首页 > 期刊投稿知识库 > 暖通设计参考文献中的论文期刊

暖通设计参考文献中的论文期刊

发布时间:

暖通设计参考文献中的论文期刊

《暖通空调》是本杂志,本专业的核心期刊,自己去随便下载几篇都是暖通行业相关的。 翻译借助百度翻译和自己那点水平,这小事儿还用求助..要原创的我可以提供

期刊文章:

[序号]主要责任者.文献题名[J].刊名,年,卷(期):起止页码.

例如:[1]何龄修.读南明史[J].中国史研究,1998,(3):167-173.

[2]OU J P,SOONG T T,et al.Recent advance in research on applications of passive energy dissipation systems[J].Earthquack Eng,1997,38(3):358-361.

扩展资料

参考文献类型及文献类型,根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:

专著M ; 报纸N ;期刊J ;专利文献P;汇编G ;古籍O;技术标准S ;

学位论文D ;科技报告R;参考工具K ;检索工具W;档案B ;录音带A ;

图表Q;唱片L;产品样本X;录相带V;会议录C;中译文T;

乐谱I; 电影片Y;手稿H;微缩胶卷U ;幻灯片Z;微缩平片F;其他E。

作为正文出现的参考文献序号后需加页码或页码范围的,该页码或页码范围也要作上标。作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。另外,参考文献页码或页码范围也要准确无误。

参考资料来源:百度百科-参考文献标准格式

文后参考文献著录格式(电子版) 《文后参考文献著录规则》(GB 7714-87)国家标准涉及的文献种类较多,且采用专业用语进行描述,不易理解和掌握。本文根据论文写作及提交时的具体需要拟定,供大家参考。A.连续出版物[序号] 主要责任者.文献题名[J].刊名,出版年份,卷号(期号):起止页码.[1] 袁庆龙,候文义.Ni-P合金镀层组织形貌及显微硬度研究[J].太原理工大学学报,2001,32(1):51-53.B.专著[序号] 主要责任者.文献题名[M].出版地:出版者,出版年:页码.[3] 刘国钧,郑如斯.中国书的故事[M].北京:中国青年出版社,1979:115.C.会议论文集[序号] 析出责任者.析出题名.见(英文用In):主编.论文集名.(供选择项:会议名,会址,开会年)出版地:出版者,出版年:起止页码.[6]孙品一.高校学报编辑工作现代化特征[A].见:中国高等学校自然科学学报研究会.科技编辑学论文集(2).北京:北京师范大学出版社,1998:10-22.D.专著中析出的文献[序号] 析出责任者.析出题名.见(英文用In):专著责任者.书名.出版地:出版者,出版年:起止页码.[12]罗云.安全科学理论体系的发展及趋势探讨.见:白春华,何学秋,吴宗之.21世纪安全科学与技术的发展趋势.北京:科学出版社,2000:1-5.E.学位论文[序号] 主要责任者.文献题名[D].保存地:保存单位,年份:[7]张和生.地质力学系统理论[D].太原:太原理工大学,1998:F.报告[序号] 主要责任者.文献题名[R].报告地:报告会主办单位,年份: [9]冯西桥.核反应堆压力容器的LBB分析[R].北京:清华大学核能技术设计研究院,1997:G.专利文献[序号] 专利所有者.专利题名[P].专利国别:专利号,发布日期:[11]姜锡洲.一种温热外敷药制备方案[P].中国专利:881056078,1983-08-12:H.国际、国家标准[序号] 标准代号.标准名称[S].出版地:出版者,出版年:[1]GB/T 16159—1996.汉语拼音正词法基本规则[S].北京:中国标准出版社,1996:I.报纸文章[序号] 主要责任者.文献题名[N].报纸名,出版年,月(日):版次.[13]谢希德.创造学习的思路.人民日报,1998,12(25):10J.电子文献[序号] 主要责任者.电子文献题名[文献类型/载体类型].:电子文献的出版或可获得地址(电子文献地址用文字表述),发表或更新日期/引用日期(任选) :[21]姚伯元.毕业设计(论文)规范化管理与培养学生综合素质[EB/OL].:中国高等教育网教学研究,2005-2-2:附:参考文献著录中的文献类别代码普通图书:M 会议录:C 汇编:G 报纸:N 期刊:J 学位论文:D 报告:R 标准:S 专利:P 数据库:DB 计算机程序:CP 电子公告:EB

参考文献格式:【1】张坤 机器人柔性手腕的球面齿轮设计研究 清华大学学报(仅供参考,有的时候得根据学校的具体要求来写)

暖通毕设参考文献期刊

暖通专业在计算 方法 、程序编制和工程应用几方面都取得了显著成绩。下面是由我整理的暖通专业技术论文,谢谢你的阅读。

暖通空调技术与节能

摘要:随着人们生活水平的日益提高,人们生活的节奏逐渐加快及心理压力的不断增大,使得人们的工作生活环境应该予以重视。而在人们的工作生活环境中倡导环保和节能的生活方式越来越重要。本文主要是对暖通空调技术与节能进行分析。

关键词:暖通空调 技术 节能

2009年9月22日,国家主席胡锦涛在联合国气候变化峰会开幕式上发表题为《携手应对气候变化挑战――在联合国气候变化峰会开幕式上的讲话》的重要讲话,郑重承诺今后中国将进一步把应对气候变化纳入经济社会发展规划,并继续采取强有力的 措施 :一是加强节能、提高能效工作;二是大力发展可再生能源和核能;三是大力增加森林碳汇;四是大力发展绿色经济,积极发展低碳经济和循环经济,研发和推广气候友好技术。明确提出了建设生态文明的重大战略任务,强调要坚持节约资源和保护环境的基本国策,坚持走可持续发展道路,在加快建设资源节约型国家。可见节能对于一个国家乃至世界时是多么的重要。本文主要从节能方面浅谈暖通空调技术。

1.室内设计参数

常规情况下,在冬季供暖时,室内计算温度每降低1℃,能耗将减少约5%~10%;在夏季供冷时,室内计算温度每升高1℃,能耗将减少约8%~10%。室内设计参数必须在规定的参数范围内取值。近几年,低温地板辐射采暖系统已经取代散热器采暖,之所以采用这种方式,主要是因为这种方式具有能耗小、舒适性高、容易分户计量、不占用房间使用面积等优点。

2.采暖设计

采暖空调热负荷为12650KW,热指标为。热源由城市热网供给,一次水供回水温度为95/70℃,经热交换后,高温二次水供回水温度为85/60℃,供采暖系统及空气、新风处理机组使用。各类机房、自行车库等设5-8℃的值班采暖,人防掩蔽体采暖设计温度为18℃,厕所为16℃;低温二次水供回水温度为60/50℃,供风机盘管和汽车坡道化雪系统使用,或者化雪系统由于什么原因没有使用。为保证一层室内良好的温度环境,抵挡大门的冷风侵入,在各大门入口处均设置了热空气幕。

以空气为热泵的热源在寒冷地区进行采暖是当前研究的 热点 。因为它和以往的燃煤、燃油、直接用电等取暖方式比较的话,在环保、节能、安全使用,甚至经济等方面有突出的优点,其可推广性也超过了水源、地源热泵。

2.1地板采暖的空气热泵机组容量的选择

机组容量(W)=当地建筑采暖设计负荷()×用户采暖的建筑面积()÷(1-)×0.85-0.9

2.2室外机最好安装在冬季主导风的背风面,应该设置遮雪蓬,机组如果安装在平台上,则底面应抬高至少20cm,以免化霜结冻,机组吸风口距障碍物至少25cm,双机之间距离至少20cm。

2.3地板下埋管的设计

空气热泵作为热源时,供水温度或供回水平均温度应尽可能设计得低些,以使机组效率尽可能高,又由于工程实践证明本机组的供回水温差较少仅2℃-3℃,所以,选择地下埋管时可参照“低温热水地板辐射供暖应用技术规程”( DBJ/T01-49-2000)附录 E-1至 E-3中平均水温35℃一栏,按照地板所需散热量选择间距,然后,将管道直径放大到Φ20/16成间距缩小一档即可。

3.风系统设计

3.1集中空调系统的排风热回收

一直以来,业内人士只是从经济方面的角度来衡量热回收装置的利弊,而环保与节能则被忽视。当今,业内人士考虑的角度有所转变,现在从环保和节能这个角度来衡量热回收装置的利弊。

空调区域排风中的热能量是非常多的,如果把这些热能量加以回收利用,那么环保和节能定会实现。如果新风和排风采用专门独立的管道输送,那么有利于集中热回收装置的设置。新风和排风采用热回收装置进行湿热或者全热交换,节能效果非常明显的表现出来。

