首页 > 期刊投稿知识库 > 醌类化合物研究现状论文

醌类化合物研究现状论文

发布时间:

醌类化合物研究现状论文

摘 要:0引言 红花又称红蓝花、刺红花,是菊科植物,含有特殊的香味,味道微苦。红花主要产地在湖南、四川、新疆等地,具有治疗痛经、胸痹、心痛、腹痛、跌打损伤等多种用途[1]。本研究针对红花的化学成分及药理作用进行研究和总结,下面进行以下内容的报道。 1红花

关键词:化学成分论文

0引言

红花又称红蓝花、刺红花,是菊科植物,含有特殊的香味,味道微苦。红花主要产地在湖南、四川、新疆等地,具有治疗痛经、胸痹、心痛、腹痛、跌打损伤等多种用途[1]。本研究针对红花的化学成分及药理作用进行研究和总结,下面进行以下内容的报道。

1红花

红花是一年生草本植物,红花上部分茎杆呈现直立的状态,为白色或淡白色,无毛且十分光滑,下部分茎杆为披针形或长椭圆形,边缘有重锯齿、小锯齿或无锯齿,由底向上叶逐渐变小,红花叶的质地较为坚硬,有光泽。红花主要有怀红花、散红花、川红花、南红花、西红花等多种品种。红花多数生长在温暖、干燥的气候中,一般红花的种子发芽在20℃-30℃左右即可,生长温度在20℃~25℃,具有较强的抗旱、抗贫瘠性,但是偶也需要对其进行适当的灌溉,从而保证红花的产量。红花的抗水性较差,生在环境必须具有良好的排水性,对土壤的要求也相对较高,需要肥沃的砂土壤作为基础,一般紫色夹沙土和油沙土最为适宜红花的生长。红花作为一种长日照植物,充分的日照能够保证其发育良好,籽粒饱满,红花的生活周期为120天。红花在特殊情况下会出现中毒反应,主要表现为患者出现腹泻、腹痛、肠胃出血,女性经期过多的症状,红花中毒患者会出现神志萎靡不清,严重者甚至会出现惊厥的现象,也有一部分患者会出现头晕、皮疹等症状。一般引起红花中毒的原因主要有两种,对红花的误用和用量过大,在临床应用中,孕妇禁止使用,有溃疡病或者血性疾病的患者在使用中要注意红花的用量不宜过大。

2红花的化学成分

红花中含有黄酮类化合物、挥发油、红花多糖、脂肪酸等化学成分,红花含有一部分醌式查耳酮类化合物,醌式查耳酮类化合物主要是红色素和黄色素,在其它植物中比较少见。黄酮类化合物和查尔酮类化合物红花黄色素(SY)是红花中含有的最主要的化学成分之一,挥发油为低脂肪酸、烷烃以及少量的芳香脂,红花多糖主要是由于红花中的基本组成部分为葡萄糖、阿拉伯糖、木糖和半乳糖,脂肪酸主要为棕搁酸、亚油酸、甘油酯、月桂酸以及部分不饱和的脂肪酸。

3红花的药理作用

3.1对血管系统的作用。一方面,红花对扩张血管、降低血压起到重要的作用,患者在进行使用红花黄色素的治疗后,在给药4天左右时间后患者的血压开始下降,在给药2~3周左右药理作用达到最高,血管紧张素Ⅱ和血浆中的肾素活性均出现了明显下降,表明红花能够对扩张血管和降低血压起到作用[3]。另一方面,红花能够扩张冠状动脉,有效改善缺血症状,查尔酮类化合物红花黄色素(SY)能够减少漏出乳酸脱氢酶(LDH),同时使线粒体的肿胀程度和膜流动性下降,查尔酮类化合物红花黄色素(SY)能够缓解患者的心肌缺氧程度和心肌缺氧性损伤,从而改善患者的心肌能量代谢情况,充分体现红花对扩张冠状动脉,改善缺血症状起到重要作用。

3.2对神经系统的作用。脑缺血是一种病理复杂的疾病,主要是由于脑中的血液流量减少,导致脑中的缺血缺氧,自由基产生,炎症因子和细胞的参与,导致了神经细胞的希望。红花中的成分羟基红花黄色素A(HSYA)能够有效的治疗脑缺血症状,对神经细胞起到一定的保护作用。

3.3对血液系统的作用。查尔酮类化合物红花黄色素(SY)能够充分抑制血小板活化因子,致使血小板的血液开始聚集,血小板内的游离钙的浓度不断升高的同时,中性粒细胞就会开始聚集。羟基红花黄色素A(HSYA)是血小板活化因子的受体拮抗剂,羟基红花黄色素A(HSYA)通过抑制血小板活化因子的血小板粘附,血小板中的游离钙离子就会不断升高,这就使得红花能够有效的对血小板活化因子进行抵抗,在临床中针对血栓和炎症等病情起到较好的治疗效果,增加血液循环流畅水平。

3.4抗氧化的作用。组织缺血和再灌注的`过程,就会导致自由基的氧化作用增强,从而给血液循环带来一定的障碍和损伤。在对小白鼠的试验中可以看出,红花提取液能够有效清除羟自由基,从而抑制小白鼠的肝匀浆脂出现氧化,红花注射液能够有效拮抗氧自由基的作用效果,有效减少IL8的含量,有效的阻止了IL8和炎症进行反应,充分对恶性的循环产生了阻止作用[4]。红花中的抗氧化作用主要是由于羟基红花黄色素A(HSYA)在清除羟自由基的同时,保护了人体中的细胞膜,在淤血中能够加快血液循环阻碍作用,从而红花中的羟基红花黄色素A(HSYA)对抗氧化性起到了至关重要的作用。

3.5抗肿瘤的作用。肿瘤需要在一个营养的环境中成长,需要血液能够提供排出代谢的产物,肿瘤作为一种较为常见的疾病,其治疗和阻断引起了医疗人员的广泛关注,在血管的生成过程中,血管发生的最为基本和重要的环节就是血管内皮细胞增殖作用,红花起到对bGF、血管内皮生长因子(VEGF)、血管内皮细胞生长因子受体1(VEGFR1)充分的抑制作用,针对肿瘤进行有效治疗和抑制,起到抗肿瘤的作用。综上所述,尽管现阶段对红花的研究取得了一定的进展,但是仍然需要进行进一步的探讨和分析。红花在临床中主要应用与活血化瘀的治疗中,另外红花在治疗心脑血管疾病、抗肿瘤等方面取得更好的治疗效果,随着对红花研究的不断深入,红花在临床中将会得到更加广泛的应用。

