首页 > 期刊投稿知识库 > 毕业论文中介变量不显著怎么办

毕业论文中介变量不显著怎么办

发布时间:

毕业论文中介变量不显著怎么办

论文变量关系不显著,可以尽量引用更多关于变量关系的理论依据,甚至于相关事例!使自己的论点羽翼更丰满

找到原因,重新做实验。如果做出的结果不显著,要分析一下,找出原因,重新做实验得结果。

如果中介变量和因变量之间的相关不显著,可能是因为中介变量并不真正地中介了自变量与因变量之间的关系,也可能是因为样本量太小或测量不准确所致。此时,可以尝试使用其他中介变量或者重新设计研究方法来进一步探究变量之间的关系。同时,也可以考虑将中介变量与因变量之间的关系作为独立的研究问题进行分析。

我觉得你可以再去找一些知识丰富你一下你的论文,让得出来的结果更加显著一些。

研究不显著变量的论文

P值都大于0.05,接受原假设。不能直接改结论。一看看数据是否有问题,二取对数或差分后再看。

论文变量关系不显著,就要着重讲述和阐述论文变量的关系,使它。显著的表露出来

不显著很正常直接改结论,就看你的造化了

毕业论文数据不显著怎么办啊

进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。

写的论文得出来的结果不显著,可以再改改呀,或者是找比自己学习好的人帮你看看问题出在了哪里

看看数据是否出现了错误,可以先认真的核查一遍,看看自己的计算过程是否正确,如果没有错误,那就更换下实验的数据的,把数据修改一下。

每一个孩子都经历过被论文支配的痛苦,大多数学生写完了文之后要去相关网站进行查重,如果某一位学生写出来的作文不合格,这位学生会根据不合格的原因进行修改。还有一部分学生论文,写完之后发给辅导员及专业课,老师,查看之后没有问题,却在答辩上出现问题,这类学生可以申请第二次答辩,答辩老师不会为难你的。学生并不害怕答辩,他们害怕自己写的论文效果不显着,那么当我们遇到论文效果不显著时,该怎么办呢?

每一个学生都会得到学校的安排,每一个学生都有专业课老师进行论文辅导。我们学校每一个班级都有一个专业老师,他会帮助我们修改论文,解决论文中的问题。当我们出现任何论文问题时,这位老师会查阅相关资料,给予我们最正确的答复。如果你的论文结果不显著,可以请教专业老师帮忙指导。

绝大部分学生论文效果不显著的原因是资料匮乏,所提出的观点得不到验证。还有一部分学生论文效果不显著的原因是查重率太高,论文不通过。既然你没有查阅相关资料就开始写论文,那么论文的结果肯定不会尽如人意,所以如果碰到论文结果不显著的情况,可以继续查阅资料,丰富论文内容。

这里指的是与其他人进行互帮互助,每一个班里都有学习很好的学生。如果你是一名学渣,所写出的作文结果不如人意,可以向同学寻求帮助,也可以和学习好的同学进行合作。许多人通过讨论与合作完成论文,寻求他人合作与帮助的过程中,千万不要害羞,让同学知道你有一颗爱学习的心。

硕士毕业论文回归不显著怎么办

进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。

这种情况是很常见的出现这种情况的原因有很多种但通常是两个变量间并不存在显著关系也有可能是回归方程的形式有错通常可以这样处理:令y=a+bln(x)(自变量取对数,通常能提高线性关系)再检验一下效果

不显著的话可以看一下是不是自己哪一步错了,然后重新选择方程,变量,样本以及方法。下面是对这几个的详细介绍:1、选方程。同样的问题,有时会有不同的模型。某篇经典文献用的是A模型,另外一个大牛可能用的是B模型。倒底哪个模型更好,取决于你对模型背后理论的信念。如果你更认可A模型背后的理论,就用A模型;同理对B模型也是如此。而选择不同的模型时,得到的实证结果往往会存在差别。有时候差别仅仅体现在系数的大小上,而有时候差别体现在系数的显著性上。 2、选变量。同一个财务变量,可能有多个指标能衡量。比如融资约束的度量,在文献经常出现的包括:公司规模、是否支付股利、产权性质、KZ指数、WW指数、信用评级、票据评级、利息偿付倍数、资产的可抵押能力、是否是集团公司等等。再比如掠夺风险的度量,包括:HHI、主营业务利润、价格-成本边际、超额价格-成本边际、勒纳指数、交叉弹性、熵指数、资本-劳动比偏离行业均值的绝对值、股票收益和行业组合收益的协方差、行业内最大四家企业的集中度等等。选择不同的指标衡量某个变量,得到的结果也存在差别。所以也可以采用这种思路来获得显著的结果。不过稳健性检验往往要求对某个无法精确度量的变量采取多种指标衡量,而且有时候还要检验这些指标的一致性(通过相关系数和交叉统计)。 3、选样本。数据处理的过程包含了选择样本的过程。删除ST、PT公司,删除交叉上市的公司,删除IPO当年的数据,删除资不抵债的公司,对离群值进行Winsor处理。样本处理也是五花八门,值得细细琢磨一番。 4、选方法。OLS、FE、GMM、3SLS、IV、Probit、DID,方法有很多,理论上可以改变不同的方法来做实证,但事实上每一种方法都有自己的限定条件和使用范围。所以选方法的可行性不太高。

我觉得可以适当的发散一下,这样会更加的丰富,变得更合适。

毕业论文不显著相关

呵呵,改数据吧,一般很少有论文的数据是想要的结果

进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。

再好好分析,用别的的数据、别的方法再去研究,得出新的分析结论。可以去咨询老师,看看是哪里出的错误,能及时纠正。

  • 索引序列
  • 毕业论文中介变量不显著怎么办
  • 研究不显著变量的论文
  • 毕业论文数据不显著怎么办啊
  • 硕士毕业论文回归不显著怎么办
  • 毕业论文不显著相关
  • 返回顶部