用原理(其中包括五十余种基本措施)。在每种作用原理下分别存储多种物理结构,形成物理结构库。实例库主要针对几种常见的家电产品进行开发。创新设计知识库是创新设计系统的核心部件,它是一种WEB文本知识库,文本经过笔者开发的机械知识XML标记处理,使知识库建立在国际标准XML文本之上,因此可实现知识资源的异地共享,并且在此知识库之上可建立基于WEB的机械产品计算机辅助创新设计系统,满足异地协同设计的需要。2.4相似性的量化方法及改进的遗传算法每种产品的结构不同,需要不定相同的遗传算法编码。本系统为了提高运行效率,采用浮点数编码方式。在传统的遗传算法中,初始群体是通过用随机的方法来产生的[6],这具有一定的盲目性。因此本文提出利用实例的作用原理或物理结构的相似性作为筛选实例产生初始群体的依据。实现该途径的关键在于相似性的量化也即相似度的计算方法。相似度实质是实例的关联知识,必须以一定的算法在实例集合中挖掘得到。纵向联想的相似度实质是功能目标与实现手段的关系程度,横向联想的相似度实质是实现手段的可替代关系程度。相似度越高意味着得到已有产品实例的更多支持。根据相似度来筛选初始群体就等于利用以前的设计经历,使初始群体的产生有合理的基础,因此能加快遗传算法的收敛。本文根据相似性联想原理提出如下纵向及横向联想的相似度计算方法。设产品实例集合为C,功能元素集合为F,作用原理或物理结构元素集合为G。分别记为:C={Ci|i=1,2,…,n}; F={Fj|j=1,2,…,m}; G={Gk|k=1,2,…,q}。实例集合中的实例Ci以不同的隶属度uij及uik分别隶属于Fj及Gk。 设元素Gk到元素Fj的纵向联想相似度为rkj,则:rkj = 又设G空间中有元素Gk和Gm。实例Cji分别以隶属度uik和uim隶属于元素Gk和Gm,设从Gk到Gm的横向联想相似度为rkm,则:rkm = 隶属度作为实例对象的一项属性来存储。系统根据以上算法从实例集合中挖掘相似度知识,辅助设计师从相似度较高的方向进行联想,并用于指导遗传算法初始群体的产生,从而促进设计创新。3 结论 本文研究创新设计思维规律并用于指导机械产品创新设计系统的开发,系统的成功应用证明了关于创新设计思维规律论断的正确性以及多种新技术的可行性。系统可通过矛盾分析与联想,搜索到适用的作用原理、措施、物理结构及实例以解决矛盾,完成概念设计阶段的功能优化与原理优化,是实现机械广义优化设计方法的新成果。也不知道你是否满意啊!
毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专业知识和技能解决较为复杂问题的能力并使他们受到科学研究的基本训练。标题标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。总标题总标题是文章总体内容的体现。常见的写法有:①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,轻易激起读者的注重。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。③交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注重,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中心和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。④用判定句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。
在物流配送领域,如何快速、准确的获得用户信息并及时开展业务,高效、合理的完成配送服务,成为决定物流企业市场竞争力的重要因素。下面是我为大家整理的物流配送管理系统论文,供大家参考。
物流配送系统干扰管理模型研究
物流配送管理系统论文摘要
摘要:物流配送在我国信息化时代是非常需要的,因此有着非常重要的地位。物流配送系统就是一个经济行为的系统,它为人们在物流上面提供了方便。关于物流配送系统干扰管理模型,国内外都有一定的研究。本文从物流配送系统的概念、一般方式、具体模型来作了探讨工作。
物流配送管理系统论文内容