综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物降解研究方面的新技术和新方法。文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污染的环境是消除农药污染的一个有效方法。 关键词:微生物 生物降解 农药降解 农药 20世纪60年代出现的第一 次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起到了重要的保障作用。因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为22.66万t[2],其中甲胺磷一种农药的用量就达6万t[3]。化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的工程措施消除污染。实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、不产生二次污染的理想途径。但自然环境复杂多变,影响着农药生物降解的可否和效率。近年随着对农药残留污染问题的重视,科学家们对农药生物降解进行了大量的研究,但许多问题需要进一步探明。本文整理出了近年来对农药生物降解的研究进展,提出存在的问题,建议有效的研究途径,旨在为加强农药的生物降解研究、解决农药对环境及食物的污染问题提供依据。 1 1.1 农业生产上主要使用的农药类型 当前农 业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。 表1 农业生产中常用农药种类简表[7]类 型 农 药 品 种有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等杀虫剂 有机氮:西维因、速灭威、巴沙、杀虫脒等 有机氯:六六六、滴滴涕、毒杀芬等杀螨剂 螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等杀菌剂 甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等 生长调节剂 矮壮素、健壮素、增产灵、赤霉素、缩节胺等 人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。 1.2 降解农药的微生物类群 土壤中的微生物,包括细菌、真菌、放线菌和藻类等[8,9],它们中有一些具有农药降解功能的种类。细菌由于其生化上的多种适应能力和容易诱发突变菌株,从而在农药降解中占有主要地位[8]。一在土壤、污水及高温堆肥体系中,对农药分解起主要作用的是细菌类,这与农药类型、微生物降解农药的能力和环境条件等有关,如在高温堆肥体系当中,由于高温阶段体系内部温度较高(大于50 ℃),存活的主要是耐高温细菌,而此阶段也是农药降解最快的时期。通过微生物的作用,把环境中的有机污染物转化为CO2和H2O等无毒无害或毒性较小的其他物质[10,11]。通过许多科研工作者的努力,已经分离得到了大量的可降解农药的微生物(见表2)。不同的微生物类群降解农药的机理、途径和过程可能不同,下面简要介绍一下农药的微生物降解机理。 1.3 微生物降解农药的机理 目前,对于微生物降解农药的研究主要集中于细菌上,因此对于细菌代谢农药的机理研究得比较清楚。 表2 常见农药的降解微生物[11,12] 农 药降 解 微 生 物 甲胺磷芽孢杆菌、曲霉、青霉、假单胞杆菌、瓶型酵母 阿特拉津(AT)烟曲霉、焦曲霉、葡枝根霉、串珠镰刀菌、粉红色镰刀菌、尖孢镰刀菌、斜卧镰刀菌、微紫青霉、皱褶青霉、平滑青霉、白腐真菌、菌根真菌、假单胞菌、红球菌、诺卡氏菌 幼脲3号真菌 敌杀死产碱杆菌 2,4-D假单胞菌、无色杆菌、节杆菌、棒状杆菌、黄杆菌、生孢食纤维菌属、链霉菌属、曲霉菌、诺卡氏菌、 DDT无色杆菌、气杆菌、芽孢杆菌、梭状芽孢杆菌、埃希氏菌、假单胞菌、变形杆菌、链球菌、无色杆菌、黄单胞菌、欧文氏菌、巴斯德梭菌、根癌土壤杆菌、产气气杆菌、镰孢霉菌、诺卡氏菌、绿色木霉等 丙体六六六白腐真菌、梭状芽孢杆菌、埃希氏菌、大肠杆菌、生孢梭菌等 对硫磷大肠杆菌、芽孢杆菌 七 氯芽孢杆菌、镰孢霉菌、小单孢菌、诺卡氏菌、曲霉菌、根霉菌、链球菌 敌百虫曲霉菌、镰孢霉菌 敌敌畏假单胞菌 狄氏剂芽孢杆菌、假单胞菌 艾氏剂镰孢霉菌、青霉菌 乐 果假单胞菌 2,4,5-T无色杆菌、枝动杆菌 细菌降解农药的本质是酶促反应[13~15],即化合物通过一定的方式进入细菌体内,然后在各种酶的作用下,经过一系列的生理生化反应,最终将农药完全降解或分解成分子量较小的无毒或毒性较小的化合物的过程。如莠去津作为假单胞菌ADP菌株的唯一碳源,有3种酶参与了降解莠去津的前几步反应。第一种酶是A tzA,催化莠去津水解脱氯的反应,得到无毒的羟基莠去津,此酶是莠去津生物降解的关键酶;第二种酶是A tzB,催化羟基莠去津脱氯氨基反应,产生N-异丙基氰尿酰胺;第三种酶是A tzC,催化N-异丙基氰尿酰胺生成氰尿酸和异丙胺。最终莠去津被降解为CO2和NH3[16]。微生物所产生的酶系,有的是组成酶系,如门多萨假单胞菌DR-8对甲单脒农药的降解代谢,产生的酶主要分布于细胞壁和细胞膜组分[5];有的是诱导酶系,如王永杰等 [17]得到的有机磷农药广谱活性降解菌所产生的降解酶等。由于降解酶往往比产生该类酶的微生物菌体更能忍受异常环境条件,酶的降解效率远高于微生物本身,特别是对低浓度的农药,人们想利用降解酶作为净化农药污染的有效手段。但是,降解酶在土壤中容易受非生物变性、土壤吸附等作用而失活,难以长时间保持降解活性,而且酶在土壤中的移动性差[8],这都限制了降解酶在实际中的应用。现在许多试验已经证明,编码合成这些酶系的基因多数在质粒上,如2,4-D的生物降解,即由质粒携带的基因所控制[18]。通过质粒上的基因与染色体上的基因的共同作用,在微生物体内把农药降解。因此,利用分子生物学技术,可以人工构建“工程菌”来更好地实现人类利用微生物降解农药的愿望。 1.3.1 微生物在农药转化中的作用 (1)矿化作用 有许多化学农药是天然化合物的类似物,某些微生物具有降解它们的酶系。它们可以作为微生物的营养源而被微生物分解利用,生成无机物、二氧化碳和水。矿化作用是最理想的降解方式,因为农药被完全降解成无毒的无机物,如石利利等 [19]研究了假单胞菌DLL-1在水溶液介质中降解甲基对硫磷的性能及降解机理后指出,DLL-1菌可以将甲基对硫磷完全降解为NO2-和NO3-。 (2)共代谢作用 有些合成的化合物不能被微生物降解,但若有另一种可供碳源和能源的辅助基质存在时,它们则可被部分降解,这个作用称为共代谢作用,这一作用最初是由Foster等[12]提出来的。如门多萨假单胞菌DR-8菌株降解甲单脒产物为2,4-二甲基苯胺和NH3,而DR-8菌株不能以甲单脒作为碳源和能源而生长,只能在添加其他有机营养基质作为碳源的条件下降解甲单脒,且降解产物未完全矿化,属于共代谢作用类型[5]。关于共代谢的机理,现在还存在争论。由于共代谢作用而推动的顽固性人工合成化合物的降解一般进行的较慢,而且降解程度很有限,参与共代谢作用的微生物不能从中获得碳源和能源,但是自然界中还是广泛存在着大量的具有共代谢功能的微生物,它们可以降解多种类型的化合物。共代谢作用在农药的微生物降解过程中发挥着主要的作用[5,17,20]。 1.3.2 微生物降解农药的生化反应[10,12] 氧化反应 微生物体内的氧化反应包括:羟化反应(芳香族羟化、脂肪族羟化、N-羟化);环氧化;N-氧化;P-氧化;S-氧化;氧化性脱烷基、脱卤、脱胺。 还原反应 还原反应包括硝基还原、还原性脱卤、醌类还原等。 水解反应 一些酯、酰胺和硫酸酯类农药都有可以被微生物水解的酯键,如对硫磷、苯胺类除草剂等。 缩合和共轭形成 缩合包括将有毒分子或一部分与另一有机化合物相结合,从而使农药或其衍生物物失去活性。 应该指出,在微生物降解农药时,其体内并不只是进行单一的反应,多数情况下是多个反应协同作用来完成对农药的降解过程,如好氧条件下卤代芳烃的生物降解,其卤素取代基的去除主要通过两个途径发生:在降解初期通过还原、水解或氧化去除卤素;生产芳香结构产物后通过自发水解脱卤或β-消去卤化烃[6]。 1.4 影响微生物降解农药的因素 1.4.1 微生物自身的影响 微生物的种类、代谢活性、适应性等都直接影响到对农药的降解与转化[21,22]。很多试验都已经证明,不同的微生物种类或同一种类的不同菌株对同一有机底物或有毒金属的反应都不同[5,17,23,24]。另外,微生物具有较强的适应和被驯化的能力,通过一定的适应过程,新的化合物能诱导微生物产生相应的酶系来降解它,或通过基因突变等建立新的酶系来降解它[10]。微生物降解本身的功能特性和变化也是最重要的因素。 1.4.2 农药结构的影响 农药化合物的分子量、空间结构、取代基的种类及数量等都影响到微生物对其降解的难易程度[25~28]。