首页 > 期刊投稿知识库 > 理论力学论文2000字

理论力学论文2000字

发布时间:

理论力学论文2000字

双峰二中创建八十年,培养人才三万余人。在教育、科技、军政、工农、艺术各界出现了众多有成就的人物。据1996年建校七十周年时的不完全统计:教育战线大学的正副教授、中学的特级教师,科技战线高级工程师以上,军政界地师级以上,工农战线的企业家、养殖家以及艺术、技能方面有突出成就或有著作问世者,总数在五百人以上。以下仅为部分之简单介绍。 (转自《双峰二中七十周年校庆纪念册》) 欧阳崇一 又名欧阳祜,青树坪人,起陆高小一班毕业。湖南和平解放前夕,任国min党第一兵团司令部第四处上校处长,主管后勤业务。积极趋向弃暗投明,抗拒执行白崇禧对长沙的破坏命令,促使司令员陈明仁和平起义。和平解放后,任兵团军需处长、省政府参事、省政协委员等职。他对母校感情甚深,曾来信说:“我1949年能走向光明,是与母校的教育分不开的,堪可告慰。” 匡燕鸣 双峰人,起陆高小四班毕业。1960年及1979年两次回校任党支书、校长。工作刻苦实干,文化大革命后拨乱反正,恢复学校元气,备著辛劳。荣膺全国教育战线劳动模范称号。后调任双峰一中党支书、校长。 戴鸿仪 青树坪人,起陆高小十一班毕业。四十年代曾回起陆初中任教,是有名数理老师。中国矿业大学北京研究生部教授,其与人合作发明的“矿用强力运输带横向断裂预报装置”获国家专利。享受国家特殊津贴。 欧阳谦叔 又名欧阳熙,青树坪人,起陆高小十六班毕业。曾任湖北歌剧团编剧、作曲。是著名歌剧《洪湖赤卫队》的主要作曲者。国家一级作曲家。其论文《歌剧探索三十年》曾发表于北京《音乐理论》杂志及《中国歌剧艺术文集》。1990年,他与爱人一同回到母校与师生们联欢,后又为母校校歌作曲。 欧阳骅 青树坪人,起陆初中十二班毕业。空军航空医学研究所研究员、教授、硕士和博士论文评审委员。编写了《中国航空百科词典》、《中国医学检验全书》及论文40余篇。所发明“管式液冷防暑降温背心”获国家专利。对母校怀有深厚感情,为庆祝母校七十周年校庆与爱人曾月英捐出多年积蓄设希望奖,要求奖励家庭困难而品学兼优的学生,以报答国家和母校对他们的培育之恩。 王文介 双峰县花门镇人,起陆初中十三班毕业。中国科学院南海海洋研究员、国际海洋研究委员会中国工作组委员、硕士研究生导师、国家特殊津贴获得者。获得过中国科学院科技进步二等奖,广东省科技进步特等奖、国家海洋局科技成果三等奖。主持和参与专门著作16本。有论文和译文60余篇在国内有关学报刊物发表。 曾月英(女) 青树坪人,起陆初中十五班毕业。1956年考入空军第二飞行学院,毕业后,分配空军专机师任飞行员,担任过中央首长专机机长。1987年被授予空军上校,一级飞行员。其机组获“英雄机组”称号,个人曾荣立二等功一次,三等功二次。三十年飞行近五千个小时,行程达200万公里,飞过四十多次专机,参加过常年的战备值班,执行过临时的抢险救灾,均安全而出色地完成了任务。 王影 原名李醒辰,永丰镇人,二中初五班毕业。1963年大学毕业后分配在林业部湖南农林工业设计研究院工作,并任该院副总工程师。他主持、设计的工程,多次获部、省奖励及先进称号。由于他的突出贡献,1993年起,享受政府特殊津贴。系民盟湖南省委副主委,第六届省政协委员,省八届人大常委。 李希特 双峰人,二中初十五班毕业。现为县文化局干部,中国剪纸学会会员、农工民主党县委常委、政协双峰常委。1995年,联合国教科文组织和中国民间文艺家协会联合授予他“民间工艺美术家”称号。有作品百余幅在报刊发表,并多次在展出中获奖。其《凤朝阳》《凤凰戏牡丹》经选送日本、瑞典展出。其三分钟人像剪影,以快、准、美受到中外好评,誉为“湘中一绝”。 欧阳梦轲 青树坪人,二中初二十一班毕业。1985年临池学书,兼学装裱。1988年获全省农民书法大奖赛三等奖,1990年获全省国土杯书法大赛二等奖,1993年获国际和平杯书法赛三等奖。其作品编入《中国国际艺术大观》。《人民日报》及《人事与人才》报道了其自学成才的事迹。 王振华 青树坪人,二中高一、二班毕业。乘改革开放东风,在农村发展养殖事业。全国养猪协会副理事长、湖南省动物人参系列产品开发公司总经理。荣获全国农村科普工作先进个人、全国科技致富能手、湖南省优秀科技工作者等称号。 谢和平 双峰县甘棠镇人,二中高三十一班毕业。现任四川大学校长、教授、博士生导师。中国科学院国际材料物理中心成员。他在岩石损伤力学和分形几何结合方面取得了开创性的成果,从而推动岩石力学的发展,他的学术成果在国内外产生了较大的影响。1992年被评为中国青年科学家。被聘至美、英、波兰、德国各大学讲学。共发表论文40余篇,英文著作3部,中文著作2部。

