首页 > 期刊投稿知识库 > 信号的采集与分析方法研究论文

信号的采集与分析方法研究论文

发布时间:

信号的采集与分析方法研究论文

相关论文:Vc++下如何利用Matlab工具箱进行数字信号处理摘要: 本文详述了在Vc环境下如何利用Matlab工具箱进行数字信号处理,全文以Matlab工具箱中功率谱密度分析函数为例,介绍了通过Matlab自带的引擎、Matlab自身的编译器以及利用MathTools公司的Matcom进行对工具箱函数的调用。 关键词:Matlab M-文件 引擎 编译器 Matcom Vc++Matlab的信号处理工具箱是信号算法文件的集合,它处理的基本对象是信号与系统,信号处理工具箱位于目录、Toolbox\Signal下,利用工具箱中的文件可以实现信号的变换、滤波、谱估计、滤波器设计等。在其它的环境如Vc下如果能调用Matlab工具箱中的文件,会大大地加快一些算法的实现,同时其可靠性也很高。利用Matlab引擎 Matlab引擎采用客户和服务器计算方式,在运用中,Vc的C语言或C++语言的程序作为前端客户机,它向Matlab引擎传递命令和数据信息,并从Matlab引擎接收数据信息,它提供了下列几个函数: engOpen, engGetArray, engPutArray, engEvaString, engOutputBuffer ,engClose与客户机进行交互。下面例程是在Vc下建一个基于对话框的应用程序,在对话框中设置一个Button控件OnMatlabEngine.,在对话框 .cpp文件中加入”engine.h” 和“math.h” 头文件,下面给出部分程序清单。Void CtestmatlabDlg::OnMatlabEngine(){Engine *ep;mxArray* T=NULL,*result=NULL,*mFs=NULL,*mnfft= NULL;double datax[1024];char buffer[1024];for(int j=0;j<1024;j++)//注:如通过采集卡采集数据可将采集的数据放在datax[]数组中,此循环就不需要{double samt=(double)(1.0/1024); datax[j]=sin(2.0*63.0*samt*3.1415926+1.15*3.1415926);}double *pPxx,*pFxx;if(!(ep=engOpen(" \0"))){//打开Matlab引擎,建立与本地Matlab的连接fprintf(stderr,"\n Can't start MATLAB engine\n");exit(-1);} double Fs[1]={1024};//因为Matlab所有参与运算的参数都是矩阵的形式,因而下列几行将参数转变double nfft[1]={1024};//成Matlab可接受的矩阵形式。T=mxCreateDoubleMatrix(1,1024,mxREAL);mnfft=mxCreateDoubleMatrix(1,1,mxREAL);mFs=mxCreateDoubleMatrix(1,1,mxREAL);mxSetName(T,"T");mxSetName(mnfft,"mnfft");mxSetName(mFs,"mFs");memcpy((char*)mxGetPr(T),(char*)datax, 1024*sizeof(double));memcpy((char*)mxGetPr(mnfft),(char*)nfft, sizeof(double));memcpy((char*)mxGetPr(mFs),(char*)Fs,1*sizeof(double));engPutArray(ep,T); //将转化的参数放入引擎中,此时可在Matlab command窗口下查看此参数engPutArray(ep,mnfft); engPutArray(ep,mFs);engEvalString(ep,"[pxx,fo]=psd(T,mnfft,mFs);"); //利用引擎执行工具箱中文件engOutputBuffer(ep,buffer,512); //如只想看显示图形,可将返回参数去掉,psd无返回参数缺省情况下会自动画图形result=engGetArray(ep,"pxx");//取出引擎中的数据放在所指的区域中供后续处理pPxx=mxGetPr(result); result=engGetArray(ep,"fo");pFxx=mxGetPr(result);engEvalString(ep,"plot(fo,10*log10(pxx));");//利用引擎画图engEvalString(ep,"title('功率谱分析');");engEvalString(ep,"xlabel('Hz');");engEvalString(ep,"ylable('db');");mxDestroyArray(T); //释放内存mxDestroyArray(mFs);mxDestroyArray(mnfft);mxDestroyArray(result);engEvalString(ep,"close;");engClose(ep);}上述程序在Vc下编译需要将 libeng.dll和libmx.dll两个动态库利用以下的命令:lib/def:<自己的Matlab的安装路径,下同>e:\ Matlab\extern\include\*.def /machine:ix86 /out:*.lib来生成程序所需的静态连接库libeng.lib和libmx.lib,将libeng.lib和libmx.lib所在的目录加入Vc++ project/link/object/library modules下即可。利用Matlab自身的编译器调用工具箱中的函数 Matlab的编译器可将Matlab的M文件转换为为C或C++的源代码以产生完全脱离Matlab运行环境的独立的运用程序,但Matlab本身的资料说明编译器如用来建立独立的运用程序,不能调用Matlab工具箱中的函数,这非常不利于搞一些特殊的算法。本人研究了一段时间发现,工具箱中的函数既然是M文件就一定可以用编译器来编译,以提供如Vc的调用函数,但是编译器只能编译一个独立的M文件,即这个 M文件不依赖于其他的M文件。如果M文件中又调用了其他的M文件,可将被调用的M文件拷贝到调用M文件的相应位置,作适当的改动就可以用于编译器编译。编译器不支持图形函数,所以M文件中如有图形函数需注释掉。当Matlab的编译器mcc加入适当的参数-e(mcc –e *.*)或-p(mcc –p *.*)就可生成将输入的M文件转换为适用于特定运用的C或C++源代码。这样如果要在Vc下编译通过,还需连入以下几个库libmmfile.dll, libmatlb.dll, libmcc.dll, libmat.dll. libmx.dll. mibut.dll 以及Matlab C MATH库,建议采用前述的方法将动态连接改为静态连接。对于C/C++编译环境的设置,在Matlab command窗口下运行mex –setup 然后依提示操作,而对于C/C++连接环境的设置,运行mbuild –setup依提示操作即可。下面给出利用编译器将Matlab工具箱中psd.m文件生成可供Vc调用的函数。将psd.m文件拷贝一份至Matlab\bin目录下,改写相应调用的M文件如nargchk.m, hanning.m等。为生成的代码简洁,对于采集数据处理输入参数很明了的情况下可作大量的删减,最终使psd.m成为一个不依赖于其他M文件的独立的M文件,注意千万注释掉作图代码,最终改成如下形式,限于篇幅给出关键的几步: function [Pxx,f]=psd(Fs,nfft,noverlap,x)window=o,5*(1-cos(2*pi*(1:nfft)’/(nffft+1)));//hanning 窗dflag=’none’;window=window(;)………………………………….以上只要稍懂Matlab语言和信号处理知识就可完成这项工作。假设上述代码重新存为testwin.m,在Matlab command 窗口下设置好环境参数运行mcc –e testwin,则可在Matlab\bin下生成testwin.c ,如运行mcc –p testwin 则生成testwin.cpp. Vc下建立一个基于对话框的文件,然后在对话框里加一个Button控件OnButtonPsd 将上述生成的.c文件的头文件加入到工程的.cpp中,且将#ifdef_cplusplus extern “c”{#end ifc代码声明加入Vc的包含文件和生成的.C的包含文件之间将#ifdef_cplusplus}#end if加入.cpp文件未尾为了简洁且便于处理将生成的c函数稍改动,给出部分代码如下: void CTestpsdwinDlg::OnButtonPsd(){mxArray* x_rhs_;//指向采集数据存放区Fs=23510;//数据采集的频率 nfft=1024;//1024点的fftdouble datax[1024]//采集的数据x_rhs_mxCreateDoubleMatrix(1,1024,mxReal);memcpy(mxGetPr(x_rhs_),datax,1024*sizeof(double));noverlap=512;……………….……………….mccCopy(&Pxx,&Spec);mccCopy(&f,&frevgg_vector);for(int j=0;j<(int)(nfft/2+1);j++){datap[j]=mccGetRealVectorElement(&Pxx, (j+1));//功率谱密度存于datap[]数组dataf[j]=mccGetRealVectorElement(&f, (j+1));//相应频率存于数组dataf[]中}mccFreeMatrix(&Pxx);……………….SendMessageBox(WM_PAINT,0,0);//利用Vc下的图形函数画图Return;}如上生成的程序可读性不太好,而生成的c++代码则可读性较好,但千万注意只能用 Matlab的MATH库,不可用c++的MATH库,否则编译会出错,限于篇幅在此不述。3)利用Matcom调用工具箱中的函数Matcom编译M文件,先将M文件按照与Matcom的cpp库的对应关系翻译为cpp源代码,然后用对应版本的c编译器将cpp文件编译成相应的exe或dll文件,所以第一次运行要指定c编译器的路径,否则无法编译,指定好的编译信息就写在Matcom\bin\matcom.ini文件中,不过这一步按装matcom时,它自动寻找编译器并将其写入matcom.ini文件中,matcom4.5版中使用TeeChart3.0 OCX控件,因而它支持图形操作。我们依然用上述的testwin.m文件,不要将图形函数注释掉,利用Mideva来生成可被Vc调用的信号处理程序。运行Mideva在主界面上直打开M文件,在菜单中选择compile to dll,输入testwin..在Matcom debug目录下可以找到这样的几个文件,testwin.c ,testwin.h,testwin.cpp,testwin.lib,testwin.dll,testwin.exp等。 将上述testwin.cpp和testwin.h加入工程中,project/add to project/files并且在相应的文件中加入”stdafx.h” 加连接库:Tools\option\directory\ , 选include选项,加入e:\matcom45\lib (包含matcom.h) library选项,加入e:\matcom45\lib4) project\add to project\files 文件类型选项选(.lib)将e:\matcom45\lib\v4501.lib加入工程中编译运行。相应代码如下:void CtestmatcomDlg::OnpsdButton(){double datap[512],dataf[512];initM(MATCOM_VERSION);//初始化matcom库Mm Fs,nfft,noverlap;//创建矩阵Mm x=zeros(1,1024);Fs=1024;nfft=1024;noverlap=128;dMm(Pxx_o);dMm(f_o);//创建并命名矩阵datax[];//数据采集的数据存于此数组中for(int i=1;i<=1024;i++){x.r(1,i)=datax[i+1];//给x阵赋值}testwin(Fs,nfft,noverlap,x,i_o,Pxx,f_o);//matcom生成的函数for(i=0;i<513;i++){//取出功率谱密度分析结果dataf[i]=f_o.r(i+1,1);datap[i]=Pxx_o.r(i+1,1);}exitM();return;}可见利用Matcom进行M文件转换非常的容易,生成的代码可读性很好,以上的转换同时生成了可供Vc调用的动态连接库,其使用和一般的动态库一样使用。同时需指明Matcom不仅可转换独立的不依赖于其它M文件的M文件,同时可转换调用其它M文件的M文件嵌套。条件是这此M文件在同一个目录下面,如前所述的psd.m可直接用上述方法转换,生成了多个重载形式的psd函数结论: 利用Mtlab引擎调用工具箱中的函数可节省大量的系统资源,应用程序整体性能较好,但不可脱离Matlab 的环境运行。用Matlab编译器进行工具箱函数的调用,须转换相应的M文件使其成为独立的M文件,且不支持图形函数,转换的代码可读性不太好。用Matcom 进行转换非常方便,生成的代码可读性很好,支持图形函数,且代码执行的速度比不转换平均要快1.5倍以上。以上程序在Vc++ 6.0,Matlab5.2,Matcom4.5中调试通过,以上方法在工程实践中已得到很好的运用。仅供参考,请自借鉴希望对您有帮助