一般情况下,高分子化合物比低分子量化合物难降解,聚合物、复合物更能抗生物降解[10];空间结构简单的比结构复杂的容易降解[24]。陈亚丽等 [22]在试验中发现,凡是苯环上有-OH或-NH2的化合物都比较容易被假单胞菌WBC-3所降解,这与苯环的降解通常先羟化再开环的原理一致。Potter等 [29]在小规模堆肥条件下研究了多环芳烃的降解后指出,2-4环的芳烃比5-6环的芳烃容易降解。 自然界中的微生物通常可以降解天然产生的有机化合物,如木质素、纤维素物质等,从而促进地球的物质循环和平衡。但目前的环境污染物大多是人工合成的自然界中本身不存在的生物异源有机物质,其中一些是对人类具有致畸、致突变和致癌作用,往往对微生物的降解表现出很强的抗性,其原因可能是这些化合物进入自然界的时间比较短,单一的微生物还未进化出降解此类化合物的代谢机制。尽管某些危险性化合物在自然界中可能会经自然形成的微生物群体的协同作用而缓慢降解,但这对微生物世界来说仍然是一个新的挑战。微生物通过改变自身的信息获得降解某一化合物的能力的过程是缓慢的,与目前大量使用的人工合成的生物异源物质相比,依靠微生物的自然进化过程显然不能满足要求,因此长期以往将会造成整个生态系统的失衡[6]。因此,研究一些可以使微生物群体在较短的时间内获得最大降解生物异源物质能力的方法非常重要和迫切。 1.4.3 环境因素的影响 环境因素包括温度、酸碱度、营养、氧、底物浓度、表面活性剂等[10,30~33]。刘志培等 [34]研究了甲单脒降解菌的分离筛选;程国锋等 [23]研究了微生物降解蔬菜残留农药;钞亚鹏等 [15]研究了甲基营养菌WB-1甲胺磷降解酶的产生和部分纯化及性质。他们所研究的微生物或其产生的酶系都有一个适宜的降解农药的温度、pH及底物浓度,这与Thomas 等 [31]、Donna Chaw 等[26]的研究结果一致。莫测辉等 [24]指出,堆肥中微生物降解多环芳烃的活性与氧的浓度和水分含量密切相关,当堆肥中氧的含量小于18%、水分含量大于75%时,堆肥就从好氧条件转化为厌氧条件,进而影响多环芳烃的降解效果。Hundt 等 [30]调查了biaryl化合物在土壤中和堆肥中被细菌Ralstonia和Pickettii的降解和矿化情况。在土壤水分适宜的条件下,非离子型表面活性剂吐温80可增强微生物对biaryl类化合物的利用率,如联苯、4-氯联苯。Kastner等 [35]认为,在堆肥与被多环芳烃污染的土壤混合的情况下,堆肥中有机基质含量对于农药降解的作用要大于堆肥中生物的含量对于农药降解的作用;营养对于以共代谢作用降解农药的微生物更加重要,因为微生物在以共代谢的方式降解农药时,并不产生能量,须其他的碳源和能源物质补充能量[12]。对于好氧微生物来说,在好氧条件下可以降解农药,而在厌氧条件下降解效果不好;而对于厌氧微生物来说,情况可能正相反。也有研究指出在好氧条件下,有的厌氧细菌也可以代谢一些化合物[6]。 1.5 农药微生物降解的新技术和新方法 1.5.1 转基因技术的应用 20世纪后半叶是分子生物学、分子遗传学等学科迅速发展的时期,各种不同的生物学技术不断涌现;同时在21世纪初,生物信息学、基因组学、蛋白质组学等新的学科迅速兴起。这一切都为人工创造“超级农药降解菌”提供了必要的条件。因此,利用转基因技术进行目的性的人工组装“工程菌”成为有魅力的发展目标。同时,因为微生物降解农药的本质是酶促反应,所以,有人直接提取微生物合成的酶系来离体进行农药等有机化合物污染物的降解研究[15]。 1.5.2 多菌株复合系的构建及应用 以往研究农药的生物降解偏重于用单一微生物菌株的纯培养[17,23],现在已经证明,单一菌株的纯培养效果不如混合培养。因为单个微生物不具备生物降解所需的全部酶的遗传合成信息,而且它们在难降解化合物中驯化的时间不足以进化出完整的代谢途径,同时许多纯培养的研究发现,在生物降解过程中会有毒性中间物质积累,因此彻底矿化通常需要一个或一个以上的营养菌群(如发酵-水解菌群、产硫菌群、产乙酸菌群及产甲烷菌群等)。一种微生物降解一部分,经过数种微生物的接力作用和协同作用,经过多步反应将有毒化合物完全矿化,微生物的群体作用更能抵抗生物降解中产生的有毒物质[6]。笔者等利用菌种间协同关系构建的复合系不仅高效率分解木质纤维素,而且菌种组成长期稳定,不易被杂菌污染[36,37],在此基础上赋予农药分解功能的复合系对多种农药具有强烈的分解能力,其作用机理有待作进一步的细致工作。关于混合培养中的微生物群落的代谢协同作用,至少可以将微生物群落分为7种:(1)提供特殊营养物;(2)去除生长抑制物质;(3)改善单个微生物的基本生长参数(条件);(4)对底物协调利用;(5)共代谢;(6)氢(电子)转移;(7)提供一种以上初级底物利用者[6]。另外,分子生态学技术的应用证明,目前人类能够分离纯化的微生物种类及其有限,甚至自然界中99%的微生物目前无法纯培养[38],因而只有培育复合系才能包含这些重要而无法纯培养的微生物种类。2 研究中存在的问题 虽然农药残留的微生物降解研究已经取得了很大的进展,而且也有了一些应用的实例,但研究大多局限在实验室中,农药降解菌完全走出实验室到实际应用中还有一段路要走。农药微生物降解的问题主要有以下几方面。 2.1 单一菌株的纯培养问题 以往的研究主要集中在单一菌株的纯培养上,在实验室内获得纯培养的菌株,然后研究它的特性、降解机理等。然而这一方法完全不符合实际情况,自然状态下,是多种微生物共存,通过微生物之间的共同作用把农药降解。农药残留往往存在于土壤、农副产品、废弃物等复杂环境中,即使在实验室内一株菌的降解活性再大,到了这种复杂条件下可能无法生存或起不到期望的作用。 2.2 环境条件对微生物降解农药的影响 外部环境对微生物生长和对农药的降解影响很大,如环境的温度、水分含量、pH、氧含量等,而自然环境中这些因素变化很大,这直接影响到微生物对农药的降解。如何克服环境的影响从而充分发挥目标微生物的作用是需要解决的重大问题。 2.3 微生物降解目标化合物对降解的影响 目标化合物的浓度是否能使微生物生长,另外,农药污染环境的化合物组分很不稳定,波动很大,这给以工程措施微生物降解农药化合物带来困难。 2.4 微生物与被降解物接触的难易程度 被农药污染的环境有土壤、空气、水体及蔬菜瓜果等,对于土壤和水体的污染,微生物很容易与污染物接触,从而发挥它们的降解功能。但是,对于被农药污染的食品来说,利用微生物降解残留的农药很难,因为微生物无法与存在于物体内部的残留农药接触,无法发挥它们的作用,而只能降解残留在物体表面的部分。这种限制需要人们尽快解决,从而扩大微生物降解农药的应用范围。 2.5 微生物的适应性问题 所接种的微生物能否适应污染的环境,这不仅包括上述提到的物理环境,还涉及到生物之间的关系。接种到环境中的微生物受到抑制物的影响,或者受到包括捕食者在内的土著微生物的影响,甚至受到拮抗作用而不能生长等,这些都可以造成接种的微生物不能成为优势菌从而失去对农药的降解作用。构建多菌株复合系,具有稳定性和抗污染性强的优点,但即使是多菌混合培养的复合系也同样存在能否成为优势群体的问题。 3 堆肥法消除污染物 现代城市生活垃圾、有机固体废弃物、污泥中含有大量的有机污染物及重金属,农业有机固体废弃物中也含有大量的残留农药及其由于利用污水灌溉等可能导致的其他污染物。而堆肥法是消除这些污染,使有机固体废弃物无害化、资源化和产业化的有效途径之一。在堆肥过程中,通过堆肥体系中微生物的降解作用和挥发、沥滤、光解、螯合和络合等非生物方法消除污染物。堆肥法消除污染物主要有:(1)将被污染的物质或污染物与堆肥原料一起堆制处理;(2)将污染物质与堆制过的材料混合后进行二次堆制;(3)在被污染的土壤中添加堆肥产品,利用堆肥中的微生物消除土壤污染[39]。所以,堆肥法既可以消除污染,又可得到高质量的堆肥产品,对环境污染治理和农业的可持续发展意义重大。20世纪90年代以来,国内外有很多学者在此方面做了大量研究且取得了一定的进展[26,40~43]。 将人工构建微生物的复合体系,接种到农药污染土壤中,或利用活性的农业有机废弃物堆肥来改良已经被污染的土壤是一个好办法,因为活性堆肥内含有复合的微生物体系,在污染的土壤环境中更容易成为优势菌群。这就涉及到复合系的构建,微生物复合系的构建需要传统的和现代的方法相结合。从已有的堆肥体系中和已经污染了的土壤环境中分别富集培养微生物,得到土著微生物的复合系和堆肥菌复合系,然后进行复合微生物体系内部各个组分的特性、功能和多样性研究。菌株的抗药性鉴定,再把各个有功能的组分重新复合,组成一个新的复合体系,这一复合系不仅具有强有力的功能,又更能适应土著环境。直接应用复合系治理土壤污染,或者利用复合系生产农业有机废弃物堆肥来改良土壤。 4 结 语 很多研究已经证明,在农药污染的一些环境中诱导出天然的降解农药的微生物,那么是否可以采取一些条件控制措施,充分调动这些土著微生物的作用,尽量采用原位生物修复,而不用人为地接种微生物,这值得进一步探讨和研究。

