首页 > 期刊投稿知识库 > 金属材料的力学性能论文

金属材料的力学性能论文

发布时间:

金属材料的力学性能论文

是啊,总得有个范围吧

文关键词:金属基复合材料有效性能结构拓扑优化论文摘要:金属基复合材料综合了作为基体的金属结构材料和增强物两者的优点,具有高的强度性能和弹性模量、良好的疲劳性能等特点。由于制作工艺相对容易,和价格低廉,颗粒增强金属基复合材料体现出了广泛的商业价值,金属基复合材料首先在航天和航空上得到应用,随着其价格的不断降低,它们在汽车、电子、机械等工业部门的应用也越来越广。为此全球各大公司和研究机构对它的研究和应用开发正多层次大面积地展开。笔者阅读了大量相关文献,进而综述了近些年来国内外学者对金属基复合材料的研究,具有一定的现实意义。一、颗粒随机分布金属基复合材料有效性能研究九十年代中期Povirk, Gusev等人就研究证明了可以用一个有限体积的代表体元来代替整体复合材料,模拟其细观结构,从而建立复合材料的宏观性能同其组分材料性能及细观结构之间的定量关系。随着计算机技术的高速发展,数值分析方法在复合材料力学分析中成为不可缺少的工具,在做计算数值模拟时,建立合适的数学模型,是进行数值模拟计算复合材料等效性能的基础。基于有限元法的多尺度等效性能计算是目前一种行之有效的研究复合材料细观结构与宏观力学行为之间关系的重要方法。采用这种方法的前提是建立复合材料的有限元模型,包括随机颗粒分布区域的几何建模和网格剖分,然后才能进行多尺度计算。对于复合材料等效性能计算的数值方法,国内外已经发展了名目繁多的各种数值方法。一般来说,可以分为反分析法、直接分析法。其中反分析法实质就是根据现场观测结果,来反演复合材料力学参数。反分析法主要依赖于材料程的实测位移、本构模型以及材料参数的假定。由于现场观测资料的获取受客观条件影响和对复合材料认识上的不足,往往造成模型和材料参数假定与实际差异很大,因而该方法在实际应用中遇到了一些困难。为此,人们试图选择另一种途径---直接分析法来预测复合材料的力学参数。由于离散元元方法没有很好解决对复合材料离散后的计算结果的误差,因此基于离散单元法计算宏观力学参数的研究较少目前主要是基于有限元法的数值分析法,其计算过程是首先建立颗粒材料的统计模型,然后模拟出不同尺度的复合材料"试件";这样得到的复合材料"试件",可以视为由基体和增强颗粒两部分组成,其力学参数可以在实验室分别确定,然后应用有限元方法进行分析,进而得到颗粒统计力学参数即。这一方法计算结果的正确性取决于颗粒统计模型的正确性以及有限元算法的合理性,这一过程虽然有误差,但是误差不会比原位实测更大。该方法的不足之处在于为避免尺寸效应,模拟不同尺度"试件"时,增加了计算成木,并且当计算尺度增大时,"试件"内的颗粒数目明显增加,给有限元的剖分和计算带来了困难。还有学者基于有限元方法,基于等效观点,对颗粒增强复合材料的等效性能进行了研究,即根据一定的等效原则,宏观地考虑颗粒对材料力学特性的影响,将整个颗粒增强复合材料均匀化、连续化,然后用有限元计算得到等效力学特性.按等效方式来分,主要有材料参数等效法、能量等效法等,这些等效方法有其适用的一面,但仍有一定局限性,例如等效体的尺寸效应问题等.关于材料参数的均匀化理论.作为一种研究复合材料宏观性质的新方法,数学家们已进行了大量的研究,例如A.Bensousson,J.L.Lion、等针对小周期结构问题的渐进分析,给出了均匀化材料系数的概念;O.A.Oleinik等对具有小周期结构的均匀化理论和一阶渐进分析理论进行了深入研究;T.Hou和陈志明等在此基础上给出了一阶渐进展开有限元的理论估计;崔俊芝等针对小周期结构提出了双尺度祸合算法。针对具有对称性的基本胞体给出了高阶渐进展式和有限元估计,并把此方法运用到工程计算中,从而使的均匀化从理论分析进入了数值计算。阶段和实际应用阶段,使得微观构造十分复杂的非均质材料的宏观力学参数计算成为现实,并且给出了计算周期性编制复合材料的等效力学参数的双尺度方法。在进行等效计算时,首先需建立材料的单胞模型,如二维单胞模型、二维多颗粒单胞模型、三维单胞模型、三维多颗粒单胞模型及代表体单元模型。武汉理工大学的瞿鹏程教授等,根据扫描电镜试样截面细观图,建立了有限元模型,并且成功预测出了SiC颗粒增强Al基复合材料等效弹塑性力学性能特征曲线。Soppa根据体积含量10%Al2O3,增强6061Al基复合材料的实验细观图,构件有限元分析模型,观察残余热应力对PRMMCs变形和破坏的影响。Han等人采用三维多颗粒单胞模型研究PRMMCs的力学性能和裂纹的产生。二、复合材料微结构拓扑优化研究结构拓扑优化是结构形状优化的发展,是布局优化的一个方面。当形状优化逐渐成熟后,结构拓扑优化这一新的概念就开始发展,现在拓扑优化正成为国际结构优化领域一个最新的热点。以Roderick Lakes(1987,1993)提出的具有负泊松比系数的泡沫材料以及对通过不同组分材料的复合可以获得任何单相材料无法比拟的极端材料特性(如零膨胀系数、零剪切性能)新发现的阐述为标志,材料微结构的优化设计被纳入拓扑优化领域。特别是由Sigmund于九十年代中期提出来的,现在己经成为材料研究领域的前沿课题之一。而在2002年的第9届AIAA年会上Kalidindi等人提出了"微结构灵敏设计(MSD-Microstructure Sensitive Design)"概念,进一步完善与发展了微结构构型与组分优化设计的思想与体系。这些开创性的工作为复合材料与结构的拓扑优化设计奠定了坚实的基础,进一步促进了材料微结构的优化设计。复合材料的宏观性能可由微结构单胞使用均匀化技术得到,通过对微结构单胞进行拓扑优化设计可获得具有良好特性的复合材料,例如负的泊松比、负的热膨胀系数、零剪切性能以及良好压电特性的压电材料。对单胞的拓扑优化设计,问题可分为两类:一是满足本构模量等于给定值的最小体积百分含量问题;二是满足一系列体积约束和对称条件的极值材料常数问题。Silva基于均匀化方法展开了具有极端性能的二维和三维压电材料的优化设计;国内袁振、吴长春进行了极端性能的弹性材料优化设计,杨卫等采用优化准则法进行具有特定性能的微结构设计,实现了具有负泊松比的材料设计。基于传热性能的微结构优化设计目前还处于初期阶段,张卫红等基于均匀化方法进行材料的热传导性能预测,在给定材料用量下进行复合材料的设计,得到具有极端热传导性能的复合材料。拓扑优化兼有尺寸优化和形状优化的复杂性,微结构最终拓扑形式是未知的。以最小柔度作为目标函数的微结构拓扑优化而得到的蜂窝状结构,为标准的规则正六边行蜂窝结构。三、小结金属基复合材料是近年来迅速发展起来的一种高技术新型工程材料,以其优越的性能受到国内外的高度重视。SiC颗粒增强铝基复合材料是目前复合材料中最引人注目的体系之一,不论是在理论上还是在实验上均是理想的复合材料研究对象。本文综述了国内外对金属基复合材料的有效性能研究和复合材料微结构拓扑优化,对金属基复合材料研究具有一定的知道意义。