3.2空调风系统

(1)有资料显示,以我国南方地区为例,夏季室内设计温度如果每降低1℃或冬季设计温度每升高1℃,其工程投资将增加6%,能耗将增加8%。该数据很明显地说明,适当提高夏季以及降低冬季的室内空气温度,都将起到显著的节能效果。与此同时,为保证室内空气质量以及人们对新鲜空气的需要,现行《采暖通风与空气调节设计规范》对最小新风量作出明确规定,要求建筑满足国家现行有关卫生标准。研究表明,加大新风量能够在一定程度上解决室内空气质量问题,但增加了空调能耗。新风定值必须按照规范来确定,因为新风量对于能耗和人体健康有着非常重要的作用,如果人员密度较大时,新风的供应按人员的密度来进行的话是非常不经济的。我国建筑采用了新风需求控制(检测室内CO2浓度),值得注意的是:新风量变化,排风量随着也发生变化,否则造成负压,可能会适得其反。

(2)暖通设计师对于规范中新风量的规定表示赞同。暖通设计师认为,在目前中央空调清洗不够规范的背景下,加大新风量是必要的。不过,对于室内设计温度的要求,他们却持保留态度。业内人士有这样的一个说法:“如果说节能像一棵树,有很多枝杈可以作为思路,那么,业主方的意见更像那个根。他们的态度,将成为决定暖通专业乃至建筑节能的根本性因素。”业内人士表示,建设方的意见非常重要。

要想增加新风量或者增强风机盘管处理室内回风的能力,风机盘管加新风的新风口应单独或布置在盘管出风口的旁边,而不应该布置在盘管回风吸入口。

(3)房间面积或空间较大、人员较多或有必要集中进行温度控制的空气调节区,其空气调节风系统宜采用全空气空调系统,不宜采用风机盘管系统,以利于集中处理、调节,发挥有利因素,弥补之前产生的问题。

(4)建筑空间高度大于或等于10m、且体积大于时,宜采用分层空调系统。与全室性空调方式比,分层空调系统夏季可以节能30%左右,但是冬季并不节能。通常设计时,夏季的气流组织为喷口侧送,下回风,高大空间上部排风;而冬季一般在底层设置地板辐射或地板送风供暖系统,也可将上部过热的空气通过风道送至房间下部。

(5)多个空气调节区合用1个空气调节风系统,各区负荷变化较大、低负荷运行时间较长,且需要分别调节室内温度,在经济条件允许时,宜采用全空气变风量空气调节系统。设计时应注意:要求采用风机调速改变系统风量,而不能采用恒速风机而改变系统阻力调节;其次,应采取保证最小新风量的措施,避免因送风量减少,造成新风量减少而不满足卫生要求的后果;再者,调节末端送风口风量时,推荐采用串联式风机驱动型末端装置以保证室内的气流分布。

(6)在某些情况下,像屋顶传热量较大、吊顶内发热量较大、吊顶空间较大(此时的吊顶至楼板底的高度超过1.0m),如果采用吊顶内回风,导致空调区域增大、空调耗能上升,这样非常不利于节能。所以对于建筑顶层或者吊顶上部有较大热量、吊顶空间较高时,直接从吊顶回风是不合理的。

4.围护结构

北京市建筑设计研究院原院长、北京市建筑设计研究院顾问总工程师吴德绳认为,暖通专业既然是建筑节能的支柱力量,因此,目光不仅要盯住如何优化暖通空调系统设计,更应该有所转移,在围护结构设计方面重点考虑。

围护结构在节能工作中,扮演着愈来愈重要的角色。所谓围护结构节能,通常是指通过改善建筑物围护结构的热工性能,使得建筑在夏季隔绝室外热量进入室内,冬季防止室内热量泄出室外,以保持室内尽可能接近舒适温度,减少通过辅助设备来达到合理舒适室温的负荷,并最终达到节能的目的,如通过采暖、制冷设备达到节能。

传统住宅建筑的围护结构是普通黏土砖,简单架空屋面和单层玻璃钢窗,它们的传热系数分别为1.96、1.66和6.4。而“节能住宅”的围护结构中外墙和屋面采取了保温措施,外窗采用中空塑钢窗或断热中空铝合金窗,它们的传热系数分别为 1.5、1.0和3.0,使围护结构的节能贡献约占25%。采用能效比高的采暖、空调设备(按照国家标准,房间空调器的能效比:制冷>2.3,采暖>1.9),使采暖、空调设备的节能贡献约占25%,两者相加总体达到节能50%的目标。

据介绍,围护结构的节能设计应该从墙体、窗户、屋面等三个方面考虑。对于设计人员而言,如何处理建筑玻璃幕墙的问题,在业内一直存在很大争议。普通玻璃幕墙是建筑节能不能实现的因素之一。统计数据表明,夏季通过玻璃窗的日照热可占制冷机最大负荷的30%,冬季单层玻璃的热损失约可占锅炉负荷的20%。窗体节能技术主要从减少渗透量、减少传热量、减少太阳辐射能三个方面考虑。另外,在保证室内采光良好的前提下,合理确定窗墙比十分重要。当窗墙面积比超过50%时,负荷将明显增加。不仅是外围护结构,内围护结构在设计中同样重要。暖通设计师要比普通建筑师更懂得建筑节能的途径,所以暖通设计师和普通建筑师多进行沟通效果才会更好。

5.实现节能

暖通空调的设计师在方案设计时,首先应深入了解业主的能源状况以及对空调的使用状况和是否有余热、废气等条件,然后对各种能源方案进行合理综合的对比。设计师在设计时应考虑的重点是:如何利用可再生能源和低品位能源。

暖通设计师在设计阶段完成基础工作之后,最关键的就是环保和节能的实现,而环保和节能的实现是通过综合利用各种先进技术、利用各种可再生资源来实现的。

利用自然条件来满足人们对于室内温度的需求,这是最理想的方式。现在通过各种设备实现对温度的调节,只不过是对人们的过错进行补救。冷热源是设计师最关注的一点,因为其能耗往往能占空调系统总能耗的50%左右。

地源热泵系统就是在这种形势下快速发展起来的,它利用地下恒温层土壤热显著提高空调系统效率。同时,采用新能源利用的供给方式,实现冷、热、电三联供;利用燃气、汽、电力能量转换的原理联合循环使用,将工业流程最尾端的余热收集起来,用于供冷系统空调冷冻水和供热系统的生活热水,这样,能源的利用率可提高至70%~80%左右。这些都给暖通空调设计师提供了广泛的节能设计思路。

6. 总结

随着全球逐渐变暖这种现象的出现,空调现在已经是人们生活中不可或缺的一部分,它使人们工作生活更加舒适,人们对于空调也有了一定的依赖性。然而,环保和节能是当今非常重要的问题,因此,在暖通空调设计方面,暖通空调的环保和节能是目前空调技术方面发展的方向,也就是说,城市供热环保和节能是目前亟须加强和可持续发展的问题。

参考文献:

[1] 赵君利. 暖通空调节能从设计开始.中国建设报,2010,(03).

[2] 胡锦涛活动报道集,2009,(09)

[3] 刘金瑶,李婉茹,刘鹏华. 浅谈暖通空调的节能.暖通空调,2008,(04).

[4] 张莉,李尧,朱玉明.暖通空调节能设计分析.山西建筑,2010,(09).

[5]__荣.建筑工程的暖通空调设计.施工技术与设计,2008,(07).

[6] 万蓉. 基于气候的采暖空调耗能及室外计算参数研究.西安建筑科技大学, 2009,(08).