1.Feigl 反应:醌类衍生物在碱性条件下加热与醛类、邻二硝基苯反应,生成紫色化合物。

原理如下,醌类在反应中仅起传递电子作用。

2.无色亚甲蓝显色试验:无色亚甲蓝乙醇溶液(1mg/ml)专用于检出苯醌及萘醌。样品在白色背景下呈现出蓝色斑点,可与蒽醌类区别。

3.Kesting-Craven 反应:当苯醌及萘醌类化合物的醌环上有未被取代的位置时,在碱性条件下与含活性次甲基试剂,如乙酰乙酸酯、丙二酸酯反应,呈蓝绿色或蓝紫色。蒽醌类化合物因不含有未取代的醌环,故不发生该反应,可用于与苯醌及萘醌类化合物区别。

4. Borntrager 反应:在碱性溶液中,羟基醌类颜色改变并加深,多呈橙、红、紫红及蓝色。如羟基蒽醌类化合物遇碱显红至紫红色,称为Borntrager反应。蒽酚、蒽酮、二蒽酮类化合物需氧化形成羟基蒽醌后才能显色,其机制是形成了共轭体系。

5.与金属离子的反应:蒽醌类化合物如具有α-酚羟基或邻二酚羟基,则可与Pb2+、Mg2+等金属离子形成络合物。与Pb2+形成的络合物在一定pH条件下能沉淀析出,与Mg2+形成的络合物具有一定的颜色,可用于鉴别。如果母核上只有一个α-OH或一个β-OH,或两个-OH不在同环上,则显橙黄色至橙色;如已有一个α-OH,并另有一个-OH在邻位则呈蓝色至蓝紫色,若在间位则显橙红色至红色,在对位则显紫红色至紫色。

5、6题显然无争议,答案分别为D、B选项;4题,B选项用于检出苯醌及萘醌,可与蒽醌类区别,为正确答案。D选项,Borntrager 反应系指碱性溶液中,羟基醌类颜色改变并加深,并非特定指出是蒽醌类。然而,当苯醌和蒽醌的结构中均带有羟基时,两者均会发生在碱溶液中颜色改变的现象,所以无法用该方法区别苯醌和蒽醌。E选项,蒽醌类化合物如具有α-酚羟基或邻二酚羟基,则可与Pb2+、Mg2+等金属离子形成络合物。如若不具有以上结构,岂不是无法区分苯醌和蒽醌了,所以该方法并非完全使用。

尽全力解释了这么多,望采纳~~~

硒及其化合物研究现状论文

[编辑本段]硒的主要用途为 1.光敏材料;如:干印术的光复制,这是利用无定形硒的薄漠对于光的敏感性,能使含有铁化合物的有色玻璃退色。也用作油漆、搪瓷、玻璃和墨水中的颜色、塑料。还用于制作光电池、整流器、光学仪器、光度计等。硒在电子工业中可用作光电管、太阳能电池,在电视和无线电传真等方面也使用硒。硒能使玻璃着色或脱色,高质量的信号用透镜玻璃中含2%硒,含硒的平板玻璃用作太阳能的热传输板和激光器窗口红外过滤器。 2.电解锰行业催化剂;冶金方面,电解锰行业的硒用量占到中国全部硒产量的较大比重,此外,含硒的碳素钢、不锈钢和铜合金具有良好的加工性能,可高速切削,加工的零件表面光洁;硒与其他元素组成的合金用以制造低压整流器、光电池、热电材料。硒以化合物形式用作有机合成氧化剂、催化剂,可在石油工业上应用。硒加入橡胶中可增强其耐磨性。硒与硒化合物加入润滑脂。 3. 动物体必需的营养元素和植物有益的营养元素。由于硒是动物和人体中一些抗氧化酶(谷胱甘肽过氧化物酶)和硒-P蛋白的重要组成部分,在体内起着平衡氧化还原氛围的作用,研究证明具有提高动物免疫力作用,在国际上硒对于免疫力影响和癌症预防的研究是该领域的热点问题,因此,硒可作为动物饲料微量添加剂,也在植物肥料中添加微量元素肥,提高农副产品含硒量。硒已被作为人体必需的微量元素,目前,中国营养学会推荐的成人摄入量为每日50-250微克,而我国2/3地区硒摄入量低于最低推荐值,因此,中国是一个既有丰富硒资源,又存在大面积硒缺乏地区,这也是国际学者对中国感兴趣的原因。

微量元素硒的用途,主要是在提升免疫,加快术后恢复,还有改善缓解放化疗副作用这几个方面的针对性较强,它参与机体的代谢,调节患者的免疫调节。补硒可以多吃些富含硒的食物,像是紫薯,芦笋,蘑菇等都挺好,也可以通过硒剂体恒健硒惟康直接进补,效裹更明显与高效,对了,维生素E是可以预防补硒过量的,这个值得注意哦。