在网上找下,(材料化学前沿)或者(材料科学)这样的期刊~里面可以参考下这类的论文~可以免费下载下来~找下灵感

金属材料的力学性能研究论文

金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始:一、分类:金属材料通常分为黑色金属、有色金属和特种金属材料。①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。金属材料按生产成型工艺又分为铸造金属、变形金属 、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。变形金属通过压力加工如锻造、轧制、冲压等成型,其化学成分与相应的铸造金属略有不同。喷射成形金属是通过喷射成形工艺制成具有一定形状和组织性能的零件和毛坯。金属材料的性能可分为工艺性能和使用性能两种。二、性能为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。材料的工艺性能指材料适应冷、热加工方法的能力。三、生产工艺:金属材料生产,一般是先提取和冶炼金属 。有些金属需进一步精炼并调整到合适的成分,然后加工成各种规格和性能的产品。提炼金属,钢铁通常采用火法冶金工艺,即采用转炉、平炉、电弧炉、感应炉、冲天炉(炼铁)等进行冶炼和熔炼;有色金属兼用火法冶金和湿法冶金工艺 ;高纯金属以及要求特殊性能的金属还采用区域熔炼、真空熔炼和粉末冶金工艺。金属材料通过冶炼并调整成分后,经过铸造成型,或经铸造、粉末冶金成型工艺制成锭、坯,再经塑性加工制成各种形态和规格的产品。对有些金属制品,要求其有特定的内部组织和力学性能,还常采用热处理工艺 。常用的热处理工艺有淬火、正火、退火、时效处理(将淬火后的金属制件置于室温或较高温度下保温适当时间,以提高其强度和硬度)等。四、发展趋势:金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。