点击下页还有更多>>>暖通专业技术论文

暖通设计毕业论文

容易。只要想发论文的话就可以通过这个发论文。

谁知道毕业论文的任务书怎么写? 务书不是学生写的吧,都是指导教师写的。如果要你写,可以这样:一方面把你论文的开题报告的背景及主要内容整合一下,一方面这样列:1、能够比较全面的阐述有关网路隐私权的相关基础问题。 2、能够比较深入的探讨网路隐私权保护合理的解决途径。 3、最好能够结合案例来说明问题。 4、能够通过分析,得出自己的独到见解。5、能够对相关资料进行整理来阐述问题。 当然,具体的语言润色你自己去斟酌! 毕业设计任务书的设计要求怎么写 我整理好传送你。 毕业设计任务书怎么填 任务设计书,就是写计划。比如:2016.11.20-2016.12.30开题报告 2017.01.01-2017.01.10页面设计 就是上面这种的 毕业论文任务书怎么写 如果是本科毕业的话,主要是: 主要内容:提出具体需求,要求毕业生给出需求分析报告;专案设计开发详细设计;具体要求的解决方案。 一、问题的提出 二、需求分析用例图 三、系统详细结构设计 四、虚拟码设计,或系统分析设计 毕业设计任务书怎么写 很简单啊,去百度下一个范本,如输入集美大学毕业论文任务书。然后你只要填写题目,名字,论题意义,参考文献,进度安排可以咨询指导老师。 毕业设计任务书怎么写? 北京邮电大学网路教育学院毕业设计任务书 姓名学号专业职称所属教学总站/学习中心 通讯 地址邮 政 编 码 E-mail地址电话申请 是□ 学位 否□远端 □ 函授 □ 设计(或论文)题目 选题背景(目前从事何工作,毕业设计选题与所学专业及从事工作有何关系) 指导教师、指导教师组 组长及成员姓名职 称工作单位及所从事专业联络方式 设计内容(要求详细到节,有学生独立完成的内容): [注意:选题要结合学生实际工作。要求写明本设计所涉及的分析方法或技术手段(如定性、定量分析的方法);要求有学生独立的见解,设计内容要详细写明具体步骤]。 会计毕业设计任务书怎么填 个人以为任务书应该是指导教师下给学生的,你写充其量是一个草稿。1. 研究该课题领域很重要。2.该领域中的研究现状都有哪些,都存在什么样的问题。3.针对这些问题进行研究,提出(或者设计出)什么什么。 毕业论文任务书怎么写 任务书不是学生写的吧,都是指导教师写的。如果要你写,可以这样:一方面把你论文的开题报告的背景及主要内容整合一下,一方面这样列:1、能够比较全面的阐述有关网路隐私权的相关基础问题。 2、能够比较深入的探讨网路隐私权保护合理的解决途径。 3、最好能够结合案例来说明问题。 4、能够通过分析,得出自己的独到见解。 5、能够对相关资料进行整理来阐述问题。 当然,具体的语言润色你自己去斟酌! 毕业论文任务书怎么写 你说的是开题答辩的任务书吧 ---中国好毕设,导师全程指导你的计算机专业的系统设计 毕业设计任务书“应完成专案”怎么填 10分 设计前收集资料,如地形、地界红线、业主要求、市政规划等等,这些资料有些事业主提供,有些是需要自己去找。 设计时根据业主的要求画图,自己绘制出的设计图要不断地和业主、单位技术主管领导、专案主管工程师、建筑师,还有其他配套专业协调交流,不能自己闷著头画。尤其是与各个专业的配套,给排水、电力、装置、暖通、结构等都是依附于建筑的存在,与他们好好交流才能合作完成专案 设计完毕后,要历经复核、主管领导、专案主管工程师等逐级复核审查,经各级签字确认后,才算是设计完成,交付业主。 然后业主拿着设计到主管 *** 部门去审查报检,建筑设计师也要一同参与许多 *** 和业主主办的设计图审查会,接受审查会上的意见并相应修改设计图 最后,业主施工,建筑设计师根据施工过程中发生的问题对设计图进行变更

高职院校“供热通风与空调工程技术专业”实训室的建设摘 要:高职高专院校实训基地是培养职业实践能力的核心条件,而实训室是组织实践教学、强化技能培养、实现人才培养目标的重要基地。建立满足基于“工作过程”项目导向教学的实训室是必要,能保证学生在校期间学习有一个真实的工作环境,为培养学生的技术应用能力提供保证。实训室应具有高新的技术内涵、逼真的实训环境、完备的设备配置、配套的实训教材、科学的组织管理。关键词:高职教育;竞争力;能力;素质由于我国的高等职业教育在起步较晚,其人才培养模式基本上是以学科为核心的普通教育模式,强调培养的学生具有扎实的理论基础、具有一定的研究和设计能力,还没有完全形成培养职业人才的教育体系和教育模式。相应的实验室也满足不了培养职业人才的要求。现有高职院校的实验室基本上是本科和中专学校的原有实验室,而本科院校的实验室是以理论研究和验证为主,中专学校的实验室是以教学演示为主,两者均缺乏培养学生动手操作能力、分析和解决问题能力的功能。如何搞好高等职业院校实验室建设,使其能更好地为教学服务以满足培养高素质职业人才的要求,是迫切需要解决的问题。我院的“供热通风与卫生工程技术”专业为中德联合办学的首批试点专业,省级重点专业。通过与德国专家的全面合作,我们制定了“面向实践的课程”体系和人才培养模式。该课程体系打破了传统的“老三段”式的教学模式,把和专业教学有关的“基础课”、“专业基础课”和“专业课”合并成“职业技术课”,所有“职业技术课”按专业特点进行整合,分别在“供热”、“给排水”和“通风空调”三个实验室内组织教学。因此,这三个实验室的建设对课程体系的改革至关重要。下面就这三个实验室的建设谈谈自己的看法。 1 应以服务课堂教学为建设宗旨原来的课堂教学大多数是在教室内进行,实验室内进行的教学演示实验和验证实验相对很少,即使建设了设备先进的实验室,对课堂教学来讲,利用率也是极低的,造成了资源的大量浪费。由于人才培养模式的不同,工科高等职业院校实验室的建设与同类型的本科院校有很大差异,它不需要过多地进行教学演示实验和验证实验,其重点应放在为课堂教学服务上。通过对高职的人才培养模式的研究和借鉴德国的成功经验,我们制定了一个既能适应“面向实践的课程”体系又能提高实验设备的利用率的教学实验室的建设计划,该计划的最大特点是将课堂教学改在实验室内进行,即把实验室作为课堂教学的主要场所,这就要求实验室除满足实验教学外更主要的应满足课堂教学要求。这样的实验室与传统的实验室有很大的不同,实验室的功能、系统的组成、设备的布置等都有较大变化。“供热通风与卫生工程技术”专业的教学内容,主要是讲授“供热”、“给排水”和“通风空调”系统的组成和分类、热力和水力计算、设备选型计算、安装及运行管理等方面的知识。按三大系统建立三个实验室,分三条教学主线组织教学,所有的专业教学均在三个实验室内进行。三个实验室分别建有各种类型的供热系统、给水排水系统、通风空调系统,教师在实验室内参照各种系统讲授、提出问题并和学生一同解决问题。这样的教学与传统的学科教学相比很多优点。第一,教学直观方便,系统中所有的设备、管路、附件、仪表均为实物就地安装,教师按实物讲解它们的构造、工作原理、安装位置等,既方便又直观。第二,系统的整体感较强,系统中所有的设备、管路、附件、仪表均安装在同一实验室内,使学生一眼就能看出系统的整体结构,不存在传统的学科教学中首尾分离的现象。第三,教学过程中师生可以互动,能充分调动学生学习的积极性。 2 应注重学生动手能力、分析和解决问题能力的培养工科高等职业院校主要培养的是技术应用型人才,学生应具有较强的动手操作能力、分析和解决问题的能力,而这些能力的培养主要是在校内学习期间完成的。培养学生动手能力、分析和解决问题能力可以有很多途径,除了参加社会实践、毕业实习外,在校内建立高标准的实验、实训基地是最为有效的方法。我们的实验室建设从一开始构思就把学生动手能力、分析问题和解决问题能力的培养问题放在了首位。从实验室整体设计到系统某一局部的细化处理处处都考虑上述问题,贯穿始终。如“供热实验室”设计时,我们首先考虑把系统中的供热热源、泵站、热力分配站、热用户用管道连接组合成一个完整的、实际的供热系统,系统中安装有各种管路附件、热工检测和控制仪表、实验用仪表等。锅炉点火、水泵启动这个系统就可以运行。而过去的这些实验室(台)均是独立的,没有形成整体。学生可以通过锅炉点火、水泵启动、锅炉烟气测定、热工和水力参数检测、维护管理等培养其动手操作能力。由于系统是一个实际运行的整体,各设备、附件、仪表相互关联,可以通过系统运行、参数调节及人为故障设定等培养学生分析问题、解决问题的能力。这在过去的课堂上和分散的实验室里是绝对做不到的。 3 应密切结合生产实际我们培养学生的目标是毕业即顶岗、毕业即就业,也就是说学生毕业到工作单位后能够胜任自己的工作。对“供热通风与卫生工程技术”专业来讲,毕业生应能独立完成一般的安装工程施工、施工管理及暖通空调系统运行管理等工作。为了达到这一目标,所建设的实验室要和生产实际紧密结合。我们实验室内安装的系统应为生产实际中常见的系统,所选的设备应为生产实际中常用的设备,并且尽可能采用新工艺、新材料、新设备,也就是说实验室内的系统、设备和材料要比生产实际所采用的要更好更新。这就要求教师除正常教学外,要积极参加本专业的学术活动,及时了解本专业的新技术和新工艺,更好的服务于教学。 4 加强厂校合作,保证设备及时更新实验室建成后,经过一段时间的使用,随着技术的进步,其系统和设备就要落后,如何对落后的技术和设备进行更新,是每一个实验室都要面对的问题。与其他专业不同,暖通工程中使用的设备种类繁多且更新较快。为了使我们的实验室能更好地服务于教学、服务于生产,就要求其系统、设备和材料按工程实际不断地进行更新,对于学校来讲这是一笔不小的费用。我们的做法是,利用我们的技术优势和生产厂家的设备资源,积极开展厂校合作,互惠互利,及时更新实验设备。比如某厂家生产出了新型的设备,可免费安装在我们的实验室内,生产厂家可以以我们的实验室作为基地,进行产品宣传、组织用户参观、对用户进行安装和运行等方面的培训。我们也可以免费为他们进行性能测试、产品鉴定等。通过这种合作方式使我们和生产厂家都受益,真正实现了互惠互利。目前我们已经和多个生产厂家达成了这样的协议。实践教学是达到教学要求、实现培养目标、保证教学质量、提高教学效益的重要环节,必须科学合理建立相应的专业实验实训室及其配套管理机制。建设好高职院校专业实验实训室,提高学生综合技能,提高就业率,是所有高职院校领导和老师的期望,是企业、社会进行市场竞争的需要,需要建设者付出大量辛勤的劳动和汗水。