物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维的自然学科。在现代,物理学已经成为自然学科中最基础的学科之一。 远古时代,燧人钻木取火,其基本原理正是摩擦生热原理,在热量积蓄到一定程度时就可以使木头与氧气发生剧烈反应产生火焰;在现代,人们利用电磁炉加热食物,其基本原理是电磁感应原理,利用形成涡流产生的热量为火锅供热;在力一定的条件下,接触面积越小,也强就越大,于是,人们使用锋利的刀切割物品;利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全;根据液体压强的特点,液体压强与液体的深度成正比,所以大坝总是设计成下宽上窄的梯形;利用地球引力提供向心力,从而使人造卫星在地球上空做圆周运动;利用气流喷出时产生强大的冲量,从而完成火箭的发射……纵观人类发展历程,物理学始终贯穿着人类文明史。小到个人生活的衣食住行,大到一个国家的科技国防事业,物理学已经渗透到社会生活的方方面面。 十七世纪,牛顿在《自然哲学的数学原理》中提出了三大经典力学基本运动定律。牛顿三大定律的提出,向人们阐明了运动与力的关系,为牛顿经典力学奠定了基础,并在物理领域有着不可磨灭的地位,至今仍是人们解决宏观低速运动问题的首选方法。 让我们先来看一道与生活密切相关的高中物理题:一辆轿车违章行驶,以108km/h的速度驶入左侧逆行车道时,发现前方80米出有一两卡车正以72km/h的速度迎面驶来。两车司机同时刹车,刹车加速度都是20m/s2。两车司机的反应时间(即司机发现险情到实施刹车所经历的时间)都为△T。请△T为多少是,才能保证两车不相撞? 且不考虑这道题的答案,我们来分析一下这其中的物理过程。 首先,轿车在道路上行驶。由于路面是粗糙的,车轮表面与地面有弹力作用且产生了相对运动,所以车轮与路面之间产生了滑动摩擦力f,方向与运动方向相反。 牛顿在《自然哲学中的数学原理》一书中写道:“每个物体继续保持静止或延一直线做匀速运动的状态,除非有力加于其上迫使它改变这种状态。”这便是牛顿第一定理,也称为“惯性定律”。运动并不需要力去维持,只有当物体的运动状态(速度)发生变化,即产生加速度是,才需要力的作用。物体所以能保持静止火匀速直线运动,物体所以能保持静止或匀速直线运动,实在不受力的条件下,由物体本身的特性来巨鼎的。它阐明了力不是维系物体运动状态的原因,而是改变物体运动状态的原因。 行驶的轿车“以108km/h的速度驶入……”,说明轿车在进行匀速直线运动。由牛顿第一定律可推知,因为汽车的速度没有改变,即加速度为零,所以此时汽车所受到的和外力必定为零。那么轿车如何在收到滑动摩擦力的情况下受合力为零呢?如图1所示,根据二力平衡的条件可推知,轿车此时必定还受到一个外力F,与摩擦力f大小相等,方向相反。这个力便是牵引力。 由于车辆在行驶过程中会一直受到滑动摩擦力的作用,要使车辆一直保持运动状态,便要始终启动发动机,令发动机施与车辆牵引力。 在汽车匀速行驶的过程中,正是利用了牛顿第一定律的原理,使汽车在不受和外力的情况下,加速度为零,从而没有改变汽车的运动状态,即速度。 想让两车不相撞,便要让两车停止行驶。由直线运动的规律可知,Vt=V0+at。欲使车辆减速,必使之具有与运动方向反响的加速度。让我们再来看看两车的制动过程。 牛顿在牛顿第二定律中阐述道:物体在受外力作用时,它所获得的加速度与外力的大小成正比,并与物体的质量成反比,即a∝F/m。写成等式,有F=km。在使用国际单位制的情况下,便有F=ma。 汽车制动后,如图2所示,牵引力突然消失,汽车只受到滑动摩擦力f,方向与运动方向相反。根据牛二定律,在此情况下,汽车的加速度为a=f/m,其中m为汽车质量。根据直线运动的规律,易得汽车停下的时间为T=|V0/a|。其运动过程V-T图像如图3中a曲线所示。 在实际的情况中,汽车制动后与地面之间并不一直是滑动摩擦力,而是先经历极短暂的相对静止过程。在此短暂的相对静止过程中,车轮与地面有相对运动的趋势,于是存在静摩擦力。静摩擦力逐渐增大,达到最大静摩擦力时,车轮与地面之间开始相对滑动。 怎样才能使刹车的效果达到最佳呢? 由于最大静摩擦力总是略大于滑动摩擦力,则最大静摩擦力下的加速度a静静静静====f静/m>f/m。其运动过程V-T图像如图3中b曲线所示。由图像可知,汽车静止下来所需的时间T’

3000字?你还是多找点资料抄吧!