[abstract] the logistics distribution in our country's information age is very need, so has a very important position. The logistics distribution system is an economic behavior of the system, it for the people in the logistics provided above to a convenient. About logistics distribution system interference management model, and have certain research at home and abroad. This paper, from the concept of logistics distribution system, general way, the specific model to work were discussed
关键词:物流配送;系统;干扰管理;研究;
中图分类号:F253
一、物流配送系统
(一)概念
物流配送系统是一个经济行为的系统,它是通过其收集广泛的信息来实现以信息为基础的物流系统化,其作用是不可忽视。物流配送系统的主要机能分为两种,一种是作业子系统,另一种是信息子系统。作业子系统的范围比较广,包括的内容也比较多,例如输送、保管、加工等机能,其主要目的是保证物流配送达到快速的运作,使工作效率提高。信息子系统相比作业子系统来说范围是比较小的,其内容包括订货、发货、出库管理等,它的主要目的除了提高其工作效率以外,还能使工作更加效果化。信息子系统还有一点对于顾客来说是非常有用的,那就是可以以比较低的成本以及优良的顾客服务来完成商品实体,然后从供应地再到消费地,是一种非常有利于顾客的活动。
(二)一般方式
物流配送在我国占有非常重要的地位,它一般有两种配送模式,一种是及时配送,另一种是准时配送,这两种配送模式的应用是非常广泛的,因为两种模式都要有一个共同点,那就是都满足了用户的特殊要求,以此来进行供货以及送货的工作。即时配送和准时配送的供货时间非常的灵活和稳定,基于这种情况,对于用户的生产者和经营者来说,库存的压力就发生了变化,也就是出现库存缩减的情况,有时还会取消自己的库存。
二、物流配送系统干扰管理模型
(一)国内外的研究
关于干扰的研究在20世纪70年代就已经开始了,但是其干扰管理模型是在同个世纪90年代才提出来的,在提出来的概念中,把干扰管理给局限化了,把系统扰动控制在最小数值,还指出了干扰管理的另一种含义,它是属于运筹学的某个应用领域,其发展的潜能在一定程度上来说是非常大的。
我国的学者也对干扰管理作了一些研究,研究表明干扰管理的实质就是使事件回到最初的状态,其突然出现的事件就是一种偏离,而这种偏离是微小的,并没有对其产生一些重要的影响,所以通过及时的管理 方法 是可以修正的。学者还将干扰管理与应急管理的不同点分列出来,使人一目了然。
在现阶段,国内外关于干扰管理的模型的研究具有片面性,侧重于模型以及算法,虽然涉及的领域非常的多,但是也具有一定的局限性,片面性在一定程度上也是有的,比如说在车辆调度领域,特别是物流配送这一方面,相对来说起步是比较晚的,但是后续的研究并没有停止。
(二)原因
1.总所周知,客户如果对一个企业充分信任的话,就能使企业的长期的拥有这些客户,也就是固定客户会增多,随着旧客户的口碑相传,新客户也会随之而来,企业就会得到更多的赢利。下文所讲到的数学模型建立的目标是最小化的,因此就可以就可以用这一条件来反映对客户满意度的扰动。
2.物流配送的运营商最关心的必然是运作成本,因为其运作成本是整个物流配送的核心,所以根据这种情况来看,要想节约其运作成本的话,就可以调整其干扰方案。
3.干扰管理在生成新的配送方案后,其车的路线也将发生变化,因为频繁的更改其路线,其交通费必然会增加,超过了原本的预算,其效率也会受到影响。另一方面,因为路线频繁的更改,司机原本已经熟悉的路线又变得陌生起来,必将会影响司机的工作心情。依据干扰管理的思想来看,新方案和原方案相比的话,两者间的偏差值应该是最小的,所以路径的变动量也会最小。在本文中,提出的模型(下文将提到)是以三个维度来度量其扰动的,其模型是属于多目标的。
(三)数学模型的建立