暖通空调设计正毕业论文设计

随着经济的迅速发展,能源和环境问题日益尖锐。在特别炎热的夏天,我们都切身地体会到了电力的紧张。可以预见,这种状况在今后还会出现,并且会日趋严重。一、暖通空调领域节能的重要性和可行性随着社会的发展,建筑能耗在总能耗中所占的比例越来越大,在发达国家已达到40%,据统计在湖南省也达到27.8%。在城市远高于这个比例。而在建筑能耗里,用于暖通空调的能耗又占建筑能耗的30%-50%,且在逐年上升。随着人均建筑面积的不断增大,暖通空调系统的广泛应用,用于暖通空调系统的能耗将进一步增大。这势必会使能源供求矛盾的进一步激化。另一方面,现有的暖通空调系统所使用的能源基本上是高品位的不可再生能源,其中电能占了绝对比例。对这些能源的大量使用,使得地球资源日益匮乏,同时也带来严重的环境问题,如在我国的一些地区酸雨、飘尘问题呈日益严重之势,对生态环境和可持续发展带来了很大影响。以湖南长沙地区为例,2003年夏季电力系统最大负荷大约为160万千瓦,据有关部门推算,其中空调系统的负荷就占了约60万千瓦。在最热的夏天,如果对暖通空调系统采取节能措施,不仅可以大大缓解电力紧张状况,同时对于降低不可再生能源的消耗、保护生态环境、维持可持续发展、振兴湖南经济等都有着重要的意义。根据暖通空调行业的研究成果,现有空调系统的能耗是惊人的,如果采用节能技术,现有空调系统节能20%-50%完全可能。显然,如果对长沙地区的空调系统和建筑系统采用节能措施,那么即使遇到今夏那样的炎热天气,长沙也不会超过现有电力系统峰值而停电了。二、暖通空调领域节能的途径与方法科学技术的不断进步,使暖通空调领域新的技术不断出现,我们可以通过多种方法实现暖通空调系统的节能。1、精心设计暖通空调系统,使其在高效经济的状况下运行暖通空调系统特别是中央空调系统是一个庞大复杂的系统,系统设计的优劣直接影响到系统的使用性能。例如系统往往都是按最大负荷设计的,而实际运行基本上是在部分负荷下运行,如果系统各部分的设计不能满足部分负荷运行的要求,那系统的能耗是很大的。又如新风系统的设计,系统应该能随着室外气象参数的变化改变新风量,以最大限度地缩短主机的开启时间。可以说空调系统的设计对系统的节能起着重要的作用。2、改善建筑维护结构的保温性能,减少冷热损失我们知道对于暖通空调系统而言,通过维护结构的空调负荷占有很大比例,而维护结构的保温性能决定维护结构综合传热系数的大小,亦即决定通过维护结构的空调负荷的大小。所以在国家出台的建筑节能设计规范和标准中,首先要求的就是提高维护结构的保温隔热性能。3、提高系统控制水平,调整室内热湿环境参数,尽可能降低空调系统能耗空调系统特别是舒适性空调系统对人体的作用是通过空气温度、湿度、风速、环境平均辐射温度进行的,人体对环境的冷热感觉是这些环境因素综合作用的结果。以往的空调控制方式仅仅是测控空气的温度湿度,甚至仅空气温度。显然是不全面的,势必带来许多问题,如空调系统对人体的作用不直接、当环境变化时对环境的调控不迅速、人体感到不舒适、空调系统的这种调控方式不节能。热湿环境研究成果的应用,为我们采用新的控制方式方法提供了理论基础。如果采用舒适性评价指标即体感指标作为空调系统的调控参数,如采用PMV或SET*指标对空调系统进行调控,不仅可以解决传统控制方法存在的弊病,而且可以实现大幅度的节能,据我们的初步研究表明,采用这种控制方法可使空调系统在人体舒适的条件下节能30%左右。4、采用新型节能舒适健康的空调方式如上所述,影响人体热舒适性的环境参数众多,不同的环境参数组合可以得到相同的热舒适性效果,但不同的热湿环境参数组合空调系统的能耗是不相同 的。例如在冬季,如果我们采用传统的空调方式,把整个室内的空气加热,通过空气实现人体与环境的热湿交换,就需要较高的空气温度,此时通过维护结构的热损失和加热新风的热损失都比较大。如果我们根据热湿环境的研究成果,改变传统的空调方式,增加辐射热(如低温地板辐射采暖),此时所需要的空气温度降显著下降,一般可达到12~14度,而传统方式一般在18~20度,显然后者比前者具有显著的节能效果。在夏季也有类似的结果。5、推广应用使用可再生能源或低品位能源的空调系统随着空调系统的广泛应用,空调对不可再生能源的消耗将大幅度上升,同时对生态环境的破坏也在日趋加剧。如何利用可再生能源及低品位能源已经成了该领域重要的研究课题。地源热泵空调系统就是在这种形势下发展起来的,它利源地下恒温层土壤热显著提高空调系统的COP值,使得同等制热(或制冷)量下的系统能耗大幅度下降。另外,利用太阳能供热或制冷技术也在开发研究着。6、开展冷热回收利用的研究运用工作,实现能源的最大限度利用目前许多空调系统冷热回收利用研究也在蓬勃开展,如空调系统排风的全热回收器,夏季利用冷凝热的卫生热水供应等,都是对系统冷热的回收利用,显著提高了空调系统能源利用率。三、存在的问题与对策要实现空调系统的节能降耗,已经具备了许多成熟的条件,但同时也存在许多问题有待于解决:1、暖通空调系统的设计管理问题如前所述,空调系统的设计对空调系统的节能性有着重要的影响。然而在实际中往往得不到一些设计部门和设计人员的足够重视,使得设计建造的系统不仅初投资大,运行能耗也相当惊人,大大超过了国家标准。据实测,有的公共建筑的空调能耗占建筑总能耗的60%。为此, 我们有必要建议政府有关职能部门加强对暖通空调设计项目的管理,可以委托相关技术部门如学会等对设计图纸文件进行严格审查,对未达到国家有关节能标准的设计严禁施工建造。2、暖通空调系统的运行管理问题除设计外,我们发现运行管理也起着重要的作用。有些单位的空调系统,一年四季只有开机关机和冬夏季转换操作,显然系统达不到相应的节能效果。为此 要求运行管理人员不仅要有强烈的责任心,上岗前还必须要进行系统的培训和考核,对没有达到要求的,应重新培训,考核合格后才能上岗。在调查中我们发现,同样一套系统,管理人员不同,系统的能耗大不相同,有的甚至相差50%以上。3、新型空调方式、控制方法及新的节能技术的开发应用问题如前所述,采用新型空调方式、新的控制方法,不仅能显著提高热舒适性而且可以使系统大幅度节能。在我省对新型空调方式和控制方法的研究可以说在全国都是比较早的,并且已经取得了一些可喜的成果,只要政府部门略加扶持这些成果将很快能得到适用,并形成产业化,对这些项目的实施,将对我省的能源、环境和经济都将起到巨大的推动作用。4、公众对空调系统作用的理解观念问题对于舒适性空调系统,从本专业的角度来讲就是使人体有好的热舒适性。而在社会上我们常常发现一种这样的观念:认为空调在夏季是越冷冬季越热效果越好。这显然与舒适性空调的出发点相违背的。事实上,这样不仅大大增大了空调系统的能耗,同时由于室内外温差的增大,也使人体对不同环境的适应性下降,身体免疫力降低。这些可以通过宣传改变人们的观念。5、使用可再生能源空调系统的开发推广应用问题利用可再生能源的暖通空调系统,如地源热泵空调系统、太阳能制冷、供热系统,不仅有着显著的环境和社会效益,有的还有着显著的经济效益(如地源热泵空调系统),应大力开发推广。当然,和其他任何新技术一样,这些技术也存在着一些问题(如地源热泵系统的地源热提取问题等),也需要进一步研究完善,也需要政府部门的重视和支持。综上所述,暖通空调系统在建筑节能中占据重要的位置,起着重要的作用,节能技术的研究开发和运用是暖通空调系统、建筑系统节能的基础,政府职能部门的重视和支持,则是实现大幅度节能、产生显著的环境和社会效益、推动经济发展的保证。