看下(材料化学前沿)吧~

文关键词:金属基复合材料有效性能结构拓扑优化论文摘要:金属基复合材料综合了作为基体的金属结构材料和增强物两者的优点,具有高的强度性能和弹性模量、良好的疲劳性能等特点。由于制作工艺相对容易,和价格低廉,颗粒增强金属基复合材料体现出了广泛的商业价值,金属基复合材料首先在航天和航空上得到应用,随着其价格的不断降低,它们在汽车、电子、机械等工业部门的应用也越来越广。为此全球各大公司和研究机构对它的研究和应用开发正多层次大面积地展开。笔者阅读了大量相关文献,进而综述了近些年来国内外学者对金属基复合材料的研究,具有一定的现实意义。一、颗粒随机分布金属基复合材料有效性能研究九十年代中期Povirk, Gusev等人就研究证明了可以用一个有限体积的代表体元来代替整体复合材料,模拟其细观结构,从而建立复合材料的宏观性能同其组分材料性能及细观结构之间的定量关系。随着计算机技术的高速发展,数值分析方法在复合材料力学分析中成为不可缺少的工具,在做计算数值模拟时,建立合适的数学模型,是进行数值模拟计算复合材料等效性能的基础。基于有限元法的多尺度等效性能计算是目前一种行之有效的研究复合材料细观结构与宏观力学行为之间关系的重要方法。采用这种方法的前提是建立复合材料的有限元模型,包括随机颗粒分布区域的几何建模和网格剖分,然后才能进行多尺度计算。对于复合材料等效性能计算的数值方法,国内外已经发展了名目繁多的各种数值方法。一般来说,可以分为反分析法、直接分析法。其中反分析法实质就是根据现场观测结果,来反演复合材料力学参数。反分析法主要依赖于材料程的实测位移、本构模型以及材料参数的假定。由于现场观测资料的获取受客观条件影响和对复合材料认识上的不足,往往造成模型和材料参数假定与实际差异很大,因而该方法在实际应用中遇到了一些困难。为此,人们试图选择另一种途径---直接分析法来预测复合材料的力学参数。由于离散元元方法没有很好解决对复合材料离散后的计算结果的误差,因此基于离散单元法计算宏观力学参数的研究较少目前主要是基于有限元法的数值分析法,其计算过程是首先建立颗粒材料的统计模型,然后模拟出不同尺度的复合材料"试件";这样得到的复合材料"试件",可以视为由基体和增强颗粒两部分组成,其力学参数可以在实验室分别确定,然后应用有限元方法进行分析,进而得到颗粒统计力学参数即。这一方法计算结果的正确性取决于颗粒统计模型的正确性以及有限元算法的合理性,这一过程虽然有误差,但是误差不会比原位实测更大。该方法的不足之处在于为避免尺寸效应,模拟不同尺度"试件"时,增加了计算成木,并且当计算尺度增大时,"试件"内的颗粒数目明显增加,给有限元的剖分和计算带来了困难。还有学者基于有限元方法,基于等效观点,对颗粒增强复合材料的等效性能进行了研究,即根据一定的等效原则,宏观地考虑颗粒对材料力学特性的影响,将整个颗粒增强复合材料均匀化、连续化,然后用有限元计算得到等效力学特性.按等效方式来分,主要有材料参数等效法、能量等效法等,这些等效方法有其适用的一面,但仍有一定局限性,例如等效体的尺寸效应问题等.关于材料参数的均匀化理论.作为一种研究复合材料宏观性质的新方法,数学家们已进行了大量的研究,例如A.Bensousson,J.L.Lion、等针对小周期结构问题的渐进分析,给出了均匀化材料系数的概念;O.A.Oleinik等对具有小周期结构的均匀化理论和一阶渐进分析理论进行了深入研究;T.Hou和陈志明等在此基础上给出了一阶渐进展开有限元的理论估计;崔俊芝等针对小周期结构提出了双尺度祸合算法。针对具有对称性的基本胞体给出了高阶渐进展式和有限元估计,并把此方法运用到工程计算中,从而使的均匀化从理论分析进入了数值计算。阶段和实际应用阶段,使得微观构造十分复杂的非均质材料的宏观力学参数计算成为现实,并且给出了计算周期性编制复合材料的等效力学参数的双尺度方法。在进行等效计算时,首先需建立材料的单胞模型,如二维单胞模型、二维多颗粒单胞模型、三维单胞模型、三维多颗粒单胞模型及代表体单元模型。武汉理工大学的瞿鹏程教授等,根据扫描电镜试样截面细观图,建立了有限元模型,并且成功预测出了SiC颗粒增强Al基复合材料等效弹塑性力学性能特征曲线。Soppa根据体积含量10%Al2O3,增强6061Al基复合材料的实验细观图,构件有限元分析模型,观察残余热应力对PRMMCs变形和破坏的影响。Han等人采用三维多颗粒单胞模型研究PRMMCs的力学性能和裂纹的产生。二、复合材料微结构拓扑优化研究结构拓扑优化是结构形状优化的发展,是布局优化的一个方面。当形状优化逐渐成熟后,结构拓扑优化这一新的概念就开始发展,现在拓扑优化正成为国际结构优化领域一个最新的热点。以Roderick Lakes(1987,1993)提出的具有负泊松比系数的泡沫材料以及对通过不同组分材料的复合可以获得任何单相材料无法比拟的极端材料特性(如零膨胀系数、零剪切性能)新发现的阐述为标志,材料微结构的优化设计被纳入拓扑优化领域。特别是由Sigmund于九十年代中期提出来的,现在己经成为材料研究领域的前沿课题之一。而在2002年的第9届AIAA年会上Kalidindi等人提出了"微结构灵敏设计(MSD-Microstructure Sensitive Design)"概念,进一步完善与发展了微结构构型与组分优化设计的思想与体系。这些开创性的工作为复合材料与结构的拓扑优化设计奠定了坚实的基础,进一步促进了材料微结构的优化设计。复合材料的宏观性能可由微结构单胞使用均匀化技术得到,通过对微结构单胞进行拓扑优化设计可获得具有良好特性的复合材料,例如负的泊松比、负的热膨胀系数、零剪切性能以及良好压电特性的压电材料。对单胞的拓扑优化设计,问题可分为两类:一是满足本构模量等于给定值的最小体积百分含量问题;二是满足一系列体积约束和对称条件的极值材料常数问题。Silva基于均匀化方法展开了具有极端性能的二维和三维压电材料的优化设计;国内袁振、吴长春进行了极端性能的弹性材料优化设计,杨卫等采用优化准则法进行具有特定性能的微结构设计,实现了具有负泊松比的材料设计。基于传热性能的微结构优化设计目前还处于初期阶段,张卫红等基于均匀化方法进行材料的热传导性能预测,在给定材料用量下进行复合材料的设计,得到具有极端热传导性能的复合材料。拓扑优化兼有尺寸优化和形状优化的复杂性,微结构最终拓扑形式是未知的。以最小柔度作为目标函数的微结构拓扑优化而得到的蜂窝状结构,为标准的规则正六边行蜂窝结构。三、小结金属基复合材料是近年来迅速发展起来的一种高技术新型工程材料,以其优越的性能受到国内外的高度重视。SiC颗粒增强铝基复合材料是目前复合材料中最引人注目的体系之一,不论是在理论上还是在实验上均是理想的复合材料研究对象。本文综述了国内外对金属基复合材料的有效性能研究和复合材料微结构拓扑优化,对金属基复合材料研究具有一定的知道意义。

金属力学性能论文

金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始:一、分类:金属材料通常分为黑色金属、有色金属和特种金属材料。①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。金属材料按生产成型工艺又分为铸造金属、变形金属 、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。变形金属通过压力加工如锻造、轧制、冲压等成型,其化学成分与相应的铸造金属略有不同。喷射成形金属是通过喷射成形工艺制成具有一定形状和组织性能的零件和毛坯。金属材料的性能可分为工艺性能和使用性能两种。二、性能为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。材料的工艺性能指材料适应冷、热加工方法的能力。三、生产工艺:金属材料生产,一般是先提取和冶炼金属 。有些金属需进一步精炼并调整到合适的成分,然后加工成各种规格和性能的产品。提炼金属,钢铁通常采用火法冶金工艺,即采用转炉、平炉、电弧炉、感应炉、冲天炉(炼铁)等进行冶炼和熔炼;有色金属兼用火法冶金和湿法冶金工艺 ;高纯金属以及要求特殊性能的金属还采用区域熔炼、真空熔炼和粉末冶金工艺。金属材料通过冶炼并调整成分后,经过铸造成型,或经铸造、粉末冶金成型工艺制成锭、坯,再经塑性加工制成各种形态和规格的产品。对有些金属制品,要求其有特定的内部组织和力学性能,还常采用热处理工艺 。常用的热处理工艺有淬火、正火、退火、时效处理(将淬火后的金属制件置于室温或较高温度下保温适当时间,以提高其强度和硬度)等。四、发展趋势:金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。