数学模型的建立,是例子是非常多的。本文只是以需求量变动为干扰事件这一个例子来进行数学建模,其原因有以下几点内容。
1.需求量变动在一些企业中是必然会发生的干扰事件,特别是在成品油销售的企业。因为油品的存放存在一定的危险,容易造成火灾事故,如果除去加油站,其他成油品销售一般为服务行业,比如说餐饮、酒店等,因为这些行业所存储的油不能太多,所以只能小批量的、多数次的来购买,根据这样一种情况,需求量必然会发生变化。据有关资料调查,需求量变动量最大的干扰事件就是该类企业。
2.需求量变动的问题在国内外学术界的关注度是非常高的,国内外许多著名学者都对需求量变动问题作了探讨。根据一些新闻、期刊以及文献我们就可以看出,物流配送需求量变动的研究已经在很久以前就有相关资料了。此类干扰事件在1987年时就作了有关研究,比如说不确定性需求的动态车辆指派问题模型。
3.关于物流配送的车辆其路径问题的种类也是非常多的,本文主要通过对有时间窗的车辆路径问题作了相关研究。此类问题有一个特别明显的特点,就是客户对货物所送达的时间非常的严格,因此其要求也更加高了。下面我们举一个例子来详细的讲解一下这个问题,让其更加的清晰明了。假如其问题范围和条件分别为:只有一个配送中心,并且其配送中心有足够的同质物质材料,车辆也足够,但是有一个问题就是其车辆必须以配送中心为始源地和终点,而且每一辆车必须从只能访问一个客户,如图1(a)所示.如果出现需求量的突发事件,车辆就必须在出发之前就要把物品载满。假如说在开始设定的计划中,并没有对需求量不足做出一些应急 措施 ,如果客户的需求量突然增加,如图1中的客户点7,而且增加的需求量还超过了剩余车辆的载货量,也就是说其车辆也出现供应不足的情况,此时它就需要其他车辆来进行援助工作,如图l(b)所示。
三、结束语
随着我国经济的迅速发展,人们开始追求方便化,所以物流配送工作对于人们来说变得越来越重要。但是在物流配送的过程中,必定会出现突发状况,也就是出现干扰的情况。比如说客户需求量变动、车辆出现故障等,这些干扰事件经常会使原本计划出现失败的情况,然后顾客就对其不满,矛盾也会随着时间而加深。在现阶段,物流配送系统干扰管理模型的研究有些片面化,在前面我们也提到过,主要因为全都集中在单一要素变动引发的干扰事件上,在真正的物流配送过程中,存在变动的情况更多,因此,物流配送系统干扰管理模型的问题还有待进一步的研究,以此来完善此系统,让其更加贴近生活,实用性也变得更强。
物流配送管理系统论文文献
[1]王旭坪,杨德礼,许传磊.有顾客需求变动的车辆调度干扰管理研究[J].运筹与管理.2009(04)
[2] 孙丽君,胡祥培,于楠,方艳.需求变动下的物流配送干扰管理模型的知识表示与求解[J].管理科学.2008(06)
[3] 杨文超,王征,胡祥培,王雅楠.行驶时间延迟的物流配送干扰管理模型及算法[J].计算机集成制造系统.2010(02)
[4] 朱晓锋,蔡延光.物流配送的优化模型及算法在连锁企业中应用[J].顺德职业技术学院学报.2011(01)
[5] 胡祥培,于楠,丁秋雷.物流配送车辆的干扰管理序贯决策方法研究[J].管理工程学报.2011(02)
矩阵算法在物流配送管理系统中的应用
物流配送管理系统论文摘要
摘要: 本文针对物流配送中心运营过程中如何合理制定配送线路的问题,以邻接矩阵为基础,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。
物流配送管理系统论文内容
Abstract: In this paper, for the problem how to develop reasonable distribution lines in the process of logistics and distribution center operations, based on adjacency matrix, by the computation of adjacency matrix to get graph reachability matrix and judge whether can find forward path from the source node to goal node, and finally complete the search of the shortest path.