拉门滑动受阻的启示

大学物理论文2000字热力学

摘 要:关于刚体平面平行运动的解题方法可以从多方面去考虑,从而求得所需求的物理量。关键词:无滑滚动、质量、半径、粗糙斜面下面让我们来看一道例题。 一质量为m,半径为R的均匀圆柱体,沿倾角为α的粗糙斜面自静止无滑滚(如图),求质心,加速度ac法一:用平面平行运动动力学方程考虑斜面方向的运动,用f代表静摩擦力,据质心运动定理,有mgsinα-f=mac 对于质心重力的力矩等于0,只有摩擦力的力矩,从而fR=Icβ=1/2Mr2刚体上的P点同时参与两种运动:随圆柱体以质心速度vc 平动,和以线速度Rω绕质心转动。无滑动意味着圆柱体与斜面的接触点P的瞬时速度为0,由此得Vc=Rω上式两边分别为对时间求导得d/dt·Vc=Rd/dtω所以有aC=Rβ③由①②③推出法二:如图,通过该圆柱体对定点A的角动量定理,因为静摩擦力f对定点A的力矩为零,所以有LA=3/2mVcR=3/2R2ω只有重力沿斜面的分力的力矩,设为τAτA=msinα*R据角动量定理有dLA/dt=τA即(3/2)mR2β=(3/2)mRac=mgsinα*R 所以有ac=(2/3)gsinα法三:用动能定理解题设圆柱体沿斜面滚过的距离为s时的速度为vc 由于是无滑滚动,既是纯滚动Vc=Rω 所以有ω=Vc/R圆柱体的滚动后获得的总动能为T则T=Tc+Trc=(1/2)mVc2+(1/2)Icω2=(1/2)mVc2+(1/4)m(Rω)2=(3/4)mVc又由于初动能为0据动能定理有T-0=mgsinα*s (3/4)mVc2=mgs*sin α上式两边分别为时间t求导,得3mVc2/4dt=mgsinα*ds/dt所以有(3/2)ac=gsinα 所以 ac=(2/3)gsinα通过对上题的解答,我们运用到了力学中的刚体力学,角动量定理,动能定理等。所以要想学好力学就得善于发散思维!参考文献:①赵凯华、罗茵 新概念物理教程 高等教育出版社 03.7②卢新平 简明普通物理学 2006.8.30

主要是热效率的问题,就是必须高温高压,然后论述为什么一定要高温高压,依据是热力学第二定律里的yong和shang的问题。

这热力学第一定律及思考摘要:简要介绍热力学第一定律并从微观的角度来阐述热力学第一定律的意义。关键字:热力学第一定律、内能、热量、功正文:热力学第一定律:也叫能量不灭原理,就是能量守恒定律。热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量互相转换,在传递和转换过程中,能量的总值不变。表征热力学系统能量是内能。通过做功和热传递,系统与外界交换能量,使内能有所变化,根据普通的能量守恒定律,系统有出状态经过任意过程达到终态2后,内能的增量E应等于在此过程中外界对系统传递的热量Q和系统对外界做功W之差,即E2-E1=E=Q-W或Q=E+W这就是热力学第一定律的表达式。如果除做功和热传递额外,还有因物质从外界进入系统而带入的能量Z,则应为U=Q-A+Z。当然上述

大学物理热力学论文2000字

卡诺循环 这个好写点 内容也多 容易找啊

题目:作者:摘要:关键字:引言:正文:总结:

物理学给人类提供了大量的物质财富,同时也提供了精神财富。物理学的高技术和强渗透性也使之成为社会发展的重要推动力。下面是我为大家整理的物理学论文,供大家参考。

摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.

关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

1引言

物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照教育部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程报告论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.

2物理学是科技创新的源泉

且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=9.11×10-31kg,电子荷电e=-1.602×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.

1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现笔记本电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为21.4千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.

20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.

1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在0.1-0.2mm;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.

2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(DavidJ.win-land),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].

2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.

3结语

论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.

参考文献:

〔1〕祝之光.物理学[M].北京:高等教育出版社,2012.1-10.

〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,2006.I-V1.

〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.

〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)

〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.

〔6〕姚启钧,光学教程[M].北京;高等教育出版社,2002.138-139.

〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,1979.182-183.

〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,2001.10-11.

一、全息教学在初中物理教学中运用的策略

1.运用全息理论,对初中物理教学课型进行合理选择与搭配

新课改以后,物理课堂教学由传统的讲授内容方面转变到物理的过程方面,其核心是给学生提供机会、创造机会。因此,在物理教学中,教师要善于运用全息教学理论,并根据学生的生活经验和已有的知识背景,对课型合理地选择与搭配,带领学生运用多种方法对物理知识进行重演在现,激励学生发现并提出问题,进而激发学生学习物理的兴趣,培养学生创新和探究能力。例如:在讲静电屏蔽时,首先带领学生对静电屏蔽进行了实验,并得到了正确的结果。突然有一个学生提出问题“:用电吹风吹头时,电吹风其对电视信号有影响,那么是不是静电屏蔽不完全成立?”于是带领学生们又做了如下实验:将一个手机放在一个密闭的纸盒内,用另一部手机呼叫,学生们听到了响声。再让同学思考,如果将手机放在前面做过实验的金属笼内,是否能听到铃声?多数学生根据静电屏蔽原理猜测肯定不能。然而将手机放进铁笼后,仍能听到铃声。学生们都感到疑惑,难道静电平衡理论有误?针对这种现象让大家思考了“静电”二字,然后向学生们解释手机信号是一种电磁波而不是静电,其属一种交变的电磁场,遇到金属网时,金属网会感应出同频率的电磁波,只是强度变小,因此在仍能听到笼中手机铃声,也解释了,也就解释了为什么吹风机对电视信号有影响。这样通过对物理知识重演再现与对比的方式,加深了学生对物理知识的理解,从而提高了教学质量。