含硒食物: 蛋类含硒量多于肉类,每100克食物中,猪肉含硒10.6微克,鸡蛋含硒23.3微克,鸭蛋含硒30.7微克,鹅蛋含硒33.6微克,人参含硒15微克,花生含硒13.7微克。植物性食物的硒含量决定于当地水土中的硒含量,例如湖北恩施、陕西紫阳都是高硒地区,那里盛产的富硒茶可以用来补硒。 含硒丰富的食物首推芝麻、麦芽和中药材黄芪,其次是酵母、蛋类、啤酒,海产类以大红虾、龙虾、虎爪鱼、金枪鱼等比较好,再次是动物的肝、肾等肉类,而水果和大多数蔬菜含硒都不多,不过大蒜、蘑菇的含量却相当多,芦笋中含硒 富硒大蒜对人体健康的作用 大蒜是最能富硒的植物,大蒜本身具有重要的生理活性,可有效提高免疫力,清除体内活性自由基,这与硒的作用一致,有协同增效作用。因此,设法生产富硒大蒜是最佳选择。富硒大蒜化学分析研究证实,与目前市场销售的富硒产品不同,富硒大蒜的确含有独特的高效低毒含硒化合物,他们是目前在富硒生物材料中被证实活性最高、毒性最低的富硒生物食品。 富硒大蒜具有以下作用: 1、抗癌、抗氧化、杀菌消炎、增强免疫力、延缓衰老、抗重金属中毒、抗辐射损伤、减轻化学致癌物、农药和间接致癌物的毒副作用。 2、对肝癌、胃癌、胃腺癌、前列腺癌、心血管疾病、神经性病变、炎性病、肿瘤等疾病有治疗和预防作用。 3、在动物、水产养殖业使用,能降低发病率、死亡率,可代替抗生素防止多种疾病的发生,并能有效提高动物的免疫功能和繁殖率。 4、据国内外研究表明,富硒大蒜的抗菌消炎功能远远超过普通大蒜,因此有权威专家称:“富硒大蒜是地里长出的抗生素”。 5、美国抗癌研究协会的试验表明,富硒大蒜的抗癌效果比普通大蒜高150-300倍,因此预言“富硒大蒜油是二十一世纪后期全世界最理想的抗癌圣药” 不同性别青少年近视发生与血清锌、铜、硒含量的关系,为采取有效措施提高学生视力水平提供依据.方法采用对数视力表,对168名中学生进行视力检测,并根据性别、视力分组,采用原子吸收法对被试者血清锌、铜、硒含量进行测定.结果男、女近视组患者血清锌、铜、硒含量均显著低于男、女正常视力组(P值均<0.01),且视力与血清锌、铜、硒含量呈正相关.不同性别学生血清锌、铜、硒含量差异无统计学意义(P>0.05).结论青少年近视的发生和发展与血清锌、铜、硒含量下降密切相关,视力下降程度与血清锌、铜、硒含量下降呈正相关.

光合作用合成生物学研究现状论文

光合作用广泛存在于自然界,叶绿体收集太阳光能,将水和二氧化碳转化为有机物(首先是葡萄糖),放出氧气。但这只是最终结果,整个过程一开始是将水和二氧化碳气转化为氧,自由的质子和电子。在光合作用中产生了两个化学反应,叶绿素分子失去两个电子,水分子发生分解。尽管光合作用在各种教科书中都得到了详尽的阐述,但是想人工实现这一过程却绝非易事,主要的问题在于缺少有效地电解水的媒介,在植物中充当这一媒介的是叶绿体。 众所周知,水能够电解成氢和氧,但整个过程毫无意义。为了提高这一性能,化学家们提供了能促使反应在更低电压情况下进行的催化剂。目前只有钌和铂能充当这种媒介,当然这两种金属都很昂贵,除此之外,反应要进行还需要特定的温度条件和气压。 模拟光合作用储存太阳能的技术早在上世纪70年代初就进入了科学家的视线。几十年来,研究人员一直在尝试复制绿色植物分解水的方式。利用化学方式,科学家早已能够完成水的分解反应,但这些化学反应条件非常苛刻,温度很高,溶液具有腐蚀性很强的碱性,而且催化剂需要用到铂等稀有而昂贵的化合物。丹尼尔的设计就像光合作用一样,分解水的反应在室温下就可进行,溶液也没有腐蚀性,更重要的是催化剂非常便宜,可以很容易地得到氢气和氧气。编辑本段人造光合作用-最新进展据美国“每日科学”网站2009年3月12日报道,美国加州大学伯克利分校的科学家,在这一领域取得了重大突破,找到了可使光合反应顺利进行的特殊催化剂。在此基础上,科学家期望彻底弄清光合作用的奥秘,使人工光合作用能大规模用于生产和生活。 据国外媒体报道,美国麻省理工学院(MIT)的科学家日前在实验室内再现了光合作用的过程,在整个过程中光合作用将水分解成氢和氧,并产生了可供燃烧的氢气和氧气。该实验的意义在于光合作用产生的能量能够被人类利用,这种技术将引发一场太阳能使用革命,并补偿煤炭,石油等不可再生资源的损耗。这两名科学家名叫诺塞拉(Daniel Nocera)和卡南(Matthew Kanan),他们找到了一种简单实惠的方法将水分解成氢气和氧气,这种方法的原理和光合作用差不多,只是将太阳能转化了可燃烧的氢气和氧气。编辑本段人造光合作用-催化物研究人员已发现,特殊的蛋白质“光合体系Ⅱ”作为催化剂载体,起催化作用的是一种含锰的生化酶。在没有绿色植物这个光合作用载体的情况下,人们期望找到一种人工催化剂以替换“光合体系Ⅱ”。加州大学劳伦斯伯克利国家实验室的研究人员正是找到了高效的催化剂——氧化钴纳米颗粒,实现了高转化率的光解反应,相关论文已发表在德国《应用化学》期刊上。 这个系列实验是在加州大学劳伦斯伯克利国家实验室“太阳神”太阳能研究中心完成的,该研究中心由华裔科学家、诺贝尔奖获得者朱棣文创立。他也是劳伦斯伯克利实验室的主任。主要参加者是研究中心主任海因茨·弗雷和他的博士后、旅美华人学者焦锋(音)。弗雷介绍说,光解反应对催化剂要求极为苛刻,在经过无数次实验后,他们发现氧化钴纳米晶体既高效又快速,反应持久,也容易得到,正好能满足要求。 最开始,他们用毫米级的氧化钴颗粒做实验,效果不理想。后来改用纳米级的氧化钴颗粒,欣喜地发现反应速度大大提高。弗雷表示,使用氧化钴纳米“团簇”(多个纳米束组成的团状结构)做催化剂的反应速度是毫米团簇的1600倍,每个团簇每秒约能裂解1140个水分子,反应功率(指每秒吸收的能量)与地面附近的太阳辐射能相当,约为每平方米1000瓦。编辑本段人造光合作用-前景虽然找到了理想的催化剂,但研究人员表示,这可能是偶然之中的意外收获,还有很多问题有待解决,解决这些问题将有利于进一步提高催化效率。 研究人员使用较普遍的介孔矽(中间有孔洞的二氧化硅晶体)作为氧化钴载体,通过一种“湿性注入”的技术将纳米束植入其中。最理想的情况是直径约为8纳米、长50纳米的团簇,团簇中的纳米管互相连接,弯曲成直径约35纳米的球体。但当使用其他形状的纳米团簇时,催化效率就又大大降低。弗雷猜测说,纳米团簇的形状可能对催化反应起决定作用。目前,弗雷与焦锋正在进行进一步实验,试图探明其中的机理。 弗雷与焦锋的研究成果无疑给人工光合作用打了一针强心剂。因为在这之前,主要研究重点放在催化反应过程上,高效催化剂一直未能找到。弗雷表示,无论从催化剂的易得性、纳米团簇的稳定性、反应中所加的电压,还是酸碱度、温度方面来说,氧化钴的催化效率已同“光合体系Ⅱ”相当。研究人员的下一个任务是,建立一个切实可行的太阳能能量转换系统,将反应产生的氢气以无污染的方式转化成能量。 尽管取得了重大进展,但研究人员并不认为绿色能源近在眼前。“每日科学”的文章分析说,目前人工光合作用面临着三大难题:如何捕捉太阳能;如何以电子的形式将太阳能转运到反应中心;如何在光合作用的循环过程中补充电子。其中前两个难题已经基本得到了解决,但至今还不知道如何解决第三个难题。要解决这个问题最好的办法就是,彻底弄清光合作用的反应机理。 光合作用的基本过程是在叶绿体内进行的。叶绿体吸收光子,并传导给叶绿素,使它释放出高能电子,用于将二氧化碳还原为糖。叶绿素分子每丢失1个电子,催化核心就会从水分子中抽取1个电子为其补充。这样,经过4轮电子转移,两个水分子转化为1个氧气分子、4个电子和4个氢离子,然后重新开始新一轮的循环。但在人工过程中很难实现电子补充,研究人员希望,在循环过程中将这一难题尽快攻破,到时人类就能像植物一样,将太阳光转化为可以利用的能量。