文关键词:金属基复合材料有效性能结构拓扑优化论文摘要:金属基复合材料综合了作为基体的金属结构材料和增强物两者的优点,具有高的强度性能和弹性模量、良好的疲劳性能等特点。由于制作工艺相对容易,和价格低廉,颗粒增强金属基复合材料体现出了广泛的商业价值,金属基复合材料首先在航天和航空上得到应用,随着其价格的不断降低,它们在汽车、电子、机械等工业部门的应用也越来越广。为此全球各大公司和研究机构对它的研究和应用开发正多层次大面积地展开。笔者阅读了大量相关文献,进而综述了近些年来国内外学者对金属基复合材料的研究,具有一定的现实意义。一、颗粒随机分布金属基复合材料有效性能研究九十年代中期Povirk, Gusev等人就研究证明了可以用一个有限体积的代表体元来代替整体复合材料,模拟其细观结构,从而建立复合材料的宏观性能同其组分材料性能及细观结构之间的定量关系。随着计算机技术的高速发展,数值分析方法在复合材料力学分析中成为不可缺少的工具,在做计算数值模拟时,建立合适的数学模型,是进行数值模拟计算复合材料等效性能的基础。基于有限元法的多尺度等效性能计算是目前一种行之有效的研究复合材料细观结构与宏观力学行为之间关系的重要方法。采用这种方法的前提是建立复合材料的有限元模型,包括随机颗粒分布区域的几何建模和网格剖分,然后才能进行多尺度计算。对于复合材料等效性能计算的数值方法,国内外已经发展了名目繁多的各种数值方法。一般来说,可以分为反分析法、直接分析法。其中反分析法实质就是根据现场观测结果,来反演复合材料力学参数。反分析法主要依赖于材料程的实测位移、本构模型以及材料参数的假定。由于现场观测资料的获取受客观条件影响和对复合材料认识上的不足,往往造成模型和材料参数假定与实际差异很大,因而该方法在实际应用中遇到了一些困难。为此,人们试图选择另一种途径---直接分析法来预测复合材料的力学参数。由于离散元元方法没有很好解决对复合材料离散后的计算结果的误差,因此基于离散单元法计算宏观力学参数的研究较少目前主要是基于有限元法的数值分析法,其计算过程是首先建立颗粒材料的统计模型,然后模拟出不同尺度的复合材料"试件";这样得到的复合材料"试件",可以视为由基体和增强颗粒两部分组成,其力学参数可以在实验室分别确定,然后应用有限元方法进行分析,进而得到颗粒统计力学参数即。这一方法计算结果的正确性取决于颗粒统计模型的正确性以及有限元算法的合理性,这一过程虽然有误差,但是误差不会比原位实测更大。该方法的不足之处在于为避免尺寸效应,模拟不同尺度"试件"时,增加了计算成木,并且当计算尺度增大时,"试件"内的颗粒数目明显增加,给有限元的剖分和计算带来了困难。还有学者基于有限元方法,基于等效观点,对颗粒增强复合材料的等效性能进行了研究,即根据一定的等效原则,宏观地考虑颗粒对材料力学特性的影响,将整个颗粒增强复合材料均匀化、连续化,然后用有限元计算得到等效力学特性.按等效方式来分,主要有材料参数等效法、能量等效法等,这些等效方法有其适用的一面,但仍有一定局限性,例如等效体的尺寸效应问题等.关于材料参数的均匀化理论.作为一种研究复合材料宏观性质的新方法,数学家们已进行了大量的研究,例如A.Bensousson,J.L.Lion、等针对小周期结构问题的渐进分析,给出了均匀化材料系数的概念;O.A.Oleinik等对具有小周期结构的均匀化理论和一阶渐进分析理论进行了深入研究;T.Hou和陈志明等在此基础上给出了一阶渐进展开有限元的理论估计;崔俊芝等针对小周期结构提出了双尺度祸合算法。针对具有对称性的基本胞体给出了高阶渐进展式和有限元估计,并把此方法运用到工程计算中,从而使的均匀化从理论分析进入了数值计算。阶段和实际应用阶段,使得微观构造十分复杂的非均质材料的宏观力学参数计算成为现实,并且给出了计算周期性编制复合材料的等效力学参数的双尺度方法。在进行等效计算时,首先需建立材料的单胞模型,如二维单胞模型、二维多颗粒单胞模型、三维单胞模型、三维多颗粒单胞模型及代表体单元模型。武汉理工大学的瞿鹏程教授等,根据扫描电镜试样截面细观图,建立了有限元模型,并且成功预测出了SiC颗粒增强Al基复合材料等效弹塑性力学性能特征曲线。Soppa根据体积含量10%Al2O3,增强6061Al基复合材料的实验细观图,构件有限元分析模型,观察残余热应力对PRMMCs变形和破坏的影响。Han等人采用三维多颗粒单胞模型研究PRMMCs的力学性能和裂纹的产生。二、复合材料微结构拓扑优化研究结构拓扑优化是结构形状优化的发展,是布局优化的一个方面。当形状优化逐渐成熟后,结构拓扑优化这一新的概念就开始发展,现在拓扑优化正成为国际结构优化领域一个最新的热点。以Roderick Lakes(1987,1993)提出的具有负泊松比系数的泡沫材料以及对通过不同组分材料的复合可以获得任何单相材料无法比拟的极端材料特性(如零膨胀系数、零剪切性能)新发现的阐述为标志,材料微结构的优化设计被纳入拓扑优化领域。特别是由Sigmund于九十年代中期提出来的,现在己经成为材料研究领域的前沿课题之一。而在2002年的第9届AIAA年会上Kalidindi等人提出了"微结构灵敏设计(MSD-Microstructure Sensitive Design)"概念,进一步完善与发展了微结构构型与组分优化设计的思想与体系。这些开创性的工作为复合材料与结构的拓扑优化设计奠定了坚实的基础,进一步促进了材料微结构的优化设计。复合材料的宏观性能可由微结构单胞使用均匀化技术得到,通过对微结构单胞进行拓扑优化设计可获得具有良好特性的复合材料,例如负的泊松比、负的热膨胀系数、零剪切性能以及良好压电特性的压电材料。对单胞的拓扑优化设计,问题可分为两类:一是满足本构模量等于给定值的最小体积百分含量问题;二是满足一系列体积约束和对称条件的极值材料常数问题。Silva基于均匀化方法展开了具有极端性能的二维和三维压电材料的优化设计;国内袁振、吴长春进行了极端性能的弹性材料优化设计,杨卫等采用优化准则法进行具有特定性能的微结构设计,实现了具有负泊松比的材料设计。基于传热性能的微结构优化设计目前还处于初期阶段,张卫红等基于均匀化方法进行材料的热传导性能预测,在给定材料用量下进行复合材料的设计,得到具有极端热传导性能的复合材料。拓扑优化兼有尺寸优化和形状优化的复杂性,微结构最终拓扑形式是未知的。以最小柔度作为目标函数的微结构拓扑优化而得到的蜂窝状结构,为标准的规则正六边行蜂窝结构。三、小结金属基复合材料是近年来迅速发展起来的一种高技术新型工程材料,以其优越的性能受到国内外的高度重视。SiC颗粒增强铝基复合材料是目前复合材料中最引人注目的体系之一,不论是在理论上还是在实验上均是理想的复合材料研究对象。本文综述了国内外对金属基复合材料的有效性能研究和复合材料微结构拓扑优化,对金属基复合材料研究具有一定的知道意义。