建筑空调制冷系统施工中的管理摘要:如何就对随着科技的进步和人民生活水平的提高,人们对生活和生产环境的不断提高的同时,提高制冷系统的性能稳定,笔者就此提出了在施工阶段应注意的一些事项。关键词:空调制冷系统,施工,注意事项,管理要点制冷工程的施工质量好坏对制冷系统调试的成功与否关系极大。施工时支立管,干管甩口不准,支架托架失效,形成倒坡,导致窝风,影响水流循环,从而使水系统内部某些位置水温升高,甚至死水不畅,有时还产生水击声响,造成这些人为的施工缺陷后,调试时费时费力,甚至无法弥补,而改造不仅更麻烦,还会造成新的浪费。其次,在南方热带地区,空调系统的保温工艺问题是许多单位常年来十分头痛的问题,也是影响业主形象的大事。随着科技的进步和人民生活水平的提高,人们对生活和生产环境的要求也不断提高。空调系统作为智能建筑的重要组成部分,是楼宇自动化系统的主要监控对象,也是建筑智能化系统主要的管理内容之一。一、系统设计及其对调试效果的影响制冷工程的设计质量和施工质量对制冷效果影响极大,设计考虑不周,系统型式选择不当,设备部件本身的缺陷以及施工工序和施工质量的差异,施工材质和施工队伍的把关等都会给制冷系统初调和运行管理带来麻烦。制冷系统目前基本上都采用机械循环系统。这种系统的环路,支立管形成闭合的冷水循环管网。设计者应充分认识这一水力系统的特点,进行精心设计,应正确选择管网型式和系统划分,同时还必须把冷水流量按计算负载分到各用户,或各末端设备中去,这一点最为重要。设计时处理得好,系统运行时就容易调试;处理得不好,将成为系统水力平衡的先天性缺陷。与此同时,设计中还必须采取有效措施排除系统内的空气,否则也会造成冷热不均的现象。二、空调制冷系统在结构施工过程中应注意哪些2.1空调专业负责现场施工的技术人员;要同空调专业设计,结构专业设计一起,根据设备生产厂家提供的技术资料,确定各种设备如制冷机组、各种水泵、冷却塔、膨胀水箱以及其他设备的基础处理方案,向工地的土建专业提供设备基础图,冷却塔要提供预埋件布置图,争取设备基础处理和土建结构同步施工。2.2因制冷机组属大型设备,所以要根据土建专业的建筑和结构图纸,结合结构预留的设备吊装孔洞的位置,确定合理的大型没备运输通道的走向。以书面文字形式通知土建专业,在运输通道所经过路段的隔墙暂时不要砌筑。在垂直吊装子L洞上方的结构梁内。预留一个或几个能满足垂直运输大型设备的吊钩(要画图,并提出具体要求)。2.3根据设备生产厂家和专业设计人员提供的资料,计算出大型设备在运输时,包括设备本身及垫木、滚杆需要占用的空间高度、宽度和长度。然后通知工地总包,由总包出面组织各安装专业的协调会。在运输通道内,凡是设备运输时所占用空间高度范围内的所有管道,包括给排水干管、电气专业的电缆桥架,采暖系统的干管,通风专业的各种风管、空调专业的干管以及其他专业的管道,都要做梯形翻弯处理,无压力的排水管道,要适当调整走向。躲开设备运输所占用的高度,所有管路的调整由土建总包确定方案,经过建设单位、工程监理和设计人员认可以后。各专业在管道安装时必须严格执行。需要说明的是管路的翻弯调整必须在施工前期处理好。如果要等到工程后朗,各专业管道通水或穿完电线以后再改动,困难很大。如果前朗不安装。等设备运输完成以后,再安装管道,就等于封堵了运输通道,这一方案也不可取,要考虑到日后设备的更换,设备通道的重复利用。2.4结构施工期间,空调专业施工人员要按照专业施工图纸预留空调管道的楼板洞和过墙洞,一次结构施工完成以后,空调专业开始安装主立管和水平干管;如果条件具备,可分层分段分系统进行打压试水和保温,在立管井和吊顶内安装手动或电控阀门时,要考虑阀门的位置,手动开启的方向。要有一定的安装操作空间,要方便口后的维修和操作。三、项目经理如何重点把握管理工作要点3.1了解设计意图、设计内容、建筑构造特点、设备技术性能、工艺流程及建设方的要求等。首先粗审图纸,搞清分部分项工程的数量和大致内容,诸如:风系统、水系统的工艺布局,建筑工程的形式、层数、楼梯和电梯的位置、数量、平面布局状况以及各层的层高,装修工程中墙、顶、地、门窗、击水排水的基本要求,防水工程情况等。3.2细审图纸,掌握设计要求的尺寸。诸如风管各部断面尺寸及长度,水管管径及长度,制冷主机及制冷机房其他设备的相关尺寸;空调末端设备的规格、数量、安装部位及空调机房、新风机房的平面尺寸与高度等;还应了解各方面的技术要求、消防与电的具体布置及与土建工程的关系等;同时核对各专业图纸中所述相同部位、相同内容的统一性,掌握其是否存在矛盾和误差。3.3结合设计情况、学习相应的标准图集、施工验收规范、质量验评标准和有关技术规定,在此基础上,形成项目经理自己对工程施工的总体印象和施工组织设想。这部分工作是创造性的,其中心是要考虑设计和规范要求是否可以得到施工方面的满足;自有的施工力量、施工队伍和技术、装备水平,是否及如何达到要求;设计要求与施工现实差距较大或施工操作困难的,在满足设计意图和质量要求的前提下,可否做出一向有利于施工组织、加快进度的变更;根据上述各项,施:正中应考虑采取哪些主要的技术、组织、供应、质量和安全措施。3.4综合以上工作,对审查出的问题、不明的疑问及施工的合理化建议做出归纳总结,提交技术部门向业主和设计人员反映,尽量把问题解决在开工之前,为工程的施工组织提供尽可能准确、完整的依据。四、多于施工班组及相关人员交底及管理原则项目经理向施工班组及相关人员进行施工组织设计、计划和技术交底,目的是把拟建工程的设计内容、施工计划、进度、技术与质量标准、安全和消防要求等事项详尽地向施工人员说明,以保证严格地按照设计图纸、施工组织设计、安全操作规程和施工验收规范顺利进行施工。4.1交底的主要内容有:计划交底,技术质量交底,定额交底,安全生产交底和各项管理制度交底。技术交底是指工程开工前,由各级技术负责人将有关工程施工的各项技术要求逐级向下贯彻,直到基层。其目的是使参与施工任务的技术人员和工人明确所担负工程任务的特点、技术要求、施工工艺等,做到心中有数,保证施工顺利进行。因此,技术交底是施工技术准备的必要环节。4.2技术交底的注意事项:技术交底必须在该交底对应项目施工前进行,并应为施工留出足够的准备时间。技术交底不得后补;技术交底应以书面形式进行,并辅以口头讲解。交底人和被交底人应履行交接签字手续。技术交底及时归档;技术交底应根据施工过程的变化,及时补充新内容。施工方案、方法改变时也要及时进行重新交底;分包单位应负责其分包范围内技术交底资料的收集整理,并应在规定时间内向总包单位移交。总包单位负责对各分包单位技术交底工作进行监督检查。总结:在施工管理中要加强对施工单位的严格科学监理,认真控制每一工序,努力减少或消除施工缺陷。参考文献:[1]陈天豪.探讨空调制冷系统安装施工技术[J].城市建设与商业网站,2009,(27)[2]邵宗义.空调系统设计与施工解析[J].中国建设信息供热制冷,2008(04)[3]陈金鹏.空调制冷系统的施工及注意事项[J].制冷空调与电力机械,2009(03)[4]王淑敏.空调制冷系统设计与施工[J].暖通空调,2006(05)[5]周成愚.空调系统设计和施工中的几个问题[J].空调制冷系统设计与施工,2003(05)