2.运用全息理论,根据物理教材和学情选择合适的教学方法

在进行物理教学时,物理教材中的安排的知识点难易程度不同,如果各个知识点都按照相同的教学方法去讲解,容易理解的知识点学生会掌握的相对熟练,而对于相对较难的知识点,就可能会导致学生对其似懂非懂,这样就会不利于学生的学习。这样物理教师在运用全息理论时,不要一味的按照一个教学方法进行讲解要注意对教学方法的改变,使学生能够熟练地掌握知识点。另外,每个学生对于知识点的掌握情况不同,有些学生可能掌握的好一些,有些学生掌握的差一些,因此物理教师要根据学情来选择教学方式,既要照顾那些掌握知识差的同学,也要让掌握较好的同学能够学到更多的知识。例如,在向同学讲解“测量”的知识点时,对与学生来说这个相对知识点相对容易,在日常生活中很容易接触到,因此教师在运用全息教学论时,可以先向学生对所要内容的主旨,主要思路进行讲解,然后对主要知识点进行仔细讲解,经过这样的讲解,学生会很容易对测量知识进行掌握。而在向学生讲解“光学规律”时,学生对其中的规律和容易混淆,如果物理教师还按照讲解“测量”方法向学生进行讲解,学生就很难掌握。因此,教师要改变教学方法,既要向学生进行理论讲解,也要带领学生对个规律进行实验,通过实验加深学生对光学规律的理解,使学生对知识点能够更好地掌握。3.运用全息理论,根据知识内容和特点选择合适的评价方式在物理教学中,物理教师对学生的评价方式非常重要,有的评价方式会激发学生学习物理的知识的兴趣,而有的评价方式可能使学生受到打击,从而失去学习物理的兴趣。因此教师要合理的运用全息理论,并且根据知识内容和特点选择合适的评价方式,激发学生学习物理的兴趣。例如,在课堂上让学生回答问题时,学生回答对了要给与肯定的评价,而如果学生回答错了,要用积极的评价方式去评价,用全息理论去告诉他,其在探讨知识的过程中,没有选择正确的方式方法,让其用正确的方式再去进行探讨,这样既让学生知道了自己了不足,也对学生进行了鼓励学生,这样学生就会乐意去学习,从而大大地提高物理教学质量。

二、结束语

大学物理小论文2000字力学

议论文是由论题,论点,论据,论证诸多要素组成。论题,即作者在文章中提出来要进行论述的问题,或说是论证的对像。论点,又叫论断,它是作者对所论述的问题提出的见解,主张和表示的态度。论据,是指用来说明观点的材料。论证,就是运用论据说明论点的逻辑过程和方法。