在网上找下,(材料化学前沿)或者(材料科学)这样的期刊~里面可以参考下这类的论文~可以免费下载下来~找下灵感

金属材料物理性能检测拉伸论文

第一个:会对企业的生产选材有直接的影响,要知道如果生产选错材料了,要么选的不好造成产品质量不行,甚至酿成事故;另外,如果选太好的材料,那企业的成本会被无端的升高,使企业产品在价格上没有优势,因为市场上不太需要太好的材料。第二个:对于好多恶劣工作环境的金属工件,采购商一般都要求要出具检测报告,而这些报告一般都会涉及:金属的理化性能测试。第三个:企业根据不同的力学性能参数,可以安排较为合理的加工工艺。除了这些以外,出口的产品都要经过这方面的检测的,其实这也是一个企业质量意识的侧面反映。

学会用拉伸法测定金属材料的杨氏弹性模量 杨氏弹性模量是表征固体性质的重要物理量,尤其在工程技术中有其重要的意义,常用于固体材料抗形变能力的描述和作为选定机械构件的依据。 测量杨氏弹性模量的方法很多,本实验采用拉伸法。 [实验目的] (1)学习测量杨氏弹性模量一种方法。 (2)掌握用光杠杆法测量微小伸长量的原理和方法。 (3)熟练掌握运用逐差法处理实验数据。 [实验仪器] YMC—1杨氏弹性模量仪、光杠杆镜尺组、千分尺、钢卷尺、m千克砝码若干。 [实验原理] 在外力作用下,固体发生的形状变化叫形变,形变分弹性形变和范性形变。本实验测量钢丝杨氏弹性模量是在钢丝的弹性范围内进行的,属弹性形变的问题,最简单的弹性形变是在弹性限度内棒状物受外力后的伸长和缩短。设一根长度为L、横截面积为S的钢丝,沿长度方向施加外力F后,钢丝伸长ΔL。根据胡克定律:胁变(ΔL/L)与胁强(F/S)成正比,写成等式后,胁变前的比例系数就是杨氏弹性模量即 L SFL Y (17—1) Y就是该钢丝的杨氏弹性模量,单位是NM-2。 由式(17-1)可知,只要测量出等号右端的F、L、S、ΔL等量,即可测定杨氏弹性模量Y。显然,F、L、S可用一般量具测出,而钢丝的微小伸长量ΔL,使用一般的量具进行精确的测量是困难的,这是因为ΔL很小,当L为1m,S为1mm2时,每牛顿力的伸长量ΔL约为5×10-3mm),不能用直尺测量,也不便于用大型卡尺和千分尺测量,所以,通常采用光杠杆法。 杠杆的放大原理是大家熟知的,若利用光的性质,采用适当的装置,使之起到同样放大作用,这种装置就称为光杠杆(图17-1)。光杠杆是由T型足架和小镜组成,测量时,还必须加上读数系统的镜尺组(望远镜和标度尺,参阅图17-2)。在本实验中,光杠杆足架上的前双足应安放在杨氏模量仪固定平台上的沟槽内,后单足则置于钢丝下 端的圆柱形夹头上。 当钢丝伸长ΔL时,光杠杆后单足随钢丝夹头下降ΔL,此时,光杠杆小镜后仰α角(图17-2),则:b L tg  其中,b为光杠杆后单足到前双足的垂直距离。 图17-1

