首页 > 期刊投稿知识库 > 五年级上册数学论文范文

五年级上册数学论文范文

发布时间:

五年级上册数学论文范文

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正确答案应该是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!

有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

模糊不过vncjhvb

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段

生活中,有许多我们课本上学不到的数学知识,人们用一些公式来为它们定义:速度 时间=长度、长度时间=速度、长 宽=长方形面积 很多种。这不,我也发现了许多。早上起来时,我在衣柜里乱摸一气,最后穿了一只粉一只白的袜子。妈妈说: 我们放了一双粉的、一双白的、一双蓝的。你自己好好想一想,怎么拿最省力、最省时间。 我想得脑袋都大了,就是怎么也想不出来。妈妈发话了: 别呆在那儿,再想一想。 我脑海里闪过一丝灵光,双自己复算了一下,骄傲地大声回答: 摸四次!从最坏的角度去想,前三只都不一样,第四次一定会有颜色重复! 妈妈幽默了一下: 哟,我家的小傻蛋聪明了嘛!不过,幸运的人也会少抓几次的吧?下午,爸爸在马桶抽水箱里装了一个饮料瓶,然后走过来对我说: 宝贝,爸爸在抽水箱里放了一个瓶子,每次冲马桶可节省100毫升水。假定一个人一天冲三次,我们家三人一天要节省多少毫升水? 我列了一下式子:100 3 3=900毫升,爸爸看了,不吝惜自己的表扬,说: 真棒!那我们一个城镇大约十五万人,每天又能节约多少毫升水?合多少升水? 我略加思索一下,提笔写:15万=150000,150000 300=45000000(毫升),45000000毫升=45000(升)。爸爸点了点头,又问: 我国城镇人口大约4。5亿人,每天节约多少升水?又合多少吨? 我盘算了一会,又写了起来:4。5亿=45000万,4500015=3000,3000 45000=135000000(升)=135000(吨)。看不出来,一只小小的饮料瓶,一天竟可以省这么多水,那一年又该节约多少水啊?我又写下:135000 365=49275000(吨)。爸爸欣慰地笑了: 我家的宝贝女儿还不赖嘛!这么棒,今天允许你看一部电影。 好耶!爸爸万岁! 我欢呼雀跃。当然啦,我不仅开心的是又能看电影了,而是我的换算、列式计算的水平双提高了。原来生活中处处都存在数学,大家一起留心学习吧!

数的由来和发展 人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C(代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:"XV"表示 "15,000","CLXV"表示"165,000"。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。

人教版,特级教师,全优试卷,数学五年级上册,第63页。请问是怎么做哟???这是什么作业,五年级。有没有人会哟???请问是怎么做哟??

五年级上册数学小论文范文

啦咯啦咯啦咯

0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。

在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变? 乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌 可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了! 虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢? 我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。 其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧

五年级数学小论文500字! 今天,我和妈妈在做数学题。妈妈问我:“阳阳,你会算组合图形的面积吗?”我自以为是地说:“当然会了,这么简单!”妈妈拿出8个完全相同小正方体,摆成一个正方形,问我:“总面积怎么算?”我用直尺量了量,一个正方形的一条边大约是3厘米,我说出算式:“一条边3厘米,那么一个正方形的一个面就是3×3=9(平方厘米),一个正方形有6个面,就是9×6=54(平方厘米),8个就是54×8=432(平方厘米)。”妈妈好像很沮丧,说:“你犯了一个致命的错误!既然是组合图形,有些面肯定会重合了!”我恍然大悟:“对哦。”我又重算了一下:重合了1、2、3、4、5……24个面,24×9=216(平方厘米),432-216=216(平方米)。现在对了吧? 过了一会,妈妈又摆出了另一种组合图形,这个图形上下8个,左右都是2个,前后都是4个,问我:“面积怎么算?”我说:“用 12×6=72(平方厘米)就是上面的面积,再用6×3=18(平方厘米)就是左边的面积,再用12×3=36(平方厘米)就是前面的面积,最后用(72+18+36)×2=252(平方厘米)。”妈妈说:“没有发现一些规律吗?”我看了看,真有嘞!“每个正方体它的上面是什么下面就是什么,左边是什么右边就是什么,前后也一样。”我有些感触。妈妈欣慰地笑了,说“我的女儿真聪明!” 哦,原来如此,组合图形的面积算好前面后面就不要算了,算好上面下面就不要算了,算好左边右边就不要算了。太好了,以后算组合图形的面积就很方便了,你们学会了吗