LabVIEW LabVIEW程序LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。目录简介虚拟仪器 (VI) 的概念LabVIEW 的概念特点版本信息简介 虚拟仪器 (VI) 的概念 LabVIEW 的概念特点 版本信息展开 编辑本段简介虚拟仪器 (VI) 的概念虚拟仪器[1](virtual instrument)是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向。粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能。虚拟仪器主要是指这种方式。上面的框图反映了常见的虚拟仪器方案。 虚拟仪器[1]实际上是一个按照仪器需求组织的数据采集系统。虚拟仪器[1]的研究中涉及的基础理论主要有计算机数据采集和数字信号处理。目前在这一领域内,使用较为广泛的计算机语言是美国NI 公司的 LabVIEW[2]。 虚拟仪器的起源可以追溯到20世纪70年代,那时计算机测控系统在国防、航天等领域已经有了相当的发展。PC机出现以后,仪器级的计算机化成为可能,甚至在 Microsof t公司的 Windows 诞生之前,NI公司已经在Macintosh计算机上推出了LabVIEW2.0 以前的版本。对虚拟仪器和 LabVIEW [2]长期、系统、有效的研究开发使得该公司成为业界公认的权威。目前LabVIEW 的最新版本为 LabVIEW2011,LabVIEW 2009 为多线程功能添加了更多特性,这种特性在 1998 年的版本 5 中被初次引入。使用 LabVIEW 软件,用户可以借助于它提供的软件环境,该环境由于其数据流编程特性、LabVIEW Real-Time 工具对嵌入式平台开发的多核支持,以及自上而下的为多核而设计的软件层次,是进行并行编程的首选。 普通的 PC 有一些不可避免的弱点。用它构建的虚拟仪器[1]或计算机测试系统性能不可能太高。目前作为计算机化仪器的一个重要发展方向是制定了VXI 标准,这是一种插卡式的仪器。每一种仪器是一个插卡,为了保证仪器的性能,又采用了较多的硬件,但这些卡式仪器本身都没有面板,其面板仍然用虚拟的方式在计算机屏幕上出现。这些卡插入标准的 VXI 机箱,再与计算机相连,就组成了一个测试系统。VXI 仪器价格昂贵,目前又推出了一种较为便宜的 PXI 标准仪器。LabVIEW 的概念与 C 和 BASIC 一样,LabVIEW[2]也是通用的编程系统,有一个完成任何编程任务的庞大函数库。LabVIEW[2]的函数库包括数据采集、GPIB、串口控制、数据分析、数据 LabVIEW标志显示及数据存储,等等。LabVIEW[2]也有传统的程序调试工具,如设置断点、以动画方式显示数据及其子程序(子VI)的结果、单步执行等等,便于程序的调试。 LabVIEW[2](Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而 LabVIEW [2]则采用数据流编程方式,程序框图中节点之间的数据流向决定了VI及函数的执行顺序。VI指虚拟仪器,是 LabVIEW [2]的程序模块。 LabVIEW [2]提供很多外观与传统仪器(如示波器、万用表)类似的控件,可用来方便地创建用户界面。用户界面在 LabVIEW [2]中被称为前面板。使用图标和连线,可以通过编程对前面板上的对象进行控制。这就是图形化源代码,又称G代码。LabVIEW [2]的图形化源代码在某种程度上类似于流程图,因此又被称作程序框图代码。编辑本段特点尽可能采用了通用的硬件,各种仪器的差异主要是软件。 可充分发挥计算机的能力,有强大的数据处理功能,可以创造出功能更强的仪器。 用户可以根据自己的需要定义和制造各种仪器。 未来 虚拟仪器研究的另一个问题是各种标准仪器的互连及与计算机的连接。目前使用较多的是IEEE488 或 GPIB协议。未来的仪器也应当是网络化的。[2] LabVIEW[2](Laboratory Virtual instrument Engineering Workbench)是一种图形化的编程语言的开发环境,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。LabVIEW [2]集成了与满足 GPIB、VXI、RS-232和 RS-485 协议的硬件及数据采集卡通讯的全部功能。它还内置了便于应用TCP/IP、ActiveX等软件标准的库函数。这是一个功能强大且灵活的软件。利用它可以方便地建立自己的虚拟仪器,其图形化的界面使得编程及使用过程都生动有趣。 图形化的程序语言,又称为 “G” 语言。使用这种语言编程时,基本上不写程序代码,取而代之的是流程图或框图。它尽可能利用了技术人员、科学家、工程师所熟悉的术语、图标和概念,因此,LabVIEW[2]是一个面向最终用户的工具。它可以增强你构建自己的科学和工程系统的能力,提供了实现仪器编程和数据采集系统的便捷途径。使用它进行原理研究、设计、测试并实现仪器系统时,可以大大提高工作效率。 利用 LabVIEW[2],可产生独立运行的可执行文件,它是一个真正的32位/64位编译器。像许多重要的软件一样,LabVIEW[2]提供了Windows、UNIX、Linux、Macintosh的多种版本。 它主要的方便就是,一个硬件的情况下,可以通过改变软件,就可以实现不同的仪器仪表的功能,非常方便,是相当于软件即硬件!现在的图形化主要是上层的系统,国内现在已经开发出图形化的单片机编程系统(支持32位的嵌入式系统,并且可以扩展的),不断完善中(大家可以搜索 CPUVIEW 会有更详细信息;) LABVIEW的应用领域 LABVIEW有很多优点,尤其是在某些特殊领域其特点尤其突出。 测试测量:LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。 控制:控制与测试是两个相关度非常高的领域,从测试领域起家的LabVIEW自然而然地首先拓展至控制领域。LabVIEW拥有专门用于控制领域的模块----LabVIEWDSC。除此之外,工业控制领域常用的设备、数据线等通常也都带有相应的LabVIEW驱动程序。使用LabVIEW可以非常方便的编制各种控制程序。 仿真:LabVIEW包含了多种多样的数学运算函数,特别适合进行模拟、仿真、原型设计等工作。在设计机电设备之前,可以现在计算机上用LabVIEW搭建仿真原型,验证设计的合理性,找到潜在的问题。在高等教育领域,有时如果使用LabVIEW进行软件模拟,就可以达到同样的效果,使学生不致失去实践的机会。 儿童教育:由于图形外观漂亮且容易吸引儿童的注意力,同时图形比文本更容易被儿童接受和理解,所以LabVIEW非常受少年儿童的欢迎。对于没有任何计算机知识的儿童而言,可以把LabVIEW理解成是一种特殊的“积木”:把不同的原件搭在一起,就可以实现自己所需的功能。著名的可编程玩具“乐高积木”使用的就是LabVIEW编程语言。儿童经过短暂的指导就可以利用乐高积木提供的积木搭建成各种车辆模型、机器人等,再使用LabVIEW编写控制其运动和行为的程序。除了应用于玩具,LabVIEW还有专门用于中小学生教学使用的版本。 快快速开发:根据笔者参与的一些项目统计,完成一个功能类似的大型应用软件,熟练的LabVIEW程序员所需的开发时间,大概只是熟练的C程序员所需时间的1/5左右。所以,如果项目开发时间紧张,应该优先考虑使用LabVIEW,以缩短开发时间。 跨平台:如果同一个程序需要运行于多个硬件设备之上,也可以优先考虑使用LabVIEW。LabVIEW具有良好的平台一致性。LabVIEW的代码不需任何修改就可以运行在常见的三大台式机操作系统上:Windows、Mac OS 及 Linux。除此之外,LabVIEW还支持各种实时操作系统和嵌入式设备,比如常见的PDA、FPGA以及运行VxWorks和PharLap系统的RT设备。编辑本段版本信息简单回顾一下LabVIEW最近的发展历史(也仅限于我能够收集到的版本),从这里也可以间接的体会到LabVIEW的发展速度有多快。从LabVIEW的软件版本来看(我能收集到的),应该有LabVIEW 5系列、LabVIEW 6系列、LabVIEW 7系列和LabVIEW 8系列。发布年份可能有误,以NI为准。 LabVIEW 5.0 发布于:1998年 LabVIEW 5.1.1 发布于:2000年3月 LabVIEW 6.02 发布于:2001年2月 LabVIEW 6.1 发布于:2002年1月 LabVIEW 7.0 发布于:2003年5月 LabVIEW 7.1 发布于:2004年4月 LabVIEW 7.1.1 发布于:2004年11月 LabVIEW 8.0 发布于:2005年10月 LabVIEW 8.0.1 发布于:2006年2月 LabVIEW 8.20 发布于:2006年8月 LabVIEW 8.2.1 发布于:2007年3月 LabVIEW 8.2.1f4 发布于:2007年9月 LabVIEW 8.5 发布于:2007年8月 LabVIEW8.5.1 发布于:2008年4月 LabVIEW8.6 发布于:2008年8月 LabVIEW8.6.1 发布于:2009年2月 LabVIEW 2010 发布于:2010年8月 LabVIEW 2011 发布于:2011年8月 从NI的LabVIEW版本号,可以看出: 1、 系列号:5、6、7、8表示新的系列,软件结构或功能可能有重大改进(付费升级) 2、 版本号:5.x、6.x、7.x、8.x表示软件有新的内容或比较大的改进(付费升级) 3、 版本号:5.x.x、6.x.x、7.x.x、8.x.x表示软件较上个版本进行了修补(免费升级) 参考书籍 书 名:LabVIEW宝典 LabVIEW宝典作者:陈树学,刘萱 出 版 社:电子工业出版社 出版时间:2011-3-1 版次:1 页数:603 字数:973000 印刷时间:2011-3-1开 本: 16开 纸张:胶版纸印 印 次:1 I S B N:9787121129612