关键词: 车辆路径问题;配送;物流;最短路径
Key words: vehicle routing problem;distribution;logistics;shortest path
中图分类号:TP39 文献标识码:A 文章 编号:1006-4311(2013)10-0163-02
0 引言
目前我国的快递行业蓬勃发展,使得物流配送中心的业务量不断增加,业务的复杂程度也已不断提高,这都对物流配送中心的科学管理水平提出了新的要求,高效、合理、安全、快速的配送是物流系统顺利运行的保证,而配送线路安排是否合理也是配送速度、成本、效益的保证。正确、合理地安排配送线路,可以达到省时、省力,增加资源利用率,降低成本,提高经济效益的目的,从而使企业达到科学化的物流管理。
本文以邻接矩阵模型为基础,提出了一种新的最短路径算法,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。
1 有向图的可达矩阵
假设有一个n个节点(d1,d2……dn)建立的有向图,每条有向边上都有各自的权值,若节点di和dj之间有条有向边,则其权值表示为Wij。如果我们要求节点d1到节点dn的最短路径。那么首先应该建立基于该有向图的邻接矩阵M:Mij=0表示节点di和dj之间没有直接有向通路,若Mij=1表示节点di和dj之间存在直接有向通路。
那么矩阵M2中所有为1的元素的坐标所代表的就是通过一次“中转”可以达到贯通的节点对。以此类推M3中所有为1的元素的坐标就是通过两次 “中转”可以达到贯通的节点对;Mn所有为1的元素的坐标就是通过n-1次“中转”可以达到贯通的节点对。
所以我们可以得出:M1+M2+M3+……+Mn得到的矩阵T即为原有向图可达矩阵,Tij=0表示节点di和dj之间没有有向通路,若Tij=1表示节点di和dj之间存在至少存在一条有向通路。
对于大规模稀疏矩阵,由于存在大量的值为0的元素,若按常规意义来存储,既会占用大量的存储空间,又会给查找带来不便。所以只要存储值为非0的元素即可。这在计算机中很好实现,只要建立含有两个整数域的结构体变量即可。
2 路径搜索算法
2.1 初步设想 由矩阵乘法的性质可知,Mx=Mx-1*M。若M■■≠0,则说明节点d1通过x-1次“中转”可以到达节点dj。那其中这x-1个节点都是哪些?它们又是什么顺序呢?把这两个问题搞清楚我们就找到了一条从节点d1经x-1次“中转”到达节点dj的通路。
接下来我们观察矩阵Mx-1的第一行,若M■■≠0,且Mij≠0,则说明:节点d1存在经x-2次“中转”到达节点di的通路,且节点di和dj之间存在直接有向通路。这样我们就找到了节点d1到节点dj通路的最后一次“中转”di,即d1,……,di,dj是一条有向通路。我们可以根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。
这在计算机中实现也很容易,只要把找节点di和dj之间的最后一次“中转”的方法编写好,采用计算机中的递归调用就能很好地解决这个问题,计算机会自己自动完成整个操作。
2.2 节点的选取 有一个问题我们需要注意:在我们观察矩阵Mx-1的第一行时可能有多个节点di,使得M■■≠0,且Mij≠0。基于我们是想找到有向图中的最短路径,所以每一次选取节点应该选择一个到节点dj最短的节点作为最后一次“中转”。这一过程是通过查看另一权值矩阵W,找到值最小的Wij来确定di的。
2.3 待查节点集 上面说到,我们找到了节点d1到节点dj的x-1次“中转”的最后一次“中转”di,即d1,……,di,dj是一条有向通路。根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。
每一次查找之前,与待查节点有直接通路的节点都应加到考察的范围,同时上一次确定的最终通路上的节点也应从待查范围中删除,而加入最终通路的节点集中。
2.4 需要考虑的两种情况 按照上面方法是会找到一条从d1到节点dj的一条有向通路,但是一定是最短路径吗?我们先考虑两个情况:①如果在已经找到一条从d1到节点dj的有向通路的前提下,再重复以上过程再找一条从d1到节点dj的有向通路,那么有可能新找到的通路上的所有权值之和要比之前找到的通路上的权值之和小,在这种情况下,应放弃原来通路。记下新找到的通路把它作为“当前”的最短路径。②如果在查找的过程中,已经确定节点dy是在已找通路上的节点,即存在节点d1到节点dy的通路,也存在节点dy到节点dj的通路,并且dy是上一节点的最近邻接点。但在查找下一步节点d1到节点dy的通路的最后一次“中转”dz的过程中发现:所定通路上节点dy的上一节点通过其他方式到节点dz的长度要比经过节点dy中转到节点dz的长度要短,即通过dy相当于“绕路”。因为根据2.1中所阐述的方法找到的节点dz一定是待查节点中到节点dy路径长度最短的节点。若存在“绕路”现象,那么通过节点dy到其他的未差节点都会“绕路”。因而在这种情况下应该从已经确定的有向通路中把节点dy删除,恢复上一节点为当前节点,重新查找其除dy之外的最后一次“中转”。 2.5 搜索算法 首先根据实际情况建立有向图,并根据有向图建立有向图的邻接矩阵M,以及根据各有向边的权值建立矩阵W。然后根据矩阵乘法求出M2,M3,……Mn。这可以通过循环完成。之后的步骤就是设定待查节点,由于算法是从终点向起点查找的,所以应该先把与终点dj构成直接通路的节点作为待查节点。建立完待查节点集后,首先按照深度优先进行搜索,按照上面所说的递归算法查找第一条有向通路。然后以此条通路为基准,进行广度优先搜索,寻找新的通路,查找过程仍然是采用上述的递归算法,但是要考虑到2.4中的两种情况。需要指出的是:广度优先搜索过程可能是一个反复执行的过程,直至最终找到节点d1到节点dj的最短路径。
3 实例
某物流公司业务员要从v0到地点v2投递货物,路线如图1所示,业务员想在此过程走的路线最短,时间最快。他应该走哪条路线?