植物光合作用的多样性光合作用既是生物学中最古老的问题,也是当前生物学的前沿之一,因为它不仅在农业,能源,生态等问题中具有重大实际意义,而且在生命起源,进化与光能转换等生物学基本理论问题中也很重要。但自1771年Priestley发现光合作用以来,光合作用的原初过程仍不很清楚,而对光合作用碳素同化的化学过程却有了比较清楚的认识和了解。总的来讲,绿色植物(尤其是高等植物)在不同自然环境中不仅表现广泛的适应性,而且表现光合作用方式的多样性。1.光合作用的多种途径据目前所知,所有绿色植物光合作用的原初反应(包括光物理和光化学)都是通过捕获光能产生ATP和NADPH(即同化力),但随后发生的CO2固定还原过程则存在着较大的种间差异。研究表明,所有绿色植物都具有一种最基本的光合碳代谢方式,即著名的卡尔文循环(因其发现者M.calvin而得名)或光合碳还原循环,亦称C3途径或C3方式。该途径的生化过程十分复杂,在此不予赘述。由于有的植物同时具有多种光合方式,通常称只利用这一方式的植物为C3植物。这类植物主要分布在温带地区,其同化CO2的最适日温是15-25℃。光合作用的另两种变异途径是C4途径和景天科酸代谢(CAM)途径。具有C4途径的植物通常生长在热带地区,其同化CO2的最适温度是25-35℃,光合效率显著提高,称为C4植物;具有CAM途径的植物通常生长在干燥的沙漠地区,且白天进行光反应,晚上固定CO2合成有机酸,使有机酸含量表现明显的日变化,称为CAM植物。这两类植物与C3植物在叶片解剖结构及某些生理特性方面均有显著差异。此外,C4植物的光合作用还有三种变式,即PEP-CK型C4植物,NAD-ME型C4植物和NADP-ME型C4植物,这三类C4植物都具有相似的叶片解剖结构,即花环状维管束和具叶绿体的维管束鞘,其主要差别是产生的中间产物和脱羧酶不同。PEP-CK型C4植物在叶肉细胞内固定CO2形成草酰乙酸,然后转变为天冬氨酸传导至维管束鞘细胞,经丙酮酸磷酸双羧酶脱羧,其碳架以丙酮酸或丙氨酸重新返回到叶肉细胞;NAD-ME型C4植物在叶肉细胞中固定CO2形成天冬氨酸并传导至维管束鞘细胞,然后转化为苹果酸.并在线粒体内脱羧,其碳架再以丙酮酸或丙氨酸转回到叶肉细胞;NADP-ME型C4植物在叶肉细胞固定CO2形成草酰乙酸,而后转化为苹果酸,并被输送到维管束鞘细胞中,在叶绿体内经苹果酸脱羧酶氧化脱羧,产生的碳架以丙氨酸重新返回叶肉细胞。以上三类C4植物在维管束鞘细胞内脱羧后,产生的CO2最终还是通过C3途径被还原,C4途径实际上只起“CO2泵”的作用,以增加反应位置CO2的浓度,从而显著提高光合效率。2.不同光合途径的判定叶片的解剖学特征通常可用来区分C3,C4和CAM植物,但由于光合作用主要是生化反应过程,因此时有例外发生。鉴于此,目前已发明了数种用以区分植物不同光合类型的其他方法,如δ13C(13C/12C同位素比),光呼吸,光照后CO2的猝发以及相对光合效率等,其中以δ13C的测定最为可靠。δ13C是近来发展起来的一种新的检测技术,主要依据是C3途径中的 RuBP羧化酶比C4途径中的PEP羧化酶对13CO2具有更大的排斥性,即在13CO2和12CO2中C4植物比C3植物更易消耗13CO2,因此,C4植物有机质中的13C/12C要比C3植物有机质中的13C/12C更大。13CO2和12CO2含量的测定是以国际标样(即普通石灰岩CaCO3)为对照,通过焚烧干燥的植物材料测定的。最后根据下式计算出δ13C(‰)值,即:从上式可以看出,如果在光合作用的碳固定期间13C/12C没有变化,δ13C(‰)将等于零;如果对13CO2有排斥,δ13C(‰)将是一个负数,排斥能力愈大,δ13C(‰)负值也越大。实验证明,在25℃和pH8.5条件下,PEP羧化酶的δ13C(‰)是-3‰,而在24℃和pH8.2条件下,RuBP羧化酶的δ13C(‰)是-33.1%,这清楚地表明,RuBP羧化酶对13CO2具有比PEP羧化酶更大的排斥性。当温度升高(37℃,pH8.2)时,RuBP羧化酶的δ13C(‰)显著变负的程度要小一些(-18.3‰),这与C3植物光合作用的最适温度偏低(15-25℃)相一致。应用此法目前已测得C3植物的δ13C(‰)在-23到-34‰之间,C4植物的δ13C(‰)在-10到一18‰之间,并据此发现了一些δ13C(‰)居于C3植物与C4植物之间的C3/C4中间类型植物。对于CAM植物来说,得到的δ13C(‰)在-14到-33%之间,显然较低的值落在C4植物的δ13C(‰)范围内,而较高的值则落在C3植物的δ13C(‰)范围内。对此种情况的解释是,许多CAM植物在变化着的环境条件中,能够从光合作用的C3方式转变到CAM,反之亦然。从上新世到二叠纪的代表性化石植物材料中得到的δ13C(0/00),都在现代典型的C3植物范围内,并且目前古老植物中也很少发现有CAM植物存在,这表明植物自来到陆上以来,C3途径就作为一个固定空气中CO2的主要方式进行着。而C4途径和CAM途径似乎比C3途径进化较晚,是C3途径对环境变化的一种适应性反应。3 光合作用多样性与植物系统演化的关系在当今纷繁众多的植物世界中,要理出一条清晰合理的植物系统演化线索是很困难的。除了传统的研究手段外,唯一可凭藉的有说服力的证据是埋在不同地层中的植物化石材料。目前普遍认为,太古代和元古代是细菌,蓝藻繁生的单细胞生物时代;右碳纪是羊齿植物隆盛的时代,三叠纪和侏罗纪为裸子植物时代;被子植物的出现则更要晚得多。显然,在不向地质时代中植物进化的等级是显而易见的。植物的系统演化无不伴随着一系列生理结构和代谢机能的重大改变和调整,其中一个重要的变化就是光合作用的多样性反应。光合细菌和蓝藻可谓最低等的光合生物,其光合结构和光合方式较之高等植物要原始简单得多。就光合碳代谢而言,C3途径最早是在单细胞真核绿藻中发现的,后来被证明是光合生物中碳转化的普遍过程,但同时发现包括现代海藻在内的许多绿色植物还存在其他光合途径,如目前人所供知的C4,CAM等。单子叶禾本科被认为是进化程度很高的被子植物类群,其适应性特强,分布极广是众所周知的。研究表明,该科差不多存在几乎所有的光合作用类型,并且公认较原始的竹亚科只有C3型,而进化较高级的虎耳草亚科和须芒草亚科等均为C4型,有些亚科如芦竹亚科等既有C3型,又有C4型。因此,在这种“高级进化科”中研究光合作用的多样性及其进化关系是很有代表意义的。4 结束语据有关地质资料,地球自形成以来,在漫长的演变过程中,地质地层结构已发生了多次剧烈的变化。不难想象,定居于各个地质时代的绿色植物也会发生相应的代谢改变与适应。Hallersley和Watson(1992)曾分析不同光合作用途径与过去气候变化的关系。由于现代工业文明的发展与进步,大气中的CO2浓度的持续增加已达一个世纪之久,全球气温升高也成为一种必然趋势,面临种种变化,尤其是CO2和温度这两个影响光合作用的重要因素的改变,绿色植物的光合代谢将作出怎样的响应?对这一问题的探讨和回答无疑是很有意义的,不仅在理论上对生理学工作者将有所启示,并可能对现代农业的增收提供有益的指导。