声卡的mic接口可以作为AI,扬声器接口可以作为AO。使普通电脑不用买专用的采集板卡也能实现简单的模拟量输入输出。明白了吗?输入输出用到的函数看图,波形信号处理的你应该知道在哪。

第一章 绪 论 §1-1 课题研究的背景 §1-2 信号与系统分析国内外研究现状 §1-3 Matlab概述§1-4 课题研究的目的及意义 §1-5 论文主要内容及结构 第二章 MATLAB在信号与系统分析中的应用 §2-1 信号与系统分析2-1-1 国内外关于该课题的研究现状及发展趋势 2-1-2 信号与系统分析方法分类 §2-2 Matlab在信号与系统分析中应用的简介§2-3 本章小结 第三章 Matlab在信号与系统分析中应用模型设计 §3-1 引言 §3-2 系统分析 §3-3 模型建立(是本章重点需要扩充) 第四章 (具体实例实现) §4-1 §4-2 §4-3 实验结果分析 §4-4 本章小结 第五章 结束语 参考文献 致 谢 最好找本MATLAB在信号与系统分析中的应用的书来看看。可以看看飞思科技产品研发中心出的一系列关于matlab应用的书,会对你有帮助的!祝顺利!

论文研究方法数据收集与分析

请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

通过数据进行分析的论文用数据是数学方法。

数据分析方法:将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系。

此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。

数据分析目的:

数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。

这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。

例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。

创建论文数据分析计划提示:

1、系统化

学生可以通过将研究数据系统化来开始论文数据分析。收集想法,思考哪些方面是重要的,而哪些会让自己的想法变得混乱。思考自己所收集信息的真正价值,信息的数量不会帮助论文写作,质量更加重要。

2、结构

组织论文分析。对于学生和读者来说,一切都应该非常清楚。无论主题多么复杂,都应该将其分成几部分,并按顺序排列,使人们能够对问题的所有要点有一个很好的了解。每一章都应该是自己的一个小想法。

3、词汇

论文中不应该有自己不理解的任何词汇,因为很可能读者也不会理解。对于不理解的术语,或者在写作过程中学到的术语,应该在创建论文分析时进行解释。

4、因果关系

在收集数据并将材料系统化后,学生应该退后一步,考虑因果关系。应分析关键点的有效性。如果已经做好了系统和结构部分,这应该不会太复杂。

5、重要性

从理论和实践上思考论文的要点。如果不了解大局,就无法制定好的论文数据分析计划,这就是整篇论文的意义所在。

6、简化

最后,论文数据分析计划可以帮助写作。不要浪费太多时间将已经很复杂的任务复杂化。目标应该清晰,过程要简化。

论文采取的研究方法可行性分析

采用的研究手段:

(1)文献研究法:根据所要研究内容 ,通过查阅相关文献获得充足的资料,从而全面地了解所研究课题的背景、历史、现状以及前景。

(2)研究项目分析法:在进行理论的搜集与分析之后,根据现有的研究项目整体系统进行分析与设计,实现理论与实践的相结合,使理论有理有据,设计更合理。

可行性分析:

1、总论,包括项目名称,利用外资方式,主办单位,主管部门,项目负责人,项目背景,项目具备的条件等。

2、产品的生产与销售,包括产品名称、规格与性能、市场需求情况,生产规模的方案论证,横向配套计划,产品国产化问题及销售方式、价格,内外销售比例等。

3、主要技术与设备的选择及其来源,包括采用技术、工艺、设备的比较选择,技术、设备来源及其条件与责任。

扩展资料:

毕业论文的基本教学要求是:

培养学生综合运用、巩固与扩展所学的基础理论和专业知识,培养学生独立分析、解决实际问题能力、培养学生处理数据和信息的能力。

培养学生正确的理论联系实际的工作作风,严肃认真的科学态度。

可行性分析可以从一下几个方面写:

一、研究思想的可行性

确定研究思想的可行性是一个过程,涉及从一个粗糙的思想到一个具体的研究问题的转化,涉及思考研究思想的现实性问题。

例如,我们可能对考察参加体育锻炼对心理健康的作用感兴趣。通过考虑在这个领域做研究的现实性(包括哪些类型的心理变量可能受到体育锻炼的影响,以及什么类型的身体活动可被认为是体育锻炼)

所以我们在论文中涉及的研究思想应该是具体的清晰的。除此之外,一定要检查研究思想的适当性,也就是自己要研究的东西是否符合专业要求,即,构思的研究能够显示自己的专业知识和技能吗?一位合格的导师可以帮学生确定研究思想及所用的研究方法是否合适。

二、研究方法的可行性

研究方法是实现研究内容的具体的、可执行的途径,是支撑研究的重要依据。一定要具备可行性,千万不要一味追求方法的先进性、复杂性,研究方法的选用条件是其可以更好地服务于问题的解决。

具体写作指导:

1.论述你所选研究方法对研究目标的直接有效性,即可以通过这样的方法完成研究目标。

2.如果你是通过某种实验来的出结论,那么建议简述具体的实验方法,使导师们相信你确实掌握了该种方法。

3.如果使用的不是经典或者公认的方法,那可以在这里简单解释下该方法比经典方法有哪些好处。不过我还是建议大家尽可能使用经典的、公认的研究方法。不然后面实操的时候真的会比较费劲,会耽误你论文的进展。

三、物力条件的可行性

如果你是理工科类,那么在研究中需要的器材,是否有条件能够获得这些器材,这些器材是否免费,如果不是是否能保证有足够的资金支撑到最后结论的得出,如果器材使用是免费的,那么是不是有耗材,这个又要怎么保障供应。

如果是社科类打算采用问卷或测验时,开支可能包括纸张与复印的费用、被试的交通费、被试的饮料费、获得问卷、测验或其他设备的费用、邮寄费、场地租用费等等,这些费用是不是可以负担。

具体写作指导:

简单列一个器材或者物品清单,写出获得途径,是学校本身就有的设备,还是可以在外面找到,简而言之就是说下我需要的这些东西,都可以通过某种方式获取到。如果你的论文是纯文献研究,没有什么花费,那这一部分就不需要写。

四、社会可行性

社会可行性涉及法律、道德、社会影响等社会因素。例如我们是明确禁止克隆人,那么我们就不应该再进行此类研究,所谓的社会可行性应该是不违背法律、道德,并对社会能够产生积极影响的。

具体写作指导:

这里我们假设研究的主题是研究同性恋群体的心理,那我们的社会可行性就可以这样写:现阶段人们对于这类群体是比较宽容的,并没有相关的法律禁止,也有一大部分同性恋群体愿意在研究者面前袒露心声,这就为研究提供了社会可行性。

五、基础可行性:基础可行性指的是自身具备相关的研究基础、技能。

具体写作指导:

这一部门可以学之前做的是什么研究,这个研究对我的论文写作是有哪些帮助,是否具有延续性。还可以写自身的专业学习情况,目的就是老师知道你具备相关的研究基础。

如果论文中涉及到实验器材使用的,可以写写自己的操作水平,当然器材操作比较简单的话,就没必要写了。

对语音信号的分析与研究论文

语音合成音质的好坏,语音识别率的高低,都取决于对语音信号分析的准确度和精度。例如,利用线性预测分析来进行语音合成,其先决条件是要用线性预测方法分析语音库,如果线性预测分析获得的语音参数较好,则用此参数和成的语音音质就较好。例如,利用带通滤波器组法来进行语音识别,其先决条件是要弄清楚语音共振峰的幅值,个数,频率范围及其分布情况。

语音信号特征的分析可以分为时域,频域和倒谱域。

时域分析简单直观,清晰易懂,物理意义明确。

更多有效的分析是围绕频域进行的,因为语音中最重要的感知特性反应在其功率谱中,其相位变化只起着很小的作用。

常用频域分析有带通滤波器组,傅里叶变换法和线性预测分析法。频谱具有很明显的声学特性,利用频域分析获得的特征具有实际的物理意义,如共振峰参数,基音参数周期等。

倒谱域是对对数功率谱进行傅里叶反变换得到的,可以将声道特性和激励特性有效的分开,更好的揭示语音信号的本质特征。

可以将语音信号分析分为模型分析法和非模型分析法两种。模型分析法是指依据语音信号产生的数学模型,来分析和提取表征这些模型的特征参数;共振峰模型分析法和线性预测都术语这种方法。凡不进行模型化分析的其他方法都属于非模型分析法,包括上面提到的时域分析法,频域分析法及同态分析法。

贯穿语音信号分析全过程的是“短时分析技术”。短时间内特性基本保持不变,相对稳定,准稳态过程。10~30ms内保持相对平稳。

实际信号常有一些低能量的信号分量超过采样频率的一半,如浊音的频谱超过4khz的分量至少比峰值低40db,而清音,超过8khz,频率分量也没有显著下降,因此语音信号所占的频率范围可以达到10khz以上,但对语音清晰度的有明显影响部分的最高频率为5.7kHZ左右。