由上面有向图建立的邻接矩阵M以及有向边权值矩阵W如图2所示,由于M是一个稀疏矩阵,按照上面方法所述形成的节点数对(0,1),(0,3),(1,2),(3,2),(3,4),(4,1),(4,2)。按照矩阵乘法计算出M2、M3、M4、M5。由它们产生的节点对如下所示:M2(0,2),(0,4),(3,1),(3,2),(4,2);M3(0,1),(0,2),(3,2);M4(0,2)。我们据此可得到该有向图的可达矩阵T的节点对:(0,1),(0,2),(0,3),(0,4),(1,2),(3,1),(3,2),(3,4)(4,1),(4,2)。
现在我们求节点v0到v2的最短路径。查看矩阵T可知存在(0,2)的节点对,所以从V0可以到达V2。再按照上述规则以及结合矩阵W,找到M2存在(2,0)节点对,M中存在(1,2)和(0,1)节点对,即M■■= M12* M01, M■■、M12、 M01都不为0。所以找到一条通路即:v0、v1、v2,其路径长为19。
按照上述方法,我们还可以找到通路:v0、v3、v2和v0、v3、v4、v2,但是由于它们的路径长分别为19和20,不产生对通路v0、v1、v2的替换,所以在此不再详述。继续按着上述方法查找通路时会发现:M■■≠0,且存在M■■≠0,M12≠0,继续查找又会发现存在M■■≠0,M41≠0,进一步查找又会发现存在M03≠0,M34≠0,所以最终找到通路:v0、v3、v4、v1、v2,由于其路径长为18,所以按照上述原则对原通路v0、v1、v2进行替换,又由于已查找该有向图中所有通路,所以确定最短路径为v0、v3、v4、v1、v2,由于其路径长为18。
4 结论
本文针对物流配送系统中的投递等事务中路线优化的问题,提出了一种新的对最短路径算法的尝试,采用逆向标号,对待查节点进行优化选取,有效的利用了第一次计算的有用信息,避免重复计算,使得该算法搜索设计上要比以往算法节省时间,对于最短路径问题可以快速求解。虽然增加了邻接矩阵的乘法计算,但由于是稀疏矩阵,不会增加太多的计算量。本算法是具有实际意义的,可以在成本降低方面给出积极、高效的意见和解决方法,从而降低物流中的流通费用。
物流配送管理系统论文文献
[1]肖位枢.图论及其算法.北京:航空工业出版社,1993.
[2]任亚飞,孙明贵,王俊.民营快递业的发展及其战略选择.北京:中国储运,2006.
[3]周石林,尹建平,冯豫华.基于邻接矩阵的最短路径算法.北京:软件导报,2010.
[4]蔡临宁.物流系统规划—建模实例分析.北京:机械工业出版社,2003.