植物光合作用的多样性光合作用既是生物学中最古老的问题,也是当前生物学的前沿之一,因为它不仅在农业,能源,生态等问题中具有重大实际意义,而且在生命起源,进化与光能转换等生物学基本理论问题中也很重要。但自1771年Priestley发现光合作用以来,光合作用的原初过程仍不很清楚,而对光合作用碳素同化的化学过程却有了比较清楚的认识和了解。总的来讲,绿色植物(尤其是高等植物)在不同自然环境中不仅表现广泛的适应性,而且表现光合作用方式的多样性。1.光合作用的多种途径据目前所知,所有绿色植物光合作用的原初反应(包括光物理和光化学)都是通过捕获光能产生ATP和NADPH(即同化力),但随后发生的CO2固定还原过程则存在着较大的种间差异。研究表明,所有绿色植物都具有一种最基本的光合碳代谢方式,即著名的卡尔文循环(因其发现者M.calvin而得名)或光合碳还原循环,亦称C3途径或C3方式。该途径的生化过程十分复杂,在此不予赘述。由于有的植物同时具有多种光合方式,通常称只利用这一方式的植物为C3植物。这类植物主要分布在温带地区,其同化CO2的最适日温是15-25℃。光合作用的另两种变异途径是C4途径和景天科酸代谢(CAM)途径。具有C4途径的植物通常生长在热带地区,其同化CO2的最适温度是25-35℃,光合效率显著提高,称为C4植物;具有CAM途径的植物通常生长在干燥的沙漠地区,且白天进行光反应,晚上固定CO2合成有机酸,使有机酸含量表现明显的日变化,称为CAM植物。这两类植物与C3植物在叶片解剖结构及某些生理特性方面均有显著差异。2.不同光合途径的判定叶片的解剖学特征通常可用来区分C3,C4和CAM植物,但由于光合作用主要是生化反应过程,因此时有例外发生。鉴于此,目前已发明了数种用以区分植物不同光合类型的其他方法,如δ13C(13C/12C同位素比),光呼吸,光照后CO2的猝发以及相对光合效率等,其中以δ13C的测定最为可靠。3 光合作用多样性与植物系统演化的关系在当今纷繁众多的植物世界中,要理出一条清晰合理的植物系统演化线索是很困难的。除了传统的研究手段外,唯一可凭藉的有说服力的证据是埋在不同地层中的植物化石材料。目前普遍认为,太古代和元古代是细菌,蓝藻繁生的单细胞生物时代;右碳纪是羊齿植物隆盛的时代,三叠纪和侏罗纪为裸子植物时代;被子植物的出现则更要晚得多。显然,在不向地质时代中植物进化的等级是显而易见的。植物的系统演化无不伴随着一系列生理结构和代谢机能的重大改变和调整,其中一个重要的变化就是光合作用的多样性反应。光合细菌和蓝藻可谓最低等的光合生物,其光合结构和光合方式较之高等植物要原始简单得多。就光合碳代谢而言,C3途径最早是在单细胞真核绿藻中发现的,后来被证明是光合生物中碳转化的普遍过程,但同时发现包括现代海藻在内的许多绿色植物还存在其他光合途径,如目前人所供知的C4,CAM等。4 结束语据有关地质资料,地球自形成以来,在漫长的演变过程中,地质地层结构已发生了多次剧烈的变化。不难想象,定居于各个地质时代的绿色植物也会发生相应的代谢改变与适应。Hallersley和Watson(1992)曾分析不同光合作用途径与过去气候变化的关系。由于现代工业文明的发展与进步,大气中的CO2浓度的持续增加已达一个世纪之久,全球气温升高也成为一种必然趋势,面临种种变化,尤其是CO2和温度这两个影响光合作用的重要因素的改变,绿色植物的光合代谢将作出怎样的响应?对这一问题的探讨和回答无疑是很有意义的,不仅在理论上对生理学工作者将有所启示,并可能对现代农业的增收提供有益的指导。请采纳,谢谢=-=

聚合物水泥砂浆研究现状论文

您对聚合物水泥防水砂浆的特点和聚合物水泥防水砂浆施工工艺感兴趣吗?为了能让我们更加方便的学习这些知识,我们针对这些问题进行了总结,希望您喜欢。

【聚合物水泥防水砂浆的特点】

聚合物水泥防水砂浆是采用先进技术生产的新一代环保型产品,是一种经聚合物防水砂浆是由聚合物防水乳液、特种胶凝材料、优质骨料按特殊工艺混合而成的水泥基复合材料,作为刚柔结合的新型无机防水材料,一般情况下具有低养护的效果,它的背水面都具有高抗渗水性以及耐得住温度变化。故此拥有可桥接结构层的轻微裂缝以及可直接粘贴瓷砖等优点。

另外它的适用范围也特别广泛,除了可以供厨卫防水以外还能够用于建筑物外墙面、阳台、屋面、窗口周边、穿墙管道、地面、港口、码头、路桥、水池、水塔及民用建筑等各种所需砂浆防水工程。

聚合物水泥防水砂浆是一种刚柔结合的新型无机防水材料,具有一定的柔韧性和高抗渗水性。与传统的防水材料和卷材等相比,

在聚合物水泥防水砂浆的施工上当施工的基面不平整时,要用水泥砂浆抹平,在潮湿基面(无水痕)上可以直接施工。将防水粘合剂加水调成糊状后,用泥板粉涂在墙面上,需要分为三次进行,每次间隔时间约5小时左右,在总厚度一定不要小于4—5mm。在夏天施工时要注意在干燥墙面施工前应浇水湿润,等到水渍干固后才可做其他覆盖层。施工完以后的养护时间应不小于14小时。

【聚合物水泥防水砂浆施工简介】

A、在处理好的基层表面上涂刷一遍水泥净浆提高与基面的粘结力;

B、待水泥净浆不粘手后,即可将拌和好的聚合物水泥砂浆均匀地刮抹 在基层表面上,并用抹子压平抹光,厚度一般为外墙:3-5mm;地 下室、水池:5-8mm;

C、聚合物水泥砂浆需分层施工:待第一层聚合物水泥砂浆初凝后, 再抹第二层聚合物水泥砂浆,直至需要厚度(初凝4小时、终凝8小时);

D、施工24小时后需进行湿养护,养护时间视气温条件不同而不同, 常温下以3—5天为宜;

E、粘贴饰面材料时,在基层表面和装饰材料的粘贴面分别均匀涂抹一 遍“水泥、净浆”或“防水砂浆”,

通过对以上知识的了解,您觉得还有哪些问题值得我们关注呢?希望通过这些知识,能让您对聚合物水泥防水砂浆的相关知识更加了解。

在家庭装修中建材的选择是需要付出心力的,尤其是基础工程的建材,这关系到整个工程的品质,聚合物水泥砂浆的选择就是这样的,那么,聚合物水泥砂浆怎么样,如何选,选择之后如何养护?