暖通空调论文参考文献

testing of an air-cycle refrigeration system for road transportAbstractThe environmental attractions of air-cycle refrigeration are considerable. Following a thermodynamic design analysis, an air-cycle demonstrator plant was constructed within the restricted physical envelope of an existing Thermo King SL200 trailer refrigeration unit. This unique plant operated satisfactorily, delivering sustainable cooling for refrigerated trailers using a completely natural and safe working fluid. The full load capacity of the air-cycle unit at −20 °C was 7,8 kW, 8% greater than the equivalent vapour-cycle unit, but the fuel consumption of the air-cycle plant was excessively high. However, at part load operation the disparity in fuel consumption dropped from approximately 200% to around 80%. The components used in the air-cycle demonstrator were not optimised and considerable potential exists for efficiency improvements, possibly to the point where the air-cycle system could rival the efficiency of the standard vapour-cycle system at part-load operation, which represents the biggest proportion of operating time for most units.Keywords: Air conditioner; Refrigerated transport; Thermodynamic cycle; Air; Centrifuge compressor; Turbine expander COP, NomenclaturePRCompressor or turbine pressure ratioTAHeat exchanger side A temperature (K)TBHeat exchanger side B temperature (K)TinletInlet temperature (K)ToutletOutlet temperature (K)ηcompCompressor isentropic efficiencyηturbTurbine isentropic efficiencyηheat exchangerHeat exchanger effectiveness1. IntroductionThe current legislative pressure on conventional refrigerants is well known. The reason why vapour-cycle refrigeration is preferred over air-cycle refrigeration is simply that in the great majority of cases vapour-cycle is the most energy efficient option. Consequently, as soon as alternative systems, such as non-HFC refrigerants or air-cycle systems are considered, the issue of increased energy consumption arises immediately.Concerns over legislation affecting HFC refrigerants and the desire to improve long-term system reliability led to the examination of the feasibility of an air-cycle system for refrigerated transport. With the support of Enterprise Ireland and Thermo King (Ireland), the authors undertook the design and construction of an air-cycle refrigeration demonstrator plant at LYIT and QUB. This was not the first time in recent years that air-cycle systems had been employed in transport. NormalAir Garrett developed and commercialised an air-cycle air conditioning pack that was fitted to high speed trains in Germany in the 90s. As part of an European funded programme, a range of applications for air-cycle refrigeration were investigated and several demonstrator plants were constructed. However, the authors are unaware of any other case where a self-contained air-cycle unit has been developed for the challenging application of trailer refrigeration.Thermo King decided that the demonstrator should be a trailer refrigeration unit, since those were the units with the largest refrigeration capacity but presented the greatest challenges with regard to physical packaging. Consequently, the main objective was to demonstrate that an air-cycle system could fit within the existing physical envelop and develop an equivalent level of cooling power to the existing vapour-cycle unit, but using only air as the working fluid. The salient performance specifications for the existing Thermo King SL200 vapour-cycle trailer refrigeration unit are listed .It was not the objective of the exercise to complete the design and development of a new refrigeration product that would be ready for manufacture. To limit the level of resources necessary, existing hardware was to be used where possible with the recognition that the efficiencies achieved would not be optimal. In practical terms, this meant using the chassis and panels for an existing SL200 unit along with the standard diesel engine and circulation fans. The turbomachinery used for compression and expansion was adapted from commercial turbochargers.2. Thermodynamic modelling and design of the demonstrator plantThe thermodynamics of the air-cycle (or the reverse ‘Joule cycle’) are adequately presented in most thermodynamic textbooks and will not be repeated here. For anything other than the smallest flow rates, the most efficient machines available for the necessary compression and expansion processes are turbomachines. Considerations for the selection of turbomachinery for air-cycle refrigeration systems have been presented and discussed by Spence et al. [3]. a typical configuration of an air-cycle system, which is sometimes called the ‘boot-strap’ configuration. For mechanical convenience the compression process is divided into two stages, meaning that the turbine is not constrained to operate at the same speed as the primary compressor. Instead, the work recovered by the turbine during expansion is utilised in the secondary compressor. The two-stage compression also permits intercooling, which enhances the overall efficiency of the compression process. An ‘open system’ where the cold air is ejected directly into the cold space, removing the need for a heat exchanger in the cold space. In the interests of efficiency, the return air from the cold space is used to pre-cool the compressed air entering the turbine by means of a heat exchanger known as the ‘regenerator’ or the ‘recuperato ’. To support the design of the air-cycle demonstrator plant, and the selection of suitable components, a simple thermodynamic model of the air-cycle configuration shown in was developed. The compression and expansion processes were modelled using appropriate values of isentropic efficiency, as defined in Eqs.The heat exchange processes were modelled using values of heat exchanger effectiveness as defined in The model also made allowance for heat exchanger pressure drop. The system COP was determined from the ratio of the cooling power delivered to the power input to the primary compressor, as defined in illustrate air-cycle performance characteristics as determined from the thermodynamic model:illustrates the variation in air-cycle COP and expander outlet temperature over a range of cycle pressure ratios for a plant operating between −20 °C and +30 °C. The cycle pressure ratio is defined as the ratio of the maximum cycle pressure at secondary compressor outlet to the pressure at turbine outlet. For the ideal air-cycle, with no losses, the cycle COP increases with decreasing cycle pressure ratio and tends to infinity as the pressure ratio approaches unity. However, the introduction of real component efficiencies means that there is a definite peak value of COP that occurs at a certain pressure ratio for a particular cycle. However,illustrates, there is a broad range of pressure ratio and duty over which the system can be operated with only moderate variation of COP.The class of turbomachinery suitable for the demonstrator plant required speeds of around 50 000 rev/min. To simplify the mechanical arrangement and avoid the need for a high-speed electric motor, the two-stage compression system shown was adopted. The existing Thermo King SL200 chassis incorporated a substantial system of belts and pulleys to power circulation fans, which severely restricted the useful space available for mounting heat exchangers. A simple thermodynamic model was used to assess the influence of heat exchanger performance on the efficiency of the plant so that the best compromise could be developed show the impact of intercooler and aftercooler effectiveness and pressure loss on the COP of the proposed plant.The two-stage system in incorporated an intercooler between the two compression stages. By dispensing with the intercooler and its associated duct work a larger aftercooler could be accommodated with improved effectiveness and reduced pressure loss. Analysis suggested that the improved performance from a larger aftercooler could compensate for the loss of the intercooler.shows the impact of the recuperator effectiveness on the COP of the plant, which is clearly more significant than that of the other heat exchangers. As well as boosting cycle efficiency, increased recuperator effectiveness also moves the peak COP to a lower overall system pressure ratio. The impact of pressure loss in the recuperator is the same as for the intercooler and aftercooler shown in. The model did not distinguish between pressure losses in different locations; it was only the sum of the pressure losses that was significant. Any pressure loss in connecting duct work and headers was also lumped together with the heat exchanger pressure loss and analysed as a block pressure loss.The specific cooling capacity of the air-cycle increases with system pressure ratio. Consequently, if a higher system pressure ratio was used the required cooling duty could be achieved with a smaller flow rate of air. shows the mass flow rate of air required to deliver 7,5 kW of cooling power for varying system pressure ratios.Since the demonstrator system was to be based on commercially available turbomachinery, it became important to choose a pressure ratio and flow rate that could be accommodated efficiently by some existing compressor and turbine rotors. and were based on efficiencies of 81 and 85% for compression and expansion, respectively. While such efficiencies are attainable with optimised designs, they would not be realised using compromised turbocharger components. For the design of the demonstrator plant efficiencies of 78 and 80% were assumed to be realistically attainable for compression and expansion.Lower turbomachinery efficiencies corresponded to higher cycle pressure ratios and flow rates in order to achieve the target cooling duty. The cycle design point was also compromised to help heat exchanger performance. The pressure losses in duct work and heat exchangers increased in proportion with the square of flow velocity. Selecting a higher cycle pressure ratio corresponded to a lower mass flow rate and also increased density at inlet to the aftercooler heat exchanger. The combined effect was a decrease in the mean velocity in the heat exchanger, a decrease in the expected pressure losses in the heat exchanger and duct work, and an increase in the effectiveness of the heat exchanger. Consequently, a system pressure ratio higher than the value corresponding to peak COP was chosen in order to achieve acceptable heat exchanger performance within the available physical space. The below optimum performance of turbomachinery and heat exchanger components, coupled with excessive bearing losses, meant that the predicted COP of the overall system dropped to around 0,41. The system pressure ratio at the design point was 2,14 and the corresponding mass flow rate of air was 0,278 kg/s.By moving the design point beyond the pressure ratio for peak COP, it was anticipated that the demonstrator plant would yield good part-load performance since the COP would not fall as the pressure ratio was reduced. Also, operating at part-load corresponded to lower flow velocities and anticipated improvements in heat exchanger performance. Part-load operation was achieved by reducing the speed of the primary compressor, resulting in a decrease in both pressure and mass flow rate throughout the cycle.3. Prime mover and primary compressorThe existing diesel engine was judged adequate to power the demonstrator plant. The standard engine was a four cylinder, water cooled diesel engine fitted with a centrifugal clutch and all necessary ancillaries and was controlled by a microprocessor controller.From the thermodynamic model, the pressure ratio for the primary compressor was 1,70. The centrifugal compressor required a shaft speed of around 55 000 rev/min. Other alternatives were evaluated for primary compression with the aim of obtaining a suitable device that operated at a lower speed. Other commercially available devices such as Roots blowers and rotary piston blowers were all excluded on the basis of poor efficiency.A one-off gearbox was designed and manufactured as part of the project to step-up the engine shaft speed to around 55 000 rev/min. The gearbox was a two stage, three shaft unit which mounted directly on the end of the diesel engine and was driven through the existing centrifugal clutch.4. Cold air unitThe secondary compressor and the expansion turbine were mounted on the same shaft in a free rotating unit. The combination of the secondary compressor and the turbine was designated as the ‘Cold Air Unit’ (CAU). While the CAU was mechanically equivalent to a turbocharger, a standard turbocharger would not satisfy the aerodynamic requirements efficiently since the pressure ratios and inlet densities for both the compressor and the turbine were significantly different from any turbocharger installation. Consequently, both the secondary compressor and the turbine stage were specially chosen and developed to deliver suitable performance.Most turbochargers use plain oil fed journal bearings, which are low-cost, reliable and provide effective damping of shaft vibrations. However, plain bearings dissipate a substantial amount of shaft power through viscous losses in the oil films. A plain bearing arrangement for the CAU was expected to absorb 2–3 kW of mechanical power, which represented around 25% of the anticipated turbine power. Also, the clearances in plain bearings require larger blade tip clearances for both the compressor and the turbine with a consequential efficiency penalty. Given the pressurised inlet to the secondary compressor, the limited thrust capacity of the plain bearing arrangement was also a concern. A CAU utilising high-speed ball bearings, or air bearings, was identified as a preferable arrangement to plain bearings. Benefits would include greatly reduced bearing power losses, reduced turbomachinery tip clearance losses and increased thrust load capacity. However, adequate resources were not available to design a special one-off high speed ball bearing system. Consequently, a standard turbocharger plain bearing system was used.The secondary compressor stage was a standard turbocharger compressor selected for a pressure ratio of 1,264. Secondary compressor and turbine selection were linked because of the requirement to balance power and match the speed. Since most commercial turbines are sized for high temperature (and consequently low density) air at inlet, a special turbine stage was developed for the application. Cost considerations precluded the manufacture of a custom turbine rotor, so a commercially available rotor was used. The standard turbine rotor blade profile was substantially modified and vaned nozzles for turbine inlet were designed to match the modified rotor, in line with previous turbine investigations at QUB (Spence and Artt,). An exhaust diffuser was also incorporated into the turbine stage in order to improve turbine efficiency and to moderate the exhaust noise levels through reduced air velocity. The exhaust diffuser exited into a specially designed exhaust silencer.The performance of the turbine stage was measured before the unit was incorporated into the complete demonstrator plant. The peak efficiency of the turbine was established at 81%.5. Heat exchangersDue to packaging constraints, the heat exchangers had to be specially designed with careful consideration being given to heat exchanger position and header geometry in an attempt to achieve the best performance from the heat exchangers. Tube and fin aluminium heat exchangers, similar to those used in automotive intercooler applications, were chosen primarily because they could be produced on a ‘one-off’ basis at a reasonable cost. There were other heat exchanger technologies available that would have yielded better performance from the available volume, but high one-off production costs precluded their use in the demonstrator plant.Several different tube and fin heat exchangers were tested and used to validate a computational model. Once validated, the model was used to assess a wide range of possible heat exchanger configurations that could fit within the Thermo King SL200 chassis. Fitting the proposed heat exchangers within the existing chassis and around the mechanical drive system for the circulation fans, but while still achieving the necessary heat exchanger performance was very challenging. It was clear that potential heat exchanger performance was being sacrificed through the choice of tube and fin construction and by the constraints of the layout of the existing SL200 chassis. The final selection comprised two separate aftercooler units, while the single recuperator was a large, triple pass unit. Based on laboratory tests and the heat exchanger model, the anticipated effectiveness of both the recuperator and aftercooler units was 80%.6. InstrumentationA range of conventional pressure and temperature instrumentation was installed on the air-cycle demonstrator plant. Air temperature and pressure was logged at inlet and outlet from each heat exchanger, compressor and the turbine. The speed of the primary compressor was determined from the speed measurement on the diesel engine control unit, while the cold air unit was equipped with a magnetic speed counter. No air flow measurement was included on the demonstrator plant. Instead, the air flow rate was deduced from the previously obtained turbine performance map using the measurements of turbine pressure ratio and rotational speed.7. System testingDuring some preliminary tests a heat load was applied and the functionality of the demonstrator plant was established. Having assessed that it was capable of delivering approximately the required performance, the plant was transported to a Thermo King calorimeter test facility specifically for measuring the performance of transport refrigeration units. The calorimeter was ideally suited for accurately measuring the refrigeration capacity of the air-cycle demonstrator plant. The calorimeter was operated according to standard ARI 1100-2001; the absolute accuracy was better than 200W and all auxiliary instrumentation was calibrated against appropriate standards.The performance capacity of transport refrigeration units is generally rated at two operating conditions; 0 and −20 °C, and both at an ambient temperature of +30 °C. Along with the specified operating conditions of 0 and −20 °C, a further part-load condition at −20 °C was assessed. Considering that the air-cycle plant was only intended to demonstrate a concept and that there were concerns about the reliability of the gearbox and the cold air unit thrust bearing, it was decided to operate the plant only as long as was necessary to obtain stabilised measurements at each operating point. The demonstrator plant operated satisfactorily, allowing sufficient measurements to be obtained at each of the three operating conditions. The recorded performance is summarised .In total, the unit operated for approximately 3 h during the course of the various tests. While the demonstrator plant operated adequately to allow measurements, some smoke from the oil system breather suggested that the thrust bearing of the CAU was heavily overloaded and would fail, as had been anticipated at the design stage. Testing was concluded in case the bearing failed completely causing the destruction of the entire CAU. There was no evidence of any gearbox deterioration during testing.8. Discussion of measured performanceFrom the calorimeter performance measurements, the primary objective of the project had been achieved. A unique air-cycle refrigeration system had been developed within the same physical envelope as the existing Thermo King SL200 refrigeration unit, w