有关物流配送管理系统论文推荐:
1. 配送管理论文
2. 物流配送毕业论文范文
3. 浅谈仓储与配送管理论文
4. 物流管理专科毕业论文范文
5. 浅谈服装物流管理论文
6. 快递末端物流配送的风险分析与防范措施研究论文
学术堂整理了一篇3000字的计算机论文范文,供大家参考:
范文题目:关于新工程教育计算机专业离散数学实验教学研究
摘要: 立足新工科对计算机类专业应用实践能力培养的要求,分析了目前离散数学教学存在的关键问题,指明了开展离散数学实验教学的必要性。在此基础上,介绍了实验教学内容的设计思路和设计原则,给出了相应的实验项目,并阐述了实验教学的实施过程和教学效果。
关键词:新工科教育;离散数学;计算机专业;实验教学
引言
新工科教育是以新理念、新模式培养具有可持续竞争力的创新型卓越工程科技人才,既重视前沿知识和交叉知识体系的构建,又强调实践创新创业能力的培养。计算机类是新工科体系中的一个庞大专业类,按照新工科教育的要求,计算机类专业的学生应该有很好的逻辑推理能力和实践创新能力,具有较好的数学基础和数学知识的应用能力。作为计算机类专业的核心基础课,离散数学的教学目标在于培养学生逻辑思维、计算思维能力以及分析问题和解决问题的能力。但长期以来“定义-定理-证明”这种纯数学的教学模式,导致学生意识不到该课程的重要性,从而缺乏学习兴趣,严重影响学生实践能力的培养。因此,打破原有的教学模式,结合计算机学科的应用背景,通过开展实验教学来加深学生对于离散数学知识的深度理解是实现离散数学教学目标的重要手段。
1.实验项目设计
围绕巩固课堂教学知识,培养学生实践创新能力两个目标,遵循实用性和可行性原则,设计了基础性、应用性、研究性和创新性四个层次的实验项目。
(1) 基础性实验
针对离散数学的一些基本问题,如基本的定义、性质、计算方法等设计了7个基础性实验项目,如表1所示。这类实验要求学生利用所学基础知识,完成算法设计并编写程序。通过实验将抽象的离散数学知识与编程结合起来,能激发学生学习离散数学的积极性,提高教学效率,进而培养学生的编程实践能力。
(2) 应用性实验
应用性实验是围绕离散数学主要知识单元在计算机学科领域的应用来设计实验,如表2所示。设计这类实验时充分考虑了学生掌握知识的情况,按照相关知识点的应用方法给出了每个实验的步骤。学生甚至不需要完成全部实验步骤即可达到实验效果。例如,在“等价关系的应用”实验中,按照基于等价类测试用例的设计方法给出了实验步骤,对基础较差的学生只需做完第三步即可达到“巩固等价关系、等价类、划分等相关知识,了解等价关系在软件测试中的应用,培养数学知识的应用能力。”的实验目的。
(3) 研究性实验研究性实验和应用性实验一样
也是围绕离散数学主要知识单元在计算机科学领域中的应用来设计实验,不同之处在于,研究性实验的实验步骤中增加了一些需要学生进一步探讨的问题。这类实验项目一方面为了使学生进一步了解离散数学的重要性,另一方面为了加强学生的创新意识与创新思维,提高计算机专业学生的数学素质和能力。表 3 给出了研究性试验项目。
(4) 创新性实验
在实际教学中还设计了多个难度较高的创新性实验题目,例如,基于prolog语言的简单动物识别
系统、基于最短路径的公交线路查询系统、简单文本信息检索系统的实现等,完成该类实验需要花费较长的时间,用到更多的知识。通过这些实验不仅有利于培养学生分析问题、解决问题的能力和创新设计能力,也有利于培养学生独立思考、敢于创新的能力。
3.实验教学模式的构建
通过实验教学环节无疑可以激发学生对课程的兴趣,提高课程教学效率,培养学生的实践创新能力。但是,近年来,为了突出应用性人才培养,很多地方本科院校对离散数学等基础理论课的课时进行了压缩,加之地方本科院校学生基础较差,使得离散数学课时严重不足,不可能留出足够的实验教学时间。针对这种情况,采用多维度、多层次的教学模式进行离散数学实验教学。
(1) 将实验项目引入课堂教学
在离散数学的教学过程中,将能反映在计算机科学领域典型应用的实验项目引入到课堂教学中,引导学生应用所学知识分析问题、解决问题。例如在讲授主析取范式时,引入加法器、表决器的设计,并用multisim进行仿真演示,让学生理解数理逻辑在计算机硬件设计中的作用。又如讲谓词逻辑推理时,引入前一届学生用Prolog完成的“小型动物识别系统”作为演示实验。这些应用实例能够让学生体会数理逻辑在计算机科学领域的应用价值,不仅激发学生的学习兴趣,提高课堂教学效率,也锻炼了学生的逻辑思维,培养了学生的系统设计能力。