一、聚合物水泥砂浆怎么样

1、聚合物水泥砂浆简介

聚合物水泥砂浆是由水泥、骨料和可以分散在水中的有机聚合物搅拌而成的。聚合物可以是有一种单体聚合而成的均聚物,也可以由两种或更多的单聚体聚合而成的共聚物。聚合物必须在环境条件下成膜覆盖在水泥颗粒子上,并使水泥机体与骨料形成强有力的粘接。聚合物网路必须具有阻止微裂缝发生的能力,而且能阻止裂缝的扩展。

2、聚合物水泥砂浆适用范围

建筑结构混凝土加固,人防设施防水堵漏

水库大坝、港口防渗处理

热水池、垃圾填埋场、化工仓库、化工槽等防化学品腐蚀建筑

路面、桥面、隧道、涵洞混凝土修补

工业和民用建筑屋面、卫生间、地下室防渗漏处理

钢结构和钢筋砼防水

3、聚合物水泥砂浆产品特点

防水抗渗效果好

粘结强度高,能与结构形成一体

抗腐蚀能力强,

耐高湿、耐老化、抗冻性好

产品水性无毒,符合环保要求

二、聚合物水泥砂浆现状

目前国内聚合物水泥砂浆有两种:

1、是厂家配好的成品砂浆,分单组分(干粉)和双组分(粉料+乳液)两种。

这两种使用效果都很好,但缺点是使用成本非常高,特别是后者双组分类,薄薄几毫米厚度,平方材料成本都高达十几元;因此使用范围受到很大的限制。

2、是外加剂形式,国内一直使用的是乳液型的聚合物水泥砂浆改性剂,使用方法是,施工现场按配合比(一般是重量比,乳液:水泥:沙=1:2:4)与水泥沙混合搅拌后使用,通过改性后得到高性能的聚合物水泥砂浆,使用效果非常好,但相对成本比双组分类低些,但乳液用量达到了水泥的一半,5毫米施工厚度计算,平方材料成本也将达到10元以上。

聚合物水泥砂浆适用于高层、多层、中高层等建筑物,

三、聚合物水泥砂浆养护

1、重铺地砖要做地面防水。如果需要更换卫生间原有地砖,

2、一定要做墙面防水。卫生间洗浴时水会溅到邻近的墙上,如没有防水层的保护,长期以往隔壁墙和对顶角墙易潮湿发生霉变。所以一定要在铺墙面瓷砖之前,做好墙面防水。一般防水处理中墙面要做80厘米高的防水处理,但是非承重的轻体墙,就要将整面墙做防水,至少也要做到1。8米高。

3、尽量不要破坏原有防水层。在新交付使用的楼房中,卫生间、浴室和厨房的地面都有按照相关规范做的防水层,

4、做完防水,用24小时“闭水试验”验收防水。在防水工程做完后,封好门口及下水口,在卫生间地面蓄满水达到一定液面高度,并做上记号,24小时内液面若无明显下降,特别楼下住家的房顶没有发生渗漏,防水就做合格了。如验收不合格,防水工程必须整体重做后,重新进行验收。

以上对聚合物水泥砂浆做了详细说明,我们对聚合物水泥砂浆这种建筑材料有了认识上的深入,在进行装修时对聚合物水泥砂浆的挑选有了一些经验,以及以后的养护也有了一些方法可以遵循。

以上对聚合物水泥砂浆做了详细说明,我们对聚合物水泥砂浆这种建筑材料有了认识上的深入,在进行装修时对聚合物水泥砂浆的挑选有了一些经验,以及以后的养护也有了一些方法可以遵循。

运输合理化国外研究现状论文

。 我也刚好需要。谢谢亲,发我下。

你为什么不网上自己找呢,信息来的快,来的多,来的准确些。

您好, 已经发到您指定邮箱,请注意查收。仅供参考,请自借鉴希望对您有帮助

国外在该方向的研究现状及分析1997年,世界经合组织(OECD)在欧共体、北美自由贸易区和亚太地区分别成立了三个多边合作物流研究小组。其主要任务是研究本地区物流的现状和特征,把握观代物流的发展趋势,描述在全球经济和区域经济联盟的基础上建立全球物流网络的构想,为本地区各个国家制定物流政策提供决策依据。亚太地区的多边合作物流研究小组最初由国际经合组织的成员体的代表参加,1998年起吸收了中国、马来西亚、菲律宾、印度等非国际经合组织的成员体的代表参加。国外学者对国际物流研究的热点主要表现在对环境问题和绿色物流的研究,以及信息技术和智能化运输系统对全球物流产生的影响。许多国家对环境问题给予高度的重视,而伴随着环境问题的提出,绿色物流的发展成为当务之急。此外,通过物流信息化和智能化管理,可实现资源的优化配置,使信息产业的现代憧憬完全落地,使高效的电子商务从可能变成现实。供应链管理的崛起,正在改写当今世界的商业运作方式,物流及相关行业正面临着历史性的商业机会。经济全球化、网络化、专业化的发展趋势,把所有企业都变成为“全球制造、全球销售”这个庞大网络上的一个个节点。我国在该方向的研究现状及分析自70年代末80年代初,由日本引入物流概念之后,我国开始了对物流的研究。经过二十多年的发展,物流已成为我国经济发展的重要因素,并成为企业创造利润的源泉。90年代以来,中国对外贸易一直呈现高速增长态势,平均每年增长速度达13.4%,并由此带动了国际物流的快速增长。总的来看,物流现代化是和经济发展水准密切相关的,预计在今后相当长的时期内中国的经济将保持稳定快速增长,和世界经济接轨的趋势也将加强,这是物流事业发展的大环境。但是,随着经济全球化的加强和世界经济环境日新月异的变化,国际物流的发展面临着许多的机遇和挑战,而且其本身也存在着一系列问题。对此,我国学者在结合分析当前物流业所面临的环境下,努力研究国际物流在发展阶段中尚存在的问题,主要是物流效率低、物流成本制约、物流基础设施尙待完善、物流法律监管存在缺陷、物流装备技术水平低、国际物流专业人才匮乏、第三方物流市场需求不足,服务水平不足、物流业管理体制和机制方面的障碍等。希望在研究的基础上,提出切实可行的意见和建议,以此来击破我国国际物流发展中的一个个瓶颈,使国际物流成为我国国际贸易中强有力的动脉,加大迈向贸易强国的步伐。

  • 索引序列
  • 醌类化合物研究现状论文
  • 硒及其化合物研究现状论文
  • 光合作用合成生物学研究现状论文
  • 聚合物水泥砂浆研究现状论文
  • 运输合理化国外研究现状论文
  • 返回顶部