数学小论文五年级上册

数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是0.38元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。

0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。

在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变? 乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌 可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了! 虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢? 我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。 其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧

数学小论文今天数学课上,老师出了一道例题,题目是:学校组织老师和同学参观科技馆。有100名学生和50名老师。科技馆的门票是成人10元,儿童半价。问:需要多少元?小红举手,老师点小红上黑板解答,小红的算式是这样的:10/2=5(元)100*5=500(元)50*10=500(元)500+500=1000(元)答:需要1000元。老师说:“好的,有没有别的方法?”小月举手,老师点小月上黑板解答,小月的算式是这样的:(100/2)+50=50+50=100(名)100*10=1000(元)答:需要1000元。老师说:“非常好,请小月上台讲解。”“我的是先用100/2=50(名),它的意思是:因为成人票价是儿童票价的2倍,有100名儿童,所需要的票价就等于50名成人。再用50+50=100(名),也就是加上老师,一共有100名“成人”,最后用100*10=1000(元),就可以算出一共要多少元。”小月解说道。“很好,谢谢小月,你的解说很全面。我们今天学的就是‘巧算门票’,好,下课。”老师说。

五年级上册数学课论文

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正确答案应该是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!

有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

模糊不过vncjhvb

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段

写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。

啦咯啦咯啦咯

数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是0.38元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。

数学论文450字五年级上册

在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变? 乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌 可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了! 虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢? 我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。 其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧

在日常学习、工作生活中,大家都接触过论文吧,通过论文写作可以培养我们的科学研究能力。还是对论文一筹莫展吗?以下是我为大家整理的数学论文作文4篇,希望对大家有所帮助。

一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。

算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000

答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.

简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!

今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。

”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”

我思索了一会儿,不慌不忙地说:“可以这样算:

5/1=5

30*5=150(小时)200小时>150小时

还可以这样算:

5/1=5

200/5=40(小时)30小时<40小时

由这几步可得出结论,节能灯泡省钱。”

妈妈又问我:“很好。再想想看,还有没有别的办法来算?”

我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:

5/200*100=0.025*100=2.5

1/30*100≈0.033*100=3.3

3.3>2.5

或者这样算:

200/5*100=40*100=4000

30/1*100=30*100=3000

4000>3000

因此,也是节能灯泡便宜。。”

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:“生活处处有数学”这个道理。

生活中,处处有数学,只要你善于观察,就一定能发现它蕴含的无穷奥秘。

我很喜欢数学,平常很爱探究,数学是我生活中的'一部分,也是我唯一的爱好。我梦想就是成为一名数学家,成为一名伟大的数学家。

在四年级时,数学老师周老师教了我们商不变的规律,刚学习这个规律的我感到很好奇,有一些不相信。

商不变的规律就是:在除法中,被除数和除数同时扩大若干倍或缩小若干倍,商不会变,但余数会变。

我围绕着这个规律展开了实验。我用40和6两个数进行了实验。40除以6等于6,余数是4,。我将40和6同时扩大相同的倍数100,变成4000除以600,我计算了一下,商是6,余数是400,它的商没有变,余数扩大了相同的倍数100,变成了400。我吃了一惊,商居然真的没有变,还是6,而余数却变了。

我还是有一些不相信,又用50和4试验了一下。50除以4等于12,商是2。这次我将50和4同时扩大到原来的2倍,变成100和8,100除以8,商是12,余数是4。商还是没有变,但余数扩大了相同的倍数2倍,变成了4。我彻彻底底的震惊了,再一次体会到了数学的神奇。

五年级时,我又接触到了方程,方程其实就是含有未知数的等式。在学习商不变的规律后,我再次对方程产生了浓厚的兴趣。我找了许多方程来做,并学会从中发现规律。

3x?2=302计算方法是:先将302减去2,变成3x=302-2,那么3x=300,再将300除以3,变成x=300÷3,结果变成x=100。没想到只需几步就可以将这个方程解开,得到答案。

我又找了一个方程来计算。5x-6÷3=38,先将6÷3算出变成5x-2=38,再将38?2等于40,式子就变成了5x=40,最后将40除以5等于8,结果就是x=8。

数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!

让我们一起来探索数学的奥秘吧!

1、生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域

巧赢硬币记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。”听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊!过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。”是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

  • 索引序列
  • 五年级上册数学论文范文
  • 五年级上册数学小论文范文
  • 数学小论文五年级上册
  • 五年级上册数学课论文
  • 数学论文450字五年级上册
  • 返回顶部