(2) 改变课后作业形式,在课后作业中增加上机实验题目
由于课时有限,将实验内容以课后作业的形式布置下去,让学生在课余时间完成实验任务。例如讲完数理逻辑内容后,布置作业: 编写 C语言程序,实现如下功能: 给定两个命题变元 P、Q,给它们赋予一定的真值,并计算P、P∧Q、P∨Q的真值。通过完成,使学生掌握命题联结词的定义和真值的确定方法,了解逻辑运算在计算机中的实现方法。又如,把“偏序关系的应用”实验作为“二元关系”这一章的课后作业,给定某专业开设的课程以及课程之间的先后关系,要求学生画出课程关系的哈斯图,安排该专业课程开设顺序,并编写程序实现拓扑排序算法。通过该实验学生不仅巩固了偏序关系、哈斯图等知识,而且了解到偏序关系在计算机程序设计算法中的应用和实现方法。
(3) 布置阅读材料
在教学中,通常选取典型应用和相关的背景知识作为课前或课后阅读材料,通过课堂提问抽查学生的阅读情况。这样,不仅使学生预习或复习了课程内容,同时也使他们对相关知识点在计算机学科领域的应用有了一定的了解。例如,在讲解等价关系后,将“基于等价类的软件测试用例设计方法”作为课后阅读材料; 在讲解图的基本概念之前,将“图在网络爬虫技术中的应用”作为课前阅读材料; 货郎担问题和中国邮路问题作为特殊图的课后阅读材料。通过这些阅读材料极大地调动学生学习的积极性,取得了非常好的教学效果。
(4) 设置开放性实验项目
在离散数学教学中,通常选择一两个创新性实验项目作为课外开放性实验,供学有余力的学生学习并完成,图1给出了学生完成的“基于最短路径公交查询系统”界面图。同时,又将学生完成的实验系统用于日后的课堂教学演示,取得了比较好的反响。
(5) 利用网络教学平台
为了拓展学生学习的空间和时间,建立了离散数学学习网站,学习网站主要包括资源下载、在线视频、在线测试、知识拓展和站内论坛五个部分模块,其中知识拓展模块包含背景知识、应用案例和实验教学三部分内容。通过学习网站,学生不仅可以了解离散数学各知识点的典型应用,还可以根据自己的兴趣选择并完成一些实验项目。在教学实践中,规定学生至少完成1-2个应用性实验项目并纳入期中或平时考试成绩中,从而激发学生的学习兴趣。
4.结束语
针对新工科教育对计算机类专业实践创新能力的要求,在离散数学教学实践中进行了多方位、多层次的实验教学,使学生了解到离散数学的重要
性,激发了学生的学习兴趣,提高了学生程序设计能力和创新能力,取得了较好的教学效果。教学团队将进一步挖掘离散数学的相关知识点在计算机学科领域的应用,完善离散数学实验教学体系,使学生实践能力和创新思维得以协同培养,适应未来工程需要。
参考文献:
[1]徐晓飞,丁效华.面向可持续竞争力的新工科人才培养模式改革探索[J].中国大学教学,2017(6).
[2]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017(3).
[3]蒋宗礼.新工科建设背景下的计算机类专业改革养[J].中国大学教学,2018( 11) .
[4]The Joint IEEE Computer Society/ACM Task Force onComputing Curricula Computing Curricula 2001 ComputerScience[DB / OL]. http:/ / WWW. acm. org / education /curric_vols / cc2001. pdf,2001.
[5]ACM/IEEE - CS Joint Task Force on Computing Curricula.2013. Computer Science Curricula 2013[DB / OL]. ACMPress and IEEE Computer Society Press. DOI: http: / / dx.doi. org /10. 1145 /2534860.
[6]中国计算机科学与技术学科教程2002研究组.中国计算机科学与技术学科教程2002[M].北京: 清华大学出版社,2002.
[7]张剑妹,李艳玲,吴海霞.结合计算机应用的离散数学教学研究[J].数学学习与研究,2014(1) .
[8]莫愿斌.凸显计算机专业特色的离散数学教学研究与实践[J].计算机教育,2010(14)
参考RFC2328