物理小论文摘要:物理是一门历史悠久的自然学科。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域; 物理学存在于物理学家的身边;物理学也存在于同学们身边;在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。关键词:物理 渗入 人类生活 各个领域 存在 物理学家 同学们 身边 科学意识 科学学习方法 科学思维方式物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。例如,光是找找汽车中的光学知识就有以下几点:1. 汽车驾驶室外面的观后镜是一个凸镜 利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 2. 汽车头灯里的反射镜是一个凹镜 它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的。 3. 汽车头灯总要装有横竖条纹的玻璃灯罩汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。 4. 轿车上装有茶色玻璃后,行人很难看清车中人的面孔茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔。 5. 除大型客车外,绝大多数汽车的前窗都是倾斜的当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。再如下面一个例子:五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。另外,有些电器元件却是用两种热膨胀性质差别很大的金属制成的。例如,铜片的热膨胀比铁片大,把铜片和铁片钉在一起的双金属片,在同样情况下受热,就会因膨胀程度不同而发生弯曲。利用这一性质制成了许多自动控制装置和仪表。日光灯的“启动器”里就有小巧的双金属片,它随着温度的变化,能够自动屈伸,起到自动开启日光灯的作用。这样的例子举不胜举,物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。谈到物理学,有些同学觉得很难;谈到物理探究,有同学觉得深不可测;谈到物理学家,有同学更是感到他们都不是凡人。诚然,成为物理学家的人的确屈指可数,但只要勤于观察,善于思考,勇于实践,敢于创新,从生活走向物理,你就会发现:其实,物理就在身边。正如马克思说的:“科学就是实验的科学,科学就在于用理性的方法去整理感性材料”。物理不但是我们的一门学科,更重要的,它还是一门科学。物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发明了摆的等时性;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用司空见惯的风筝将“上帝之火”请下凡,由此发明了避雷针;敢于创新的英国科学家亨利•阿察尔去邮局办事。当时身旁有位外地人拿出一大版新邮票,准备裁下一枚贴在信封上,苦于没有小刀。找阿察尔借,阿察尔也没有。这位外地人灵机一动,取下西服领带上的别针,在邮票的四周整整齐齐地刺了一圈小孔,然后,很利落地撕下邮票。外地人走了,却给阿察尔留下了一串深深的思考,并由此发明了邮票打孔机,有齿纹的邮票也随之诞生了;古希腊阿基米德发现阿基米德原理;德国物理学家伦琴发现X射线;……研究身边的琐事并有大成就的物理学家的事例不胜枚举。物理学也存在于同学们身边。学了测量的初步知识,同学们纷纷做起了软尺。有位同学别出心裁,用透明胶把制好的牛皮纸软尺包扎好,这样更牢固。然后,用大大卷泡泡糖的包装盒作为软尺的外壳,在盒的中心利用铁丝做一摇柄中心轴,软尺的末端固定在轴上,这样一个可以收拾并反复使用的卷尺诞生了。同时,这位同学受软尺自作的启示,用实验解决了一道习题:用软尺测量物体长度时,若把软尺拉长些,测量值是偏大还是偏小?他做了这样一个模拟实验:在白纸上画一条直线,标上刻度,然后用透明胶粘贴,再扯下来,便做成了“软尺”,用“软尺”不仅找到了上题的答案,而且还清楚地看到分度值变大了,知其然,并知其所以然;学了电学的有关知识后,同学们对蚯蚓能承受的最大电压进行了探究:当给它加上1.5V的电压时,蚯蚓迅速分泌粘液,且奋力挣扎,从瓶内跳出瓶外。当给它加上3V的电压时,蚯蚓被电为两截;有同学在测量“2.4V、0.5A”的小灯泡的功率,并研究其发光情况时,不满足于给灯泡加上2.4V的电压,而是用自己早已准备好的小灯泡做破坏性实验,不断加大灯泡两端的电压,直至电压高达9V、灯泡灯丝烧断,才停止探究;有同学在学习蒸发的知识时,不厌其烦地座在桌旁观察相同的两滴水(其中一滴水滩开),进行聚精会神地观察,然后进行分析、对比,得出影响蒸发的因素;……同学们捕捉身边的琐事进行探究的事例屡见不鲜。身边的事物是取之不尽的,对与现实生活联系很紧密的物理学科来说,更是时时会用到的,用身边的事例去解释和总结物理规律,学生听起来熟悉,接受起来也就容易了。只要时时留意,经常总结,就会不断发现有利于物理教学的事物,丰富我们的课堂,活跃教学气氛,简化概念和规律。新课标告诉我们“义务教育阶段的物理课程应贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生终身的探索乐趣、良好的思维习惯和初步的科学实践能力。”今天,人类所有的令人惊叹不已的科学技术成就,如克隆羊、因特网、核电站、航空技术等,无不是建立在早年的科学家们对身边琐事进行观察并研究的基础上的。在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。

大学物理(力学)与后续课程(工程力学)教学衔接的研究摘要:大学物理是工科专业学生的一门基础课程,其内容体系所包括的力、热、光、电、原子物理的基本原理贯穿于自然学科的各个领域,并广泛应用于生产技术,是学习和研究其它自然学科和工程技术的基础。其中,力学是大学物理教程的一个重要组成部分,与其后续课程工程力学有着密切的联系。为了能够更好地明确它们之间的关系,本文就大学物理(力学)与后续课程(工程力学)教学衔接的研究这个论题进行了探讨,主要从两个方面展开,首先,对本校开设了大学物理的三个工科专业(信息技术,机械设计,工业工程)学生进行问卷调查,并对部分问卷题目的结果进行了统计分析,结果表明:在不同学院、不同专业中,对大学物理所包括的各部分内容中,与后续课程的关联程度有所不同;大学物理的学习对工科学生后续课程的学习产生重要影响;对于大学物理课程中所包括的,基本知识、基本概念、基本规律等要进行精细的讲解;要重视对学生思考问题、提出问题、分析问题、解决问题的能力培养;加强与学科联系部分的深度、广度的讲解等等。其次,在问卷调查分析的基础上,论述了力学和工程力学在发展、研究方法及研究内容等方面存在的密切联系。论述了加强二者教学衔接的重要性,同时还探讨了加强教学衔接的方法。通过对这两个方面内容的研究,揭示了大学物理与后续课程的紧密联系,以及加强大学物理与后续课程内容衔接的重要性。 追问: 有关于具体知识点的类型论文吗?比如谈谈力学、光学、或者波之类的……

世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页 资料来源:

大学物理量子力学论文2000字

先引入一个生活中的例子,然后就此展开讨论力与运动的各种关系,后总接一下。

物理学家,是指探索、研究世界的组成与运行规律的科学家。这是我为大家整理的关于物理学家学术论文,仅供参考!