电话系统为8kHZ,而时间中,采样频率为8-10kHZ,而语音合成或者语音识别,获得更高的质量,采样频率一般为15——20kHZ。

在一般的识别系统中,采样率最高为16kHZ,当继续增加采样率是,识别率几乎没有增加。

量化: 有三种方式,零记忆量化,分组量化和序列量化。

假设语音信号在10~30ms内是平稳的,后面所有的分析都是在这个假设下进行的。

为了得到短时的语音信号,要对语音信号进行加窗的操作,窗函数平滑的在语音信号上滑动,将语音信号分成帧。分帧可以连续,也可以采用交叠分段,交叠部分称为帧移,一般为窗长的一般。

加窗时,不同窗口将影响到语音信号分析的结果

​ 窗的长度对能否反映语音信号的幅度变化起决定性作用。如果N特别大,即等于几个基因周期量级,则窗函数等效于很窄的低通滤波器,此时信号短时信息将缓慢的变化,因而不能充分反映波形变化的细节。如果N特别小,即等于或小于一个基因周期的量级,则信号的能量将按照信号波形的细微状况而很快的启发,但如果N太小,滤波器的通带变宽,则不能获得平滑的短时信息,因此窗口的长度要选择合适。窗的衰减基本与窗的持续时间无关,因此当改变宽度N时,会使带宽发生变化。

窗口长度是相对于语音信号的汲引周期而言,通常认为一个语音帧内,应含有1~7个基音周期,然而不同人的基音周期变化范围很大,基音周期的持续时间会从高音的约20个采样点变化到低音调250个采样点,这意味着可能需要多个不同的N值,所以N的选择比较困难,通常在采样频率10kHZ的情况,N选择100~200量级(10~20ms)持续时间是比较合适的。

有声(V)无声(S)清音(U)判决。

能够实现这些判决的依据再于,不同性质的语音各种短时参数具有不同的概率密度函数,以及相邻的若干帧具有一致的语音特性,不会再S , U, V之间快速变化。

每个语音的输入起点和重点,利用短时平均幅度参数M和短时过零率可以做到这一点。

浊音情况下短时平均幅度参数的概率密度函数P(M|V)确定一个阈值参数M_H.根据M_H可以确定前后两个点A_1和A_2 后肯定是语音段,但精确起点,还要仔细查找。

为此,再设定一个较低的阈值参数M_L, 然后确定B_1 和 B_2, 从这两个点之后用短时过零率搜索。 清音的过零率高于无声段,但是能量低。

但是在研究结果中表明,利用短时平均过零率区分无声和清音在有些情况下不是很可靠,由于清音的强度会比无声段高一下,将门限提高一些对清音的影响不大,但在没有背景噪声的情况下,无声段将不会穿越这一提高的电平,因为可以正确区分清音和无声段。

因此采用这种过零率,具有抗干扰能力

滤波器可以是宽带带通滤波器,具有平摊的特性,粗略求语音的频谱,频率分辨率低,可以是窄带滤波器,频率分辨率较高。

现在一般都在用数字滤波器,其中如何将模拟滤波器数字化,涉及到零点极点的内容,需要参考DSP的内容。极点波峰,零点波谷。

为窗口函数。

两种方式来理解物理意义

在实际计算时,一般用离散傅里叶变换代替连续傅里叶变换,则需要对信号进行周期延拓。(非周期->连续谱,周期->离散谱),这时候得到的是功率谱 。 如果窗长度为 , 那么 的长度为 , 如果对 以 进行周期拓展,则自相关就会出现混叠现象,即这个周期的循环相关函数在一个周期中的值就与线性相关 的值不同,这样得到的功率谱就是一组前采样,若想得到全部的 个值,可以补充L个零,扩展成2L的信号,并做离散傅里叶变换,这时的循环相关与现行相关是等价的。( 后面这句话对我来说暂时是天书 )

在对窗函数的分析中,我们知道对于任何一个窗函数都存在旁瓣效应,这时候有谐波效应。

语谱图的时间分辨率和频率分辨率是由所采用的窗函数决定的。假设时间固定,对信号乘以窗函数相当于在频域用窗函数的频率响应与信号频谱的卷积。如果窗函数的频率响应 的通带宽度为 ,那么语谱图中的频率分辨率的宽度即为 。即卷积的作用将使任何两个相隔间隔频率小于 的谱峰合并为一个单峰。对于窗函数而言,通带宽度与窗长成反比,如果希望频率分辨率高,则窗长应该尽量长一些。

对于时间分辨率,假设频率固定,相当于对时间序列 做低通滤波,输出信号的带宽就是 的带宽b,根据采样定理,只需要以 的采样率就可以反映出信号的所有频率成分,这时候所具有的时间分辨率的宽度为 . 因此如果希望时间分辨率高,则窗长应该短一些。因此时间分辨率和频率分辨率是相互矛盾的,这也是短时傅里叶变换本身固有的缺点。

点评:

1.26新增理解:

这类线性主要有短时傅里叶变换与Gabor变换和小波变换,其中STFT和Gabor变换是一种加窗的傅里叶变换,使用固定大小的时频网格,时频网格在时频变换只限于时间平移和频率平移,窗函数固定的,只适用于分析带宽固定的非平稳信号,实际应用中,希望对低频分析,频率分辨率高,高频时间分辨率高,要求窗函数宽度能随之频率变化而变化。小波分析的视频分析网格变化除了时间平移外,还有时间和频率轴比例尺度的改变。适用于分析具有固定比例带宽的非平稳信号。

这类时频由能量谱或功率谱演化而来,其特点是变换为二次的。双线性关系可以表示为 其中 为能量谱,而 表示取共轭操作。

点评: 好像没见过,先跳过。。。。。

在信号分析与信号处理中,信号的“时间中心”及“时间宽度”以及频率中心与频率宽度是非常重要的概念,分别说明信号在时域和频域中心位置在两个域的扩展情况。

信号再这两个物理量的测量上有一个重要的约束原则,就是著名的“不确定性原理”。它的意义是,信号波形在频率轴上的扩张和时间轴上的扩张不可能同时小于某一界限,即若函数 和 构成一堆傅里叶变换,则不可能同时是短宽度的,即 等号成立的充分必要条件是 为高斯函数,即 . 证明,用Cauchy-Schwarts不等式可得。

窗函数为高斯函数的短时傅里叶变换称为Gabor变换。

是大于0的固定常数。由于 , 因此 . 这表明,信号 的gabor 变换 是对任何 在时间 附近对 傅里叶变换的局部化(在说什么??),达到了对 的精确分解。

Gabor变换是具有最小时频窗的短时傅里叶变换。但进一步研究发现,这两种变换都没有离散的正交基, 所以没有像离散傅里叶变换FFT那种快速算法。而且窗函数固定不变,不能随着所分析信号的成分是高频还是低频做相应的变化。所以这时候有小波变换,能够自动调节窗口长度。

小波理论采用多分辨率的分析的思想,非均匀地划分时频空间,为非平稳信号的分析提供了新途径。

定义: 小波是函数空间 中满足下述条件的一个函数或者信号 其中 表示全体非零实数, 为 的频域表示形式。 称为小波母函数。对于任意实数对,称如下形式的函数为右小波母函数生成的依赖于参数(a,b)的连续小波函数,称为小波,其中a必须为非零实数。 的作用是把基本小波 做伸缩, 的作用是确定对 分析的时间位置,也即是实践中心。 在 的附近存在明显的波动,而且波动范围的大小完全依赖于尺度因子 的变化。 时,一致, 时,范围比原来小波函数 范围大些,小波的波形变得矮宽,变化越来越缓慢,当 时, 在 附近波动范围药效,小波波形尖锐而消瘦。

给定平方可积的信号 ,即 , 则 的小波变换定义为 与傅里叶变换不同,小波变换是一个二元函数。另外,因为母函数 只在原点附近才会有明显偏离水平轴的移动,远离原点,迅速衰减为0.