金属材料检测项目太多了,想要通过资质报告,一般要看你检测什么金属材料,然后选定具体检测标准。1、金属材料成分检测项目(1)牌号鉴定(碳钢、不锈钢、模具钢、铝合金、铜合金);(2)元素(O、N、H、C、S、Pt、Au、Ba、Pd及常规元素);(3)纯度(Ni、Ti、Ag、W、Au、Al、Cu、Fe、Zn、Cr纯度)。 2、金属材料机械性能检测项目 : 拉伸试验(抗拉强度、屈服强度、断面收缩率、伸长率、弹性模量)、冲击试验(常温冲击、低温冲击)、硬度试验(维氏硬度、洛氏硬度、布氏硬度)、承重试验、压缩试验、弯曲试验、压扁试验、破环扭矩、杯突试验、扩口试验、剪切试验、焊接结合力。 3、金属材料镀层测试检测项目:镀层厚度、膜重、镀层成分、镀层孔隙率、附着力、耐磨耗、耐化学品、铅笔硬度、耐酸/碱度、镀层形貌分析、表面污点分析、纳米硬度。 4、金属材料可靠性测试检测项目:盐雾试验(中性盐雾、铜离子加速、酸性盐雾)、振动、气体、IP等级、湿热、高低温、淋雨、沙尘、老化、氙灯、紫外、恒温恒湿、水雾试验、干热试验、耐高温。 5、金属材料金相组织检测项目: 晶粒度、非金属夹杂物、低倍组织、显微组织、不锈钢相含量、灰口铸铁金相、球墨铸铁金相、蠕墨铸铁金相、断口检验、硬化层深度、PCB金相切片分析、熔池深度。 6、金属材料尺寸检测项目: 常规尺寸、平面度、直线度、圆度、粗糙度、平行度、倾斜度、位置度、垂直度、微观尺寸、逆向工程、轮廓度、跳动、同心度、同轴度。 7、金属材料物理性能检测项目:密度、熔点、电阻率、粒径分布、导电/热、热膨胀系数、摩擦系数、比热容、残余应力、磁感应强度、铁损、水滴角、电磁兼容、物相分析。

随着科学技术的飞速发展,塑料制品已经广泛应用到国民生产和生活的各个层面[1],下面是我整理的关于塑料拉伸性能测定技术论文,希望你能从中得到感悟!

拉伸速度对塑料拉伸屈服应力的影响

[摘 要]本文采用国家标准GB/T1040-2006对聚丙烯树脂进行了拉伸屈服应力的实验,研究不同拉伸速度下的拉伸屈服应力,并确定了最佳的拉伸实验速度为50 mm/min。同时对比了实验样条进行状态调节和未进行状态的拉伸屈服应力的差距。

[关键词]拉伸屈服应力 实验速度 状态调节

中图分类号:U958 文献标识码:A 文章编号:1009-914X(2015)22-0278-02

1.前言

随着科学技术的飞速发展,特别是聚烯烃工业的发展,塑料制品已经广泛应用到国民生产和生活的各个层面[1],那么对塑料的各种性能进行严格的测试就显得非常重要,根据不同测试项目的结果可以判定该种塑料适合用于生产哪种类型的产品。其中力学性能是一个很重要的方面,包括拉伸、弯曲、冲击、压缩、撕裂性能等。而影响塑料拉伸性能试验结果的因素有很多,内在因素有塑料组分变化、分子量大小及分布、分子结构、分子取向程度和内部缺陷等,外在原因有试验仪器、试样的制备与处理、试验环境、试验参数、操作过程、数据处理和人为因素等[2]。

力学性能是结构材料最重要的使用性能,拉伸实验是应用最广泛也是最基础的力学性能实验方法。拉伸性能会随着样品厚度、制备方法、试验速度、夹具种类和拉伸度测量方法等因素的变化而变化[3]。对于不同的材料,试验速度对性能的影响不同,铝及其合金受拉伸速度的影响较小,软钢、不锈钢受拉伸速度的影响较大,试验速度增加,则强度性能指标升高,延伸性能指标降低;反之,强度性能与延伸性能指标的变化与上述相反[4],而聚烯烃树脂的拉伸性能受拉伸速度的影响特别大,尤其是对拉伸屈服应力的影响最大,这是因为塑料属于粘弹性材料,其应力松弛过程与变形速率紧密相关,需要一个时间过程。

从分子运动机理角度来说,聚合物的拉伸过程包括弹性形变、屈服、应变软化、冷拉、应变硬化和断裂。屈服即是在应力作用下链段开始运动,因为链段运动是松弛过程,外力的作用使松弛时间下降,若链段运动的松弛时间与外力作用速度相适应,材料在断裂前可发生屈服,出现强迫高弹性,则表现为韧性断裂。若外力作用时间短,链段的松弛跟不上外力作用速度,为是材料屈服需要更大的外力,材料的屈服强度提高,材料在断裂前不发生屈服,则表现为脆性断裂。本文即主要研究实验速度对拉伸屈服应力的影响。

在材料拉伸或压缩过程中,当应力达到一定值时,应力有微小的增加,而应变却急剧增长的现象,称为屈服,使材料发生屈服时的正应力就是材料的屈服应力。

根据拉伸试验测出的应力、应变对应值,可绘制应力一应变曲线。从曲线上可得到材料的各项拉伸性能指标值。曲线下方所包括的面积代表材料的拉伸破坏能。它与材料的强度和韧性相关。强而韧的材料 ,拉伸破坏能大 ,使用性能也佳。不同类型的高分子材料的应力-应变曲线是不同,拉伸屈服应力的大小也不一样。典型的聚合物拉伸应力-应变曲线如图1所示。

在应力-应变曲线上,以屈服点为界划分为两个区域。屈服点之前是弹性区,即除去应力后材料能恢复原状,并在大部分该区域内符合虎克定律。屈服点之后是塑性区,即材料产生永久性变形,不再恢复原状。