对物理学家失误的解读

摘 要:通过在物理教学中客观介绍物理学家的失误,从而正确认识科学发展的曲折和科学家付出劳动的艰辛,并在实际探究的过程中体验物理学家研究问题的方法,发展科学探究所必需的创新思维,从而提高学生科学探究的能力。

关键词:失误;科学探究;创新思维

中图分类号:G420 文献标识码:A

文章编号:1992-7711(2012)10-081-1

在物理教学中,我们更多地介绍了物理学家成功的、正确的一面,而往往忽略了他们的失误。在物理教学中客观介绍物理学家的失误,通过对他们在特定历史条件下酿成失误原因的剖析,对中学物理教学具有积极的意义。

一、在物理教学中客观介绍物理学家的失误

事实上,物理大师也会走弯路,有失误。在物理学发展的过程中,这样的事例可以说是屡见不鲜的。发现放射性元素的贝克勒尔认为要找到比铀的放射性还要大得多的元素是不大可能的;牛顿推算光在介质中的速度比真空中大;电磁波的发现者赫兹由于实验的局限而错误地认为阴极射线不带电。

中子发现的历史更值得回顾。在查德威克发现中子前,在实验中已有迹象表明在核中可能存在一种中性子。例如,1930年德国物理学家玻特和他的学生利用α粒子轰击铍元素时,发现产生了一种穿透力极强的射线。后来居里夫人的女儿I?居里和她的丈夫约里奥对这种射线进行了研究。他们将这种射线射到石蜡上,测到了有反冲质子从石蜡放出,他们认为这反冲质子是由这种不带电的的射线所轰击出来的。但遗憾的是约里奥-居里夫妇和玻特等人都没能抛弃传统的旧观念,而断言为这种射线正是大家所知的Υ射线。太可惜了!尤其对约里奥-居里夫妇而言,只要根据打出质子的动能,仔细地推算一下,假如入射粒子是Υ光子的话,那么它的能量将达几十兆电子伏,要比实验测得的这种未知中性粒子的能量大得多,于是就会发现,这种未知中性粒子不可能是Υ射线。可惜旧的传统观念太深了,以致快到手的成果丢掉了。在正电子的发现过程中,同样的失误又一次发生在约里奥-居里夫妇身上,使他们成了正如恩格斯所描述的“当真理碰到鼻子尖上的时候,还是没有得到真理”的人。

纵观物理学家们的失误,造成他们作出错误分析或错失了重大科学发现的主要原因有两个:一是科学发现和创造是人类向未知领域不断探索的一个过程,而这个过程必然是复杂的、艰难曲折的,在这样的过程中出现一些失误是难免的;二是传统思想的束缚,科学发现和创造需要丰富的想象力,需要新思想、新观念,因循守旧、墨守成规就不可能作出科学发现,但突破传统观念总是非常不容易。

二、在物理教学中介绍物理学家失误的积极意义

在物理教学中,教师引导学生认识物理学家的失误,分析失误的原因,似乎会使学生产生对科学的怀疑,对科学家的不敬,在时代呼唤更多创新人才的今天,这并非不是一件好事,将有利于学生体会到人类认识自然,改造自然是个曲折艰苦的过程,是个反复修正、反复深化的过程;有利于确立不怕挫折的信念,增强学习中的毅力;有利于学生打破思维定势,活跃课堂气氛,培养创新思维能力;有利于树立学生挑战权威,服从真理的求知精神。

当然,仅仅介绍物理学家的失误,并不能达到上述目的,更要注意向学生讲述物理学家对待失误和挫折的科学态度和不屈的探索真理的精神。约里奥-居里夫妇不仅错失了发现中子的良机,后来又错失了发现正电子的机会。但他们从失败中吸取教训,始终以饱满的工作热情、坚忍不拔的意志投入研究工作,功夫不负有心人,他们终于在1934年获得了20世纪中最重要的发现之一——人工放射性,并荣获了诺贝尔物理学奖。中国科学家王淦昌教授因为自身或客观条件的限制在发现中子、验证中微子存在等物理研究方面几次和诺贝尔奖擦肩而过,但他并没有放弃对科学热诚的追求,而是进一步拓展研究领域,在众多领域里提出了自己独到的见解,直到年逾90,仍不时到研究室去,他提出的激光引发氘核出中子的想法,成为惯性约束核聚变的重要科研项目,一旦实现,这将使人类彻底解决能源问题。

在物理教学中引导学生辨别物理学家的失误和科学上的也是值得重视的一个方面,法国物理学的权威布朗洛发现N射线就是一场巨大的。对科学史上的揭示显然可以使学生正确理解物理学家的失误,而激发学生对科学家们由衷的敬佩。在实际的教学中我们似乎更应该让学生在进行相关科学探究的实践中重复物理学家的失误,比如在讲电磁感应相关内容时,笔者有意安排了这样的实验,将电流表的表面背对学生,在插入磁铁后,让学生跑到讲台后看指针的读数,学生看过常常露出不解的神情,“指针没动啊!”可磁铁确实在线圈中啊!如此,模仿了当年科拉顿所做实验的情景,并设置了相关的问题使学生明白科拉顿的失误和法拉第的成功在创新思想上的不同之处。