假设小波函数 及傅里叶变换 都满足窗口函数的要求,他们的窗口中心和半径分别记为 和 和 和 , 可以证明对于任意任意参数对,连续小波变换和其傅里叶变换都满足窗口函数的要求,他们的窗口中心和宽度分别为

则时频窗是平面一个可变的矩形,面积为 . 这个面积只与小波的母函数 有关,与 无关,但形状随着a变换。

如果按照线性模型理论,语音信号是由激励信号和声道响应卷积产生。解卷就是将各卷积分量分开。解卷算法分为两大类,一类称为“参数解卷”,即线性预测分析,另一类算法称为“非参数解卷”,即同态解卷积,对语音信号进行同态分析后,将得到语音信号的倒谱参数,此时同态分析也称为 倒谱分析或者同态处理。

同态处理是一种较好的解卷积方法,它可以较好的将语音信号中的激励信号和声道响应分离,并且只需要用十几个倒谱系数就能相当好的描述语音信号的声道特性,因此占很重要的位置。

通常的加性信号可以用线性系统处理,满足线性叠加原理。然后很多信号是由乘性信号或者卷积信号组合的信号。这样的信号不能用线性系统处理,得用非线性系统处理。但是非线性系统分析起来困难,同态语音辛哈就是将非线性问题转换为线性问题处理。语音信号可以看做是声门激励信号与声道响应的卷积结果,所以下面仅讨论卷积同态信号的处理问题。

同态语音信号处理的一个通用的系统如图3-23所示,其符号 表示由卷积组合规则组合起来的空间,即该系统的输入和输出都是卷积性信号。同态系统的一个最主要理论结果是同态系统理论分解,分解的目的是用两个特征系统和一个线性系统来代替非线性的同态系统。分解的情形如下面所示。

分别对应声门激励信号(excitation 和 vocal tract),特征信号 是将卷积信号转化为加性信号,这时候进行Z变换,将卷积信号转化为乘积信号(疑问1),这时候得到的就是频谱,然后通过对数运算,变成加性信号,但是这个时候是对数频谱,使用不便。最后再变换回时域信号。 是在倒谱域对信号处理,常见处理方式是将语音声源信号与声道信号分离。 在倒谱域,总可以找到一个 ,当 时,声道滤波器的倒谱为0,当 时,激励的倒谱接近于0.

如果想再恢复语音信号,用d所示的逆特征系统运算即可。

MFCC (Mel Frequency cepstrum coefficient),MFCC是将人耳的听觉感知特性和语音产生机制相结合,因此目前大多数语音识别系统广泛使用这种特征。

耳蜗的滤波作用是在对数频率尺度进行的,在1000Hz以下为线性,在1000Hz以上为对数,这就使得人耳对低频比高频更敏感 对频率轴不均匀划分是MFCC特征区别于前面普通倒谱特征的最重要的特点,变换到Mel域后,Mel带通滤波器组的中心频率是按照Mel刻度均匀排列的,实际应用中,MFCC计算过程如下

MFCC有效利用的听觉特性,因此改变了识别系统的性能,如果倒谱位数增加,对识别性能影响不大。但采用动态特征,误识率有20%的下降。

点评2019.01.30:第三四次囫囵吞枣的看完MFCC,即使知道了倒谱,但最后按个离散余弦变换还是比较不能联系上,反正感觉乱乱的吧,包括差分之类的,想被打回哪门语音信号处理课上回炉了,Mark一下,始终有一天会懂其中的深意的。