蒸发冷却空调应用中存在问题及解决设想论文

摘要:

目前,集中式蒸发冷却式空调系统在我国西部地区得到了越来越广泛的应用, 但其缺点即风道大、使用灵活性差,而且不能实现多个房间分别进行调节控制。针对集中式系统的缺点本文提出采用有别于传统风机盘管加新风系统的半集中式蒸发冷却空调系统,并从理论上进行了可行性分析。

关键词:

蒸发冷却 半集中式 空调系统 环保 节能

1. 蒸发冷却技术现状

蒸发冷却过程是以水作为制冷剂的,由于不使用CFCs,因而对大气环境无污染,而且可直接采用全新风,极大地改善了室内空气品质。同通常的机械制冷的原理一样,由制冷剂的蒸发而提供冷量。但是对蒸发冷却来说,是利用水的蒸发取得能量,它不是将蒸发后的水蒸汽再进行压缩、冷凝回到液态水后再进行蒸发。一般可以直接补充水分来维持蒸发过程的进行。

据有关文献对蒸发冷却空调在乌鲁木齐、西安、哈尔滨、北京的应用分析可知:其运行能耗约为常规空调设备的1/5(机械制冷系统装机功率50w/m2左右,蒸发冷却系统装机功率10 w/m2,节电80%);从初投资方面看,约为常规空调设备的1/2(机械制冷方式造价400元/ m2左右,蒸发冷却系统造价250元/ m2左右,节省投资30~50%),且具有加湿功能;从室内空气品质方面看,蒸发冷却系统由于按100%新风运行,因此明显优于常规空调系统,而且它以水为制冷剂,不使用CFCS,对大气环境无污染。

该技术在八十年代中期传入我国,在我国西部干旱地区(尤其是新疆地区)得到研究和应用,因为我国西北地区昼夜温差大,空气干燥,夏季室外空调计算4湿球温度较低(一般低于22度);昼夜温差大,每日早晚与中午气温(干球温度)相差较大;冬季室外干球温度较低,多为干冷气候(若只对室内供热,室内空气相对湿度一般低于20%)。这些独特的气象条件为蒸发冷却技术提供了天然的应用场所,因为蒸发冷却是一种适宜在干燥地区使用的供冷技术,它利用水分蒸发吸热来降低送风温度,从而降低房间温度。正是由于西部的特殊气候条件使得蒸发冷却空调系统替代常规空调系统成为可能。目前蒸发冷却空调系统在新疆地区的宾馆、办公楼、餐饮、娱乐、体育馆、影剧院等公共与民用建筑以及一些工业建筑中已广泛应用,仅乌鲁木齐绿色使者中央空调有限责任公司在新疆地区完工的工程项目超过70余个[1]。

2. 蒸发冷却空调存在的问题

当前我国西部地区的许多高楼大厦、公共建筑内,仍广泛使用机械制冷空调系统。尽管这些系统提供了舒适的工作生活环境,但和蒸发冷却空调机组相比较其一次性投资巨大、运行费用昂贵、维修与养护复杂,而且会引发“病态建筑综合症”和造成环境污染。尤其是SARS疫情爆发后空调系统的安全性问题更加引起暖通界人士和卫生部的关注。室内空气品质越来越得到关注,而蒸发冷却系统由于按100%新风运行,不使用CFCS,对大气环境无污染,因此明显优于常规空调系统。目前在我国西部地区多采用集中式蒸发冷却系统, 其优点是使用时间长,便于维护,整个系统在需进行空气调节的场所仅有风道敷设而没有水路布置,故其设计简单成本低,因不需在吊顶中设置水管从而彻底消除了凝结水渗漏的问题。另外,该系统多采用全新风,大大改善室内空气品质,同时,在过渡季节采用全新风可节约能耗。