三、在物理教学中介绍物理学家失误的几点反思

1.介绍物理学家的失误,促进新的课程资源不断生成。

正视并合理开发日常教学中的错误资源可以丰富课程内容,激发学生的参与热情,促进新的课程资源不断生成,对师生创造性智慧的激发会起到十分重要的作用。为此,我们可以利用学生的错误激发认知冲突,促进学生思维碰撞;抓住学生因知识经验和思维方式不同而出现的错误的观点和想法,引导学生合作交流,促进生成;不轻易剥夺学生自主发现错误的机会,为教学的有效介入创造最佳时机。

2.介绍物理学家的失误,促进教师更好地锤炼教学艺术。

既然物理学家都可以有失误,对我们教师来说在教学中的失误也就没必要去遮遮掩掩。在教学中,教学双方也会因为各种情况而发生错误,错误可能来自学生,也可能来自教师。对于学生的错误,我们常常能从容应对,对于自己的失误,我们也不能回避,而是要认真反思,究其原因,寻其策略,从而提高教学设计能力和课堂教学水平。错误的价值有时并不在于错误本身,课堂教学中的错误,对学生来说是一次很好的锻炼机会,对老师来说也可以是一次机遇,在生成性的教学中教师正确处理失误是可以锤炼教学艺术,提高自身的专业水平的。

物理学家阿伯拉罕・派斯和他的物理学史著作解读与述评

摘 要:本文主要是对阿伯拉罕・派斯进行评述,探究其对于整个物理学做出的巨大贡献。与此同时,从其著作方面入手,加强关于著作方面的科学解读,希望能够充分继承这位伟大物理学家的精神,对其贡献进一步探究,从而推动整个物理学的不断发展。

关键词:阿拉伯罕・派斯 物理学史 著作 解读 评述

2000年,作为做出杰出贡献的一位伟大物理学家,同时又是一位科学史作家,阿伯拉罕・派斯不幸去世。派斯去世的原因,主要是心脏病发作,他最后的时光在哥本哈根度过,终年82岁。

派斯,1918年出生于荷兰,属于传统犹太人。派斯的中小学教育始于阿姆斯特丹。随后,凭借着自身优异的学习成绩,他非常顺利地进入大学继续学习和深造。1938年派斯顺利毕业,并获取了两个学位,一是物理学,二是数学。但派斯并没有满足于此,而是来到乌得勒支大学,进行个人学术的进一步深造,追随导师乌伦贝克。后来乌伦贝克定居美国,因此派斯的硕士毕业论文,由罗森菲尔德进行有效指导并完成。最终派斯在1940年硕士顺利毕业,取得了相应的硕士学位。然而在当时,德国已经发动世界大战,并逐渐占领荷兰。第二年,德国宣布,7月14日之后,整个荷兰的任何一所大学,严格禁止犹太人考取博士。这件事无疑影响了派斯,他努力赶写博士论文,限期真正到来之前,他最终顺利完成论文答辩。

纵观派斯的整个求学生涯,真是十分不易。然而,派斯随后将要面对的处境更加危险和艰难。当时,纳粹分子对犹太人进行压迫,这也使当地诸多物理学家,为免于遭受迫害而选择逃避,离开了培养自己的大陆。但是派斯不同,他没有离开故土荷兰。也正因为如此,战争爆发后,派斯提心吊胆,整天需要东躲西藏。访问他的当地物理学家也越来越少,除了克拉默斯,派斯较为重要的朋友。克拉默斯访问时,一般都带科学文献,两个人进行物理学知识的相关探讨。克拉默斯本来在莱顿大学承担教授职务,但后来,犹太人解雇现象较为严重,教授对德国人的残暴行为进行了抗议,德国占领大学之后,勒令当局关闭了学校。这对派斯的日常研究,即量子电动力学,造成了极大的不便。每当回首往事,派斯都感到非常不堪。荷兰当地犹太人,包括派斯的妹妹,普遍开始被抓,然后进入死亡集中营,遭到德国人残酷的杀害。而派斯自己,幸运的是能够免于这场灾难。灾难具体情况,详见其自传体著作《欧美记事》。

第二次世界大战结束之后,1946年,派斯到达哥本哈根。在那里,派斯会见了波尔,与其一家人相处融洽。与此同时,他与波尔展开了知识方面的沟通,彼此交流十分惬意。在波尔的大力推荐下,1946年秋,派斯前往美国进行访问和调查,访问的具体地点为普林斯顿,当地的一家高等研究所,但是在当时,这个研究所成立时间不长,物理学的相关研究并没有取得杰出成果。不过研究所的物理学家鉴于自身多年的经验,告诫派斯,研究过程中,如果一味闭门造车,是绝对行不通的,需要广泛涉猎。派斯听取了同行的建议,决定不再回欧洲,留下来潜心研究物理学。

派斯刚刚来到美国的时候,量子电动力学的研究取得了革命性的进展,理论物理学也得到了极大的发展。1947年,设尔特岛会议顺利召开,派斯有幸受邀参加。在这次会议上,施温格做出了科学量子力界的报告,报告非常详细。与此同时,“费曼图”这一理念得以提出。

派斯深深明白,量子电动力学领域,今后势必具有广阔的发展前景,但是这似乎已经和自己的关系不是那么密切了。尽管这方面的雄心有一定的挫败,但是派斯并没有被真正击败,而是转向宇宙线的相关领域。派斯变得更加努力,在加强探索的同时秉承更加积极的态度,针对现象进行科学合理的解释。基于此,派斯得以明确自身的方向,并着眼于基本粒子,研究工作也得到了充分的贯彻落实。