与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。 任务分类和应用 根据识别的对象不同,语音识别任务大体可分为3类,即孤立词识别(isolated word recognition),关键词识别(或称关键词检出,keyword spotting)和连续语音识别。其中,孤立词识别 的任务是识别事先已知的孤立的词,如“开机”、“关机”等;连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话;连续语音流中的关键词检测针对的是连续语音,但它并不识别全部文字,而只是检测已知的若干关键词在何处出现,如在一段话中检测“计算机”、“世界”这两个词。根据针对的发音人,可以把语音识别技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。另外,根据语音设备和通道,可以分为桌面(PC)语音识别、电话语音识别和嵌入式设备(手机、PDA等)语音识别。不同的采集通道会使人的发音的声学特性发生变形,因此需要构造各自的识别系统。语音识别的应用领域非常广泛,常见的应用系统有:语音输入系统,相对于键盘输入方法,它更符合人的日常习惯,也更自然、更高效;语音控制系统,即用语音来控制设备的运行,相对于手动控制来说更加快捷、方便,可以用在诸如工业控制、语音拨号系统、智能家电、声控智能玩具等许多领域;智能对话查询系统,根据客户的语音进行操作,为用户提供自然、友好的数据库检索服务,例如家庭服务、宾馆服务、旅行社服务系统、订票系统、医疗服务、银行服务、股票查询服务等等。 前端前端处理是指在特征提取之前,先对原始语音进行处理,部分消除噪声和不同说话人带来的影响,使处理后的信号更能反映语音的本质特征。最常用的前端处理有端点检测和语音增强。端点检测是指在语音信号中将语音和非语音信号时段区分开来,准确地确定出语音信号的起始点。经过端点检测后,后续处理就可以只对语音信号进行,这对提高模型的精确度和识别正确率有重要作用。语音增强的主要任务就是消除环境噪声对语音的影响。目前通用的方法是采用维纳滤波,该方法在噪声较大的情况下效果好于其它滤波器。处理声学特征 声学特征的提取与选择是语音识别的一个重要环节。声学特征的提取既是一个信息大幅度压缩的过程,也是一个信号解卷过程,目的是使模式划分器能更好地划分。由于语音信号的时变特性,特征提取必须在一小段语音信号上进行,也即进行短时分析。这一段被认为是平稳的分析区间称之为帧,帧与帧之间的偏移通常取帧长的1/2或1/3。通常要对信号进行预加重以提升高频,对信号加窗以避免短时语音段边缘的影响。常用的一些声学特征* 线性预测系数LPC:线性预测分析从人的发声机理入手,通过对声道的短管级联模型的研究,认为系统的传递函数符合全极点数字滤波器的形式,从而n 时刻的信号可以用前若干时刻的信号的线性组合来估计。通过使实际语音的采样值和线性预测采样值之间达到均方差最小LMS,即可得到线性预测系数LPC。对 LPC的计算方法有自相关法(德宾Durbin法)、协方差法、格型法等等。计算上的快速有效保证了这一声学特征的广泛使用。与LPC这种预测参数模型类似的声学特征还有线谱对LSP、反射系数等等。* 倒谱系数CEP:利用同态处理方法,对语音信号求离散傅立叶变换DFT后取对数,再求反变换iDFT就可得到倒谱系数。对LPC倒谱(LPCCEP),在获得滤波器的线性预测系数后,可以用一个递推公式计算得出。实验表明,使用倒谱可以提高特征参数的稳定性。* Mel倒谱系数MFCC和感知线性预测PLP:不同于LPC等通过对人的发声机理的研究而得到的声学特征,Mel倒谱系数MFCC和感知线性预测 PLP是受人的听觉系统研究成果推动而导出的声学特征。对人的听觉机理的研究发现,当两个频率相近的音调同时发出时,人只能听到一个音调。临界带宽指的就是这样一种令人的主观感觉发生突变的带宽边界,当两个音调的频率差小于临界带宽时,人就会把两个音调听成一个,这称之为屏蔽效应。Mel刻度是对这一临界带宽的度量方法之一。MFCC的计算首先用FFT将时域信号转化成频域,之后对其对数能量谱用依照Mel刻度分布的三角滤波器组进行卷积,最后对各个滤波器的输出构成的向量进行离散余弦变换DCT,取前N个系数。PLP仍用德宾法去计算LPC参数,但在计算自相关参数时用的也是对听觉激励的对数能量谱进行DCT的方法。声学模型语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节概率的计算和音节到字概率的计算。本节和下一节分别介绍声学模型和语言模型方面的技术。HMM声学建模:马尔可夫模型的概念是一个离散时域有限状态自动机,隐马尔可夫模型HMM是指这一马尔可夫模型的内部状态外界不可见,外界只能看到各个时刻的输出值。对语音识别系统,输出值通常就是从各个帧计算而得的声学特征。用HMM刻画语音信号需作出两个假设,一是内部状态的转移只与上一状态有关,另一是输出值只与当前状态(或当前的状态转移)有关,这两个假设大大降低了模型的复杂度。HMM的打分、解码和训练相应的算法是前向算法、Viterbi算法和前向后向算法。语音识别中使用HMM通常是用从左向右单向、带自环、带跨越的拓扑结构来对识别基元建模,一个音素就是一个三至五状态的HMM,一个词就是构成词的多个音素的HMM串行起来构成的HMM,而连续语音识别的整个模型就是词和静音组合起来的HMM。上下文相关建模:协同发音,指的是一个音受前后相邻音的影响而发生变化,从发声机理上看就是人的发声器官在一个音转向另一个音时其特性只能渐变,从而使得后一个音的频谱与其他条件下的频谱产生差异。上下文相关建模方法在建模时考虑了这一影响,从而使模型能更准确地描述语音,只考虑前一音的影响的称为Bi- Phone,考虑前一音和后一音的影响的称为Tri-Phone。英语的上下文相关建模通常以音素为基元,由于有些音素对其后音素的影响是相似的,因而可以通过音素解码状态的聚类进行模型参数的共享。聚类的结果称为senone。决策树用来实现高效的triphone对senone的对应,通过回答一系列前后音所属类别(元/辅音、清/浊音等等)的问题,最终确定其HMM状态应使用哪个senone。分类回归树CART模型用以进行词到音素的发音标注。 语言模型语言模型主要分为规则模型和统计模型两种。统计语言模型是用概率统计的方法来揭示语言单位内在的统计规律,其中N-Gram简单有效,被广泛使用。