根据拉伸过程中屈服点的表现,伸长率的大小以及其断裂情况,应力-应变曲线大致可分为如图2所示的五种类型:①软而弱;②硬而脆;③硬而强;④软而强;⑤硬而韧。

所谓的“软”和“硬”是用于区分模量的低或高,“弱”和“强”是指强度的大小,“脆”是指无屈服现象而且断裂伸长很小,“韧”是指断裂伸长和断裂应力都较高的情况。聚丙烯树脂和聚乙烯树脂就属于韧性材料,它们的拉伸应力-应变曲线就是图2中的第5种。从图2可以看出并不是所有的聚合物都有屈服点的,这也就说明不同类型的聚合物其拉伸屈服应力是不同的,有的甚至没用拉伸屈服应力。

2.实验方法

2.1 样品制备

本实验按照国家标准GB/T1040-2006[5]的要求对聚丙烯树脂进行了拉伸屈服应力的实验。实验所用的原料是神华包头煤化工有限责任公司生产的聚丙烯粒料,牌号是L5E89。样品制备所用的仪器是克劳斯玛菲注塑机,注塑温度为230℃,模温机温度是40℃,保压压力是60巴,保压时间是30秒,冷却时间是25秒。所用的模具是P003955/06。注塑成型的样品的尺寸是150 mm×10mm×4mm(平均值),属于GB/T1040-2006中的Ⅰ型试样。对注塑成型的样条进行严格的挑选,保证样条的表面和边缘无划痕、黑点、空洞、凹陷和毛刺,样条应无扭曲,相邻的平面要相互垂直。样条的数量要足够多,保证每种试验参数下至少有10个合格的样条来进行平行试验。

2.2 样品进行状态调节

按照GB/T2918-1998[6]规定,将样品放在23℃,相对湿度为50%RH的恒温恒湿箱内状态调节48小时后再进行拉伸试验。

2.3 样品进行拉伸试验

拉伸实验所用的仪器是美国Instron公司的Bluehill万能试验机,根据GB/T 1040-2006,热塑性增强塑料的实验速度有B、C、D、E、F,即2 mm/min、5 mm/min 10 mm/min、20 mm/min 和50 mm/min,每种速度下都测试了10个样条,而且测试时操作方法要保持一致。测试前用游标卡尺在样条中心位置附近取三个点准确测得样条的宽度,取其平均值作为最终代入计算的数值,用测厚仪在样条中心位置附近取三个点准确测得样条的厚度,取其平均值作为最终代入计算的数值。在夹持样条时为了保证结果的平行性,要求样条上面有数字的一面正对着操作者,样条的切口端朝下。在样条的同一位置画好标线以保证每个样条的夹持位置是一致的。将样条放到夹具中时,要保证使样条的长轴线与试验机轴线在同一条直线上。从试验结果中发现在拉伸速度为2 mm/min和5 mm/min时,样品未被拉断,而且结果差距很大,故将这两个速度下的实验结果舍去,不参与讨论。 3.实验结果与讨论

3.1 速度对拉伸屈服应力的影响

不同实验速度下的拉伸屈服应力见表1。

每种实验速度下测试了15个样品,将实验结果相差比较大的舍弃,最终选取重复性很好的10个结果进行讨论,上述条件下的结果的标准偏差(RSD)分别为:1.11%,0.60%和0.59%,均小于5%,所以实验结果是可取的。综上所述,随着拉伸速度的增加,样品的拉伸屈服应力是逐渐增加的。对于GB/T1040-2006中的Ⅰ型试样来说,最佳的拉伸速度是50 mm/min。

3.2 状态调节对拉伸屈服应力的影响

未进行状态调节和进行状态调节的样品的拉伸屈服应力见表2。

根据GB/T2918-1998规定,将样品放在23℃,相对湿度为50%RH的恒温恒湿箱内状态调节48小时。实验速度为20 mm/min和50 mm/min。每种测试条件下均测试了10个样品,将实验结果相差比较大的舍弃,最终选取重复性很好的5个结果进行讨论,上述条件下的结果的标准偏差(RSD)分别为:0.96%,0.50%,0.79%和0.67%,均小于5%,所以实验结果是可信的。从实验结果可以看出,状态调节后的样品的拉伸屈服应力明显的比为进行状态调节的样品的拉伸屈服应力要大。

4.结论

相同条件下,拉伸速度越大,样品的拉伸屈服应力越大。对于GB/T1040-2006中的Ⅰ型试样来说,最佳的拉伸速度是50 mm/min。样品经过状态调节后其拉伸屈服应力增大。

对于本公司生产的聚丙烯树脂的拉伸性能测试,要求拉伸实验的样条应该在注塑成型后进行状态调节48小时后再进行测试,测试的最佳速度为50 mm/min。

参考文献

[1] 周祥兴,郁文娟,张惠曦等.实用塑料包装制品手册.中国工业出版社,2000.

[2] 张怀志,阎功臣,景丽荣等.影响塑料拉伸试验结果的因素.工程塑料应用,2005年,第33卷,第10期.

[3] 王超先,蔡春飞.塑料拉伸屈服应力不确定度的评定.理化检验-物理分册,2004,7(40):341-343.

[4] 陆文华.影响拉伸试验结果的主要因素,广东交通职业技术学院学报,2004年12月第4期.

[5] 国家质量监督检验检疫总局和国家标准化管理委员会发布.GB/T1040-2006塑料 拉伸性能的测定[M].北京:中国标准出版社,2007.

[6] 国家质量技术监督局发布.GB/T2918-1998塑料试样状态调节和试验的标准环境[M].北京:中国标准出版社,1998.