派斯经过大量研究,逐渐提出了协同产生规律等方面的内容,这在日后得到了有效证明和确立。后来,新量子数即奇异数,诞生并发展,关于这方面,派斯曾经与盖尔曼展开过合作,但是实验研究最终失败。

派斯仍然不放弃进行研究,最终提出了K介子混合理念。基于物理学本质来说,量子力学得到了充分诠释,态叠加原理也得到了完善。但是很多物理学家不禁产生了疑问,粒子混合究竟能否符合实际?然而,我们如果站在量子力学角度进行分析,透过基本粒子的本质,会发现观察量具有自带属性的特点,本身存在相应特征和形态。在态叠加原理的应用过程中,守恒电子数一旦满足这一相同条件,粒子混合就能实现。经过派斯等人的共同努力,K介子系统问题得到了充分解决。在这之后,粒子混合不断涌现。不久,科学界又提出了量子排这一概念。通过量子排方面的科学研究,粒子物理学得到了更快的发展,最终在一定程度上推动了原子物理学的发展,并对其形成一定反哺。基于此,量子力学概念得到普及和推广。量子排现象之所以提出较晚,很大一部分原因是人们不敢对其进行大胆想象。

派斯在其他领域同样做出过一定贡献,比如G宇宙领域。然而,在70年代末,派斯逐渐转向物理学史,注重加强这方面的探索和研究,朝着作家的方向发展,并在这方面进展顺利,例如爱因斯坦传记得到了广泛好评,波尔传记也同样大获成功,中文出版量相当可观。还有关于基本粒子方面的科学史巨著《基本粒子的物理学史》的中译本也问世。派斯造诣十分高深,熟知理论物理,对物理学史的叙述表现出一种深刻的洞察。除此之外,派斯语言能力超强,除了母语荷兰语外,他还熟悉地掌握了英语、法语、德语、丹麦语,这为他的科学史研究提供了极大的便利。

派斯的物理学著作,内容更加凸显真实性,如对科学界出现的错误等都进行了如实体现。特别是曾经承受的挫折、物理学走过的弯路,以及物理学家在长期探索过程中经历的迷惘、物理学家个人存在哪些不足等,他都较为直率地指出。

比方说,在爱因斯坦传中,派斯对爱因斯坦的不成熟之处以及其研究中走过的弯路、犯过的错误都进行了毫不客气的说明。再比如,书中指出,马赫原理虽然没有对物理学理论起过推动作用,但它仍然可能是未来的研究课题。

虽然派斯对波尔十分尊重和爱戴,但在波尔传记中对其并未有讳言。比方说,在量子力学领域波尔失误不少,尤其是波尔还曾否定已经被广泛认可的能量守恒定律,对此派斯在书中也如实进行了记录。除此之外,他还指出了哥本哈根阵营中泡利、狄克拉等人对波尔的不满之词。

由此可见,派斯在潜心著作的过程中,始终秉承公允的态度,并且敢于分析伟大物理学家的不足,敢于说出真话,态度十分端正,因而学术界对其十分认可和重视。派斯尤其重视书名,绞尽脑汁之后,才能拟定完成,而且一定要别出心裁。

1963年,派斯最终选择离开普林斯顿大学,来到了纽约,进入洛克菲勒大学工作,直到退休。1990年,派斯同他的第三任妻子――丹麦人类学家尼可莱森结婚,结婚之后,派斯每年往来穿梭于纽约和哥本哈根之间。2000年,派斯的《科学英才:20世纪物理学家群像》问世,这部著作是派斯从个人视角对自己所认识的物理学家进行的速写,是他的最后一部著作。

参考文献:

[1] 史明宇,陈绍军.“社会事实”与“自然物质”客观性存在的条件比较――社会学与量子力学的对话[J].理论月刊,2013(2).

[2] 刘昊淼.浅析量子力学无限方势阱――通过无限深势阱来理解量子力学非定域性[J].神州(上旬刊),2013(9).

[3] 胡化凯.20世纪50―70年代中国对哥本哈根学派量子力学诠释的批判[J].科学文化评论,2013,10(1).

[4] 张占新,莫文玲,王凤鸣等.通过计算氢原子的玻尔半径,加深对量子力学的理解[J].大学物理,2011(30).

[5] 朱安远,朱婧姝,郭华珍等.20世纪最伟大的科学巨匠――阿尔伯特・爱因斯坦(下)[J].中国市场,2013(46).

议论文是由论题,论点,论据,论证诸多要素组成。论题,即作者在文章中提出来要进行论述的问题,或说是论证的对像。论点,又叫论断,它是作者对所论述的问题提出的见解,主张和表示的态度。论据,是指用来说明观点的材料。论证,就是运用论据说明论点的逻辑过程和方法。

世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页 资料来源:

  • 索引序列
  • 理论力学论文2000字
  • 大学物理论文2000字热力学
  • 大学物理热力学论文2000字
  • 大学物理小论文2000字力学
  • 大学物理量子力学论文2000字
  • 返回顶部