N-Gram:该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram和三元的Tri-Gram。语言模型的性能通常用交叉熵和复杂度(Perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均概率。平滑是指对没观察到的N元组合赋予一个概率值,以保证词序列总能通过语言模型得到一个概率值。通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney平滑。 搜索连续语音识别中的搜索,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜索所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设置一个长词惩罚分数。Viterbi:基于动态规划的Viterbi算法在每个时间点上的各个状态,计算解码状态序列对观察序列的后验概率,保留概率最大的路径,并在每个节点记录下相应的状态信息以便最后反向获取词解码序列。Viterbi算法在不丧失最优解的条件下,同时解决了连续语音识别中HMM模型状态序列与声学观察序列的非线性时间对准、词边界检测和词的识别,从而使这一算法成为语音识别搜索的基本策略。由于语音识别对当前时间点之后的情况无法预测,基于目标函数的启发式剪枝难以应用。由于Viterbi算法的时齐特性,同一时刻的各条路径对应于同样的观察序列,因而具有可比性,束Beam搜索在每一时刻只保留概率最大的前若干条路径,大幅度的剪枝提高了搜索的效率。这一时齐Viterbi- Beam算法是当前语音识别搜索中最有效的算法。 N-best搜索和多遍搜索:为在搜索中利用各种知识源,通常要进行多遍搜索,第一遍使用代价低的知识源,产生一个候选列表或词候选网格,在此基础上进行使用代价高的知识源的第二遍搜索得到最佳路径。此前介绍的知识源有声学模型、语言模型和音标词典,这些可以用于第一遍搜索。为实现更高级的语音识别或口语理解,往往要利用一些代价更高的知识源,如4阶或5阶的N-Gram、4阶或更高的上下文相关模型、词间相关模型、分段模型或语法分析,进行重新打分。最新的实时大词表连续语音识别系统许多都使用这种多遍搜索策略。N-best搜索产生一个候选列表,在每个节点要保留N条最好的路径,会使计算复杂度增加到N倍。简化的做法是只保留每个节点的若干词候选,但可能丢失次优候选。一个折衷办法是只考虑两个词长的路径,保留k条。词候选网格以一种更紧凑的方式给出多候选,对N-best搜索算法作相应改动后可以得到生成候选网格的算法。前向后向搜索算法是一个应用多遍搜索的例子。当应用简单知识源进行了前向的Viterbi搜索后,搜索过程中得到的前向概率恰恰可以用在后向搜索的目标函数的计算中,因而可以使用启发式的A算法进行后向搜索,经济地搜索出N条候选。 系统实现 语音识别系统选择识别基元的要求是,有准确的定义,能得到足够数据进行训练,具有一般性。英语通常采用上下文相关的音素建模,汉语的协同发音不如英语严重,可以采用音节建模。系统所需的训练数据大小与模型复杂度有关。模型设计得过于复杂以至于超出了所提供的训练数据的能力,会使得性能急剧下降。听写机:大词汇量、非特定人、连续语音识别系统通常称为听写机。其架构就是建立在前述声学模型和语言模型基础上的HMM拓扑结构。训练时对每个基元用前向后向算法获得模型参数,识别时,将基元串接成词,词间加上静音模型并引入语言模型作为词间转移概率,形成循环结构,用Viterbi算法进行解码。针对汉语易于分割的特点,先进行分割再对每一段进行解码,是用以提高效率的一个简化方法。对话系统:用于实现人机口语对话的系统称为对话系统。受目前技术所限,对话系统往往是面向一个狭窄领域、词汇量有限的系统,其题材有旅游查询、订票、数据库检索等等。其前端是一个语音识别器,识别产生的N-best候选或词候选网格,由语法分析器进行分析获取语义信息,再由对话管理器确定应答信息,由语音合成器输出。由于目前的系统往往词汇量有限,也可以用提取关键词的方法来获取语义信息。 自适应与强健性 语音识别系统的性能受许多因素的影响,包括不同的说话人、说话方式、环境噪音、传输信道等等。提高系统鲁棒性,是要提高系统克服这些因素影响的能力,使系统在不同的应用环境、条件下性能稳定;自适应的目的,是根据不同的影响来源,自动地、有针对性地对系统进行调整,在使用中逐步提高性能。以下对影响系统性能的不同因素分别介绍解决办法。解决办法按针对语音特征的方法(以下称特征方法)和模型调整的方法(以下称模型方法)分为两类。前者需要寻找更好的、高鲁棒性的特征参数,或是在现有的特征参数基础上,加入一些特定的处理方法。后者是利用少量的自适应语料来修正或变换原有的说话人无关(SI)模型,从而使其成为说话人自适应(SA)模型。说话人自适应的特征方法有说话人规一化和说话人子空间法,模型方法有贝叶斯方法、变换法和模型合并法。语音系统中的噪声,包括环境噪声和录音过程加入的电子噪声。提高系统鲁棒性的特征方法包括语音增强和寻找对噪声干扰不敏感的特征,模型方法有并行模型组合PMC方法和在训练中人为加入噪声。信道畸变包括录音时话筒的距离、使用不同灵敏度的话筒、不同增益的前置放大和不同的滤波器设计等等。特征方法有从倒谱矢量中减去其长时平均值和RASTA滤波,模型方法有倒谱平移。 微软语音识别引擎 微软在office和vista中都应用了自己开发的语音识别引擎,微软语音识别引擎的使用是完全免费的,所以产生了许多基于微软语音识别引擎开发的语音识别应用软件,例如《语音游戏大师》《语音控制专家》《芝麻开门》等等软件。 语音识别系统的性能指标 语音识别系统的性能指标主要有四项。①词汇表范围:这是指机器能识别的单词或词组的范围,如不作任何限制,则可认为词汇表范围是无限的。②说话人限制:是仅能识别指定发话者的语音,还是对任何发话人的语音都能识别。③训练要求:使用前要不要训练,即是否让机器先“听”一下给定的语音,以及训练次数的多少。④正确识别率:平均正确识别的百分数,它与前面三个指标有关。小结以上介绍了实现语音识别系统的各个方面的技术。这些技术在实际使用中达到了较好的效果,但如何克服影响语音的各种因素还需要更深入地分析。目前听写机系统还不能完全实用化以取代键盘的输入,但识别技术的成熟同时推动了更高层次的语音理解技术的研究。由于英语与汉语有着不同的特点,针对英语提出的技术在汉语中如何使用也是一个重要的研究课题,而四声等汉语本身特有的问题也有待解决。