点击下页还有更多>>>关于塑料拉伸性能测定技术论文

金属制品力学性能检测论文

优点:不易燃烧缺点:易生锈

浅谈重金属检测传感器技术的应用论文

摘要: 随着经济的迅猛发展和社会的日新月异, 人们对重金属的开采及加工越来越频繁, 这使得不少重金属存在于大气水以及土壤中, 在很大程度上加重了环境污染, 科学技术的迅猛发展为重金属检测传感器技术的研究提供了很好的途径。针对上述背景下, 对重金属检测传感器技术研究与应用进行合理性阐述, 以促进重金属检测传感器技术的进一步发展。

关键词: 重金属检测; 传感器技术; 环境污染;

重金属污染是环境污染的一个重要组成部分, 重金属在自然界中广泛存在, 随着人类的开采、冶炼、加工活动而使得重金属转变成化学状态或化学形态广泛分布于大气、水、土壤中, 随着时间的积累而不断留存、迁移, 从而引发严重的环境污染问题;重金属甚至还会随着废水的排出而流入海洋中, 对鱼和贝类造成严重的危害;重金属还会附着在人类的鼻腔和食物上, 造成人类呼吸道感染和重金属中毒[1]。重金属具有沉积性和不可降解性, 是一种非常危险的污染源, 因此对于重金属的研究与检测是十分关键的。通过调查与研究, 发现重金属检测传感器技术主要分为离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术四个方面, 本文通过对这四种传感器技术在重金属检测中的研究与应用作简要分析, 以推动重金属检测传感器技术的发展。

1 离子选择性电极传感器技术。

离子选择性电极传感器技术是一种操作简单、性价比高、准确有效的重金属检测传感器技术。离子选择性电极传感器技术因为不需要提前对样品进行操作而被广泛应用于重金属的在线检测中。目前, 国内外学者对离子选择性电极传感器技术进行了大量的研究, 发现选择性高、经济简单的离子选择性电极主要分为基于聚氯乙烯膜的离子选择性电极和基于流系玻璃膜的离子选择性电极两种[2]。

1.1 基于聚氯乙烯膜的离子选择性电极。

目前在对基于聚氯乙烯膜的离子选择性电极的研究中, 主要是对离子选择性电极的重金属离子的识别以及聚氯乙烯膜的结构和性能进行研究, 同时, 对不同的载体和膜增塑剂对离子选择性电极性能的影响作简要分析, 从而提高对重金属的识别能力。

1.2 基于流系玻璃膜的离子选择性电极。

基于硫系玻璃膜的离子选择性电极良好的红外线透过性是其他离子选择性电极无法相提并论的。许多发达国家都通过购买硫系玻璃膜的离子选择性电极来用于重金属检测工作。

2 光纤化学传感器技术。

对于光纤化学传感器技术的研究比离子选择性电极传感器技术的研究还要早, 光纤化学传感器技术的研究始于美国研究所, 从那以后, 许多国家都在实验室中对光纤化学传感器技术进行研究, 并应用到重金属检测中。陈雷等人对基于聚氯乙烯膜的光纤传感器进行研究并应用到铜离子的检测中, 取得了良好的效果[3]。李学强等人将注册分析法和激光激发荧光光谱技术应用到对金属离子传感器的研制中, 使我国饮用水中的重金属检测工作取得了很大的进展。

3 生物传感器技术。

第一个生物传感器始于Red String仪器公司。之后, 又在多个公司相继推出, 这些生物传感器主要是对人类血糖和尿糖中的重金属物质进行检测。重金属物质在人体中的留存和迁移会对人体的健康造成极大的威胁, 生物传感器可以与人体生物识别因素相互影响, 以达到对人体中的重金属含量进行检测, 从而预防重金属中毒的目的。通过研究发现, 生物传感器主要分为蛋白质为基础的'生物传感器以及整个细胞为基础的重金属传感器两种。

3.1 蛋白质为基础的生物传感器。

生物识别因素主要是促进消化的酶、防止病毒入侵的抗体、增强体质的金属键键合蛋白以及脱辅基酶蛋白质。以这几种生物识别因素为基础制作蛋白质为基础的生物传感器, 用来检测铜离子、锌离子、汞离子以及铅离子等金属离子。传统的生物传感器存在灵敏度低、选择性差等一系列缺点, 因此必须研制出选择性高的新型传感器来实现对重金属离子的检测, 这种新型传感器被称为蛋白质为基础的生物传感器。

3.2 整个细胞为基础的重金属传感器。

整个细胞为基础的重金属传感器可以实现对微型有机体生物标识的检测, 它具有所受干扰因素少、反应速度快等一系列优点, 可以实现对苔藓、海藻、酵母等海洋生物中的重金属的检测。随着生物医学和环境工程的蓬勃发展, 可以通过改进主传感器的途径来解决重金属检测过程中的干扰问题, 即在基因层次上设计细胞器。

4 结语。

综上所述, 本文通过对重金属检测传感器技术研究与应用进行分析, 主要从离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术这四个方面作简要分析, 为传感器检测技术在重金属中的研究与应用提供理论支持, 以减少重金属污染现象的发生。

参考文献

[1]张涛, 苏倡, 刘艳, 等.泥蚶 (Tegillarca granosa) 重组铁蛋白富集重金属离子的特性及化学传感器的研究[J].海洋与湖沼, 2017, 48 (4) :870-876.

[2]吕攀攀, 肖芳兰, 严锡娟, 等.构建一种基于双启动子模型的特异性检测镉离子的大肠杆菌传感器[J].生物工程学报, 2015, 31 (11) :1601-1611.

[3]贾朔.边超, 佟建华, 等.基于纳米金Core-satellites等离子体耦合增强效应的汞离子光纤传感器的研究[J].分析化学, 2017, 45 (6) :785-790.

缺点:1、不易于成型和加工;2、不可根据需要随意着色或制成透明制品;3、制品质量重;4、易生锈,易服饰;5、易传热,保温性能差;6、绝缘性能差;7、透光性差,消音性差;8、产品制造成本高。优点:1、耐热性好,不易燃烧;2、随着温度变化,性质变化小;3、机械强度高;4、耐久性好,不易老化;5、不易受到损伤,不易沾染灰尘及污物;6、尺寸稳定性佳。

  • 索引序列
  • 金属材料的力学性能论文
  • 金属材料的力学性能研究论文
  • 金属力学性能论文
  • 金属材料物理性能检测拉伸论文
  • 金属制品力学性能检测论文
  • 返回顶部