集中式蒸发冷却系统也有一些缺陷:首先,应用单元式直接蒸发冷却空调机会导致室内湿度较高(通过对乌鲁木齐已完工系统现场测试,室内湿度约75%)。其次,由于是采用冷空气对室内进行冷却而空气的比热较小,所以该系统风量较大,结果导致系统风道比一般半集中式空调系统风道占用空间大,导致其使用灵活性差。第三点,考虑到成本问题,目前尚没有物美价廉的末端产品来实现多个房间分别控制调节。但从设计和经济的角度考虑对温湿度控制精度要求不高的舒适性空调仍具有可行性,尤其对大型娱乐场所、餐饮、商场、体育场馆、会议中心、各种活动中心等公共场所具有很大优势。这也是集中式蒸发冷却空调系统在新疆地区近年来应用广泛的一个重要原因[2]。

3. 半集中式蒸发冷却空调系统的提出

由于集中式系统的缺点即风道大、使用灵活性差,而且不能实现多个房间分别进行调节控制。因此在某些场合限制了集中式空调系统的应用。因为传统的半集中式空调系统该系统能单独调节各个房间温度,适合风管不易布置和层高较低的场所,如宾馆客房和写字间等。故针对集中式系统的缺点本文提出了有别于传统风机盘管加新风系统的半集中式蒸发冷却空调系统,并从理论上进行了可行性分析。

3.1 半集中式蒸发冷却式空调系统

此系统和传统的风机盘管加新风系统略有不同,传统风机盘管加新风系统所用冷媒是冷水机组提供的冷水,故冷水机组是核心。而半集中式蒸发冷却系统的.核心是蒸发冷却段,是利用水的蒸发取得能量,它不是将蒸发后的水蒸汽再进行压缩、冷凝回到液态水后再进行蒸发,而是直接补充水分来维持蒸发过程的进行,系统中新风由蒸发冷却新风机组处理,根据室外设计参数和负荷特点可选用单级或多级蒸发冷却。具体图示见图3-1。

传统半集中系统 蒸发冷却半集中系统

图3-1 传统系统与蒸发冷却系统的比较

直接蒸发冷却处理过程中,新风被等焓加湿,循环水温近似等于进口空气湿球温度。例如在乌鲁木齐夏季室外空调计算湿球温度约18℃,当空气被直接蒸发冷却处理后,理论上循环水温亦能达到18℃。若使用间接-直接蒸发冷却过程,则新风首先经等湿冷却,然后等焓加湿,这样处理后循环水温可进一步降低达到13~16℃,虽然经上述两种方式处理后的水温均高于冷水机组的冷冻水温7~12℃,但只要加大水量,通入冷却盘管后仍然可以承担部分负荷。故半集中式蒸发冷却系统与传统系统的主要区别是它的所有负荷均由蒸发冷却过程承担,而不需要冷水机组和冷却水系统,其初投入大大降低,一次投资综合造价仅为传统制冷空调方式的40%~80%。

3.2 可行性分析

为了探讨半集中式蒸发冷却空调系统在西北地区使用的可行性,以乌鲁木齐气候为例,进行设计方案的探讨和比较。乌鲁木齐室内外状态点及参数见图3-2。

图3-2 室内外状态点

地点:乌鲁木齐夏季

季节:夏季

tgw:室外干球温度 34.1℃

tsw:室外湿球温度 18℃

tgn:室内设计温度 27℃

相对湿度 60%

大气压力 906.7 mbar

3.2.1 传统风机盘管+新风系统

从图3-2中可看出,夏季室外空气的含湿量dw小于室内空气的含湿量dn,即室外空气需要加湿处理,为实现这一目的,在传统的风机盘管加新风系统中一般是在送风机前安装蒸汽加湿系统对被处理空气进行等温加湿。见图3-3。

空气处理过程(W 室外空气状态点,N室内空气状态点,KL新风机温升)

图3-3 传统风机盘管加新风系统空气状态变化图

3.2.2 半集中式蒸发冷却系统[风机盘管+直接蒸发冷却新风机组] [3]

风机盘管+直接蒸发冷却新风机组的半集中式系统,则其空气变化过程如图3-4所示。

图3-4 风机盘管+直接蒸发冷却新风机组

直接蒸发冷却新风机组,直接蒸发冷却效率ηDEC最高可达90%,按ηDEC=90%计算:

(3-1)

注:tws 室外空气湿球温度

使用循环水处理的直接蒸发冷却是一等焓加湿过程,因此可确定L点的状态。循环水温最终被固定在机器露点L接近室外湿球温度。由式(3-1)可知:

tsh=tL=tw-(tw-tws)×90%

=34.1-(34.1-18)×90%=19.6℃

注:tsh 直接蒸发冷却循环水水温

将循环水通入风机盘管,由于循环水水温略高于室内空气露点温度18.4℃,所以只能对室内回风进行等湿冷却。

3.2.3 半集中式蒸发冷却系统[风机盘管+(间接+直接)蒸发冷却新风机组]

风机盘管+(间接+直接)蒸发冷却新风机组的半集中式系统,空气变化过程见图3-5。

图3-5 风机盘管+(间接+直接)蒸发冷却新风机组

间接+直接蒸发冷却新风机组。绿色使者中央空调有限公司生产的板翅式间接蒸发冷却器其效率ηIEC最高可达60~75%,如果按ηIEC=60%计算:

(3-2)

注:tws 室外空气湿球温度

间接蒸发冷却是一等湿降温过程,根据式(3-2)可确定P点的状态。

tP=tw-(tw-tws)×60%

=34.1-(34.1-18)×60%

=24.4℃

由tp=24.4℃可知其湿球温度tps=14.8℃并且直接蒸发冷却入口温度就是24.4℃。再根据式(3-1) 得: tsh=tL=tp-(tp-tps)×90%

=24.4-(24.4-14.8)×90%

=15.76℃

注:tsh 直接蒸发冷却循环水水温

将循环水通入风机盘管,由于循环水水温低于室内空气露点温度18.4℃,所以可对室内回风进行除湿冷却。

3.2.4 半集中式蒸发冷却系统[风机盘管+(间接1+间接2+直接)蒸发冷却新风机组]

风机盘管+(间接1+间接2+直接)蒸发冷却新风机组,空气变化过程如图3-6所示。

图3-6 间接1+间接2+直接蒸发冷却半集中式系统

采用带有表冷却段(冷却塔供冷的第一级间接蒸发冷却段)的三级蒸发冷却新风机组,其表冷段利用冷却塔的冷却水对新风进行冷却。这种将冷却水通入表冷器的冷却塔供冷方式同间接蒸发冷却一样实现了对空气的等湿降温处理。因此,这种带有冷却塔供冷的间接+直接蒸发冷却机组又被称为三级蒸发冷却机组(两级间接蒸发冷却+直接蒸发冷却)。如利用冷却塔的冷却水,冷却效率可达η冷却塔= 40~50%左右,空气终状态温度≈空气初状态湿球温度w+6~8℃. 按η冷却塔=50%计算有:

(3-3)

首先根据式(3-3)可确定P点的状态。

tP=tw-(tw-tws)×50%

=34.1-(34.1-18)×50%

=26℃

则间接蒸发冷却的入口干球温度就是26℃,根据焓湿图可知此时湿球温度tps为15.3℃。根据式(3-2)可确定Q点的状态

tQ=tp-(tP-tPs)×60%

=26-(26-15.3)×60%

=19.6℃

则直接蒸发冷却的入口干球温度就是19.6℃,根据焓湿图可知此时湿球温度tQS为13.5℃。再根据式(3-1)可确定L点的状态

tL=tQ-(tQ-tQS)×90%

=19.6-(19.6-13.5)×90%

=14.1℃

将循环水通入风机盘管,由于循环水水温低于室内空气露点温度18.4℃,所以可对室内回风进行除湿冷却。

4. 结束语

半集中式蒸发冷却系统用水作为制冷剂, 无冷水机组, 其中直接系统和(间接+直接)系统均无冷却水系统, 故它们的初投资均比传统半集中式系统低, 而且运行费用少。

由于半集中式蒸发冷却系统的供水温度较高,故供水量较大。其中直接蒸发冷却段的冷却水量的多少将直接影响到机组的制冷量,而负荷需要的冷却水量较大时又需要考虑补水和补水量等等,这些都需要进一步的探讨。

参考文献

1. 翔,武俊梅等,中国西北地区蒸发冷却技术应用状况的研究,第11届全国暖通空调技术信息网大会论文集 419~423

2. 刘鸣,蒸发冷却空调技术的工程应用问题,西北五省暖通空调制冷热能动力2002联合学术年会 84~87

3. 陈沛霖,蒸发冷却在空调中的应用,西安制冷,1999,1:1~7

你是学建筑环境也设备工程的不

  • 索引序列
  • 暖通设计参考文献中的论文期刊
  • 暖通毕设参考文献期刊
  • 暖通设计毕业论文
  • 暖通空调设计正毕业论文设计
  • 暖通空调论文参考文献
  • 返回顶部