机车信号的研究与故障分析论文

在这些区段以160km/h及以下速度运行的列车,大都安装通用式机车信号加机务监控装置。对此,铁道部明确要求,新标准要涵盖这一情况,保证通用机车信号设备在200km/h区段能正常工作。这要求机车信号设备在信息接收方面要向上兼容。 ...

铁道信号自动化论文

铁道信号是一种控制列车运行间隔保证列车运行的一种技术手段,本文为铁道信号自动化论文,希望对大家有帮助!

摘要: 铁路信号设备的地位是组织指挥列车运行,保证行车安全,提高运输效率,传递信息,改善行车人员劳动条件的关键设施。信号继电器是铁路信号中所用各类继电器的统称。信号机和信号表示器构成信号显示,用来指示列车运行和调车作业的命令。轨道电路用来监督列车对轨道的占用和传递行车信息。

关键词: 铁路信号设备 信号继电器 动作原理

安全型继电器是铁路信号继电器的主要定型产品,采用24V直流系列的重弹力式直流电磁继电器,其基本结构是无极继电器。电磁原理使其吸合,依靠重力使其复原。信号机和信号表示器构成信号显示,在列车提速的情况下,迫切需要将机车信号主体化,其显示方式也逐步实现数字化。轨道电路有调整状态、分路状态和断轨状态三种最基本的工作状态,其基本参数有道岔电阻、钢轨阻抗等。信号设备大体上可以分为车站联锁设备、区间闭塞设备、机车信号和列车运行控制设备、调度监督和调度集中、驼峰调车、道口信号设备等,信号现代化的方向是数字化、网络化、智能化和综合化。

1 铁路信号继电器

(1)继电器的基本原理。由接点系统和电磁系统两大部分组成,电磁系统由线圈、固定的铁心、轭铁以及可动的衔铁。接点系统由动接点、静接点构成。(2)动作原理。当线圈中通入一定数值的电流后,由于电磁作用或感应方法产生电磁吸引力,吸引衔铁,由衔铁带动接点系统,改变其状态、从而反映输入电流的状况。可以说明继电器最基本的工作原理:可见,继电器具有开关特性,利用其接点的通、断电路,从而构成各种控制表示电路。(3)继电器的作用。能够以极小的电信号控制执行电路中相当大的对象,能够控制数个对象和数个回路,也能控制远距离的对象。有着良好的开关性能:闭合阻抗小、断开阻抗大,有故障→安全性能,能控制多回路、抗雷击性能强、无噪声、温度影响小等。在以继电技术构成的系统中,大量使用,在以电子元件和微机构成的系统中,作为接口部件,将系统主机与信号机、轨道电路、转辙机等执行部件结合起来。

2 安全型继电器

AX系列安全型继电器是直流24V系列的重弹力式直流电磁继电器,其典型结构为无极继电器,其它各型号都是由其派生而成。因此,决大部分零件都能通用。

2.1 插入式和非插入式

外观上是否有防尘罩,前者单独使用,后者匝内使用。

2.2 型号的表示法

采用汉字拼音字母和数字表示,字母表示继电器种类,数字表示线圈的阻值.

2.3 安全型继电器的结构和动作原理

(1)无极继电器:结构:电磁系统(线圈、铁心、轭铁、衔铁)接点系统(拉杆、动静接点组);动作原理:电→磁→力→动作拉杆,F吸引力>F重力为吸起状态。F吸引力  3 铁路信号中的继电器的应用继电器构成的各种控制表示电路,统称继电电路。

(1)选择继电器的一般原则。继电器的类型、线圈电阻,应满足各种电路的基本要求。电路中串联使用继电器时,串联继电器的数量满足电压的要求。继电器接点通过的`电流不应小于电路的工作电流,必要时采用并联。继电器接点数量不够时(不能满足电路要求时),设置复示继电器反映主继电器工作状态。电路中串联继电器接点时,接点的接触电阻满足电路要求(不影响电路正常工作)。

(2)继电器的表述。继电器的名称符号根据主要用途和功能命名。如:按钮继电器为AJ,信号继电器为XJ等。对于同一功能和作用的继电器不止一个时,名称必须加以区别。如:XLAJ,SLAJ等。

(3)继电器的定位。

1)继电器的定位状态必须和设备的定位状态一致。如:信号机以关闭为定位状态;道岔以开通定位为定位状态,轨道电路以空闲为定位状态。

2)继电器的落下状态必须与设备的安全侧相一致,满足故障——安全原则。如:信号继电器落下——信号机的关闭,轨道继电器的落下——轨道电路被占用。在电路中,凡是以吸起为定位状态的继电器,其接点和线圈均以“↑”符号表示,凡是以落下为定位状态的继电器,其接点和线圈以“↓”表示。

3)继电器的符号,对于线圈必须注明其定位状态箭头和线圈端子号。对于其接点只须标出其接点组号,而不必详细标明动、前、后接点号。但必须标出箭头方向。

4 继电器线圈的使用的要求

必须满足继电器的工作安匝和释放安匝。串联:前后线圈串联;如:JWXC-1700。并联:前后线圈并联;如:JWXC-850/850。单线圈使用时,为了保证得到与两线圈串联使用同样的工作安匝,通过线圈的电流必须比串联时大一倍,所消耗功率也大一倍。此时,电源容量要大,线圈易发热。因此,继电器大都采用两线圈串联使用的方法。但当电路需要时,也采用分线圈使用的方法。两线圈并联使用时,所需电压比串联时低一半,一般使用在较低电压的电路中。

参考文献

[1]25HZ相敏轨道电路(第三版).人民铁道出版社.

[2]陈广存.铁路信号概论.

[3]铁路信号基础设备.西南交通大学出版社,2008.

[4]铁路信号新技术概论(修订版).中国铁道出版社.

  • 索引序列
  • 信号的采集与分析方法研究论文
  • 论文研究方法数据收集与分析
  • 论文采取的研究方法可行性分析
  • 对语音信号的分析与研究论文
  • 机车信号的研究与故障分析论文
  • 返回顶部