数学建模--教学楼人员疏散--获校数学建模二等 数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.摘要 文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。 关键字 人员疏散 流体模型 距离控制疏散过程 问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。 前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为2.5kW/m2(烟气层温度约为200℃)。 图1 疏散影响因素 预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。 图2 人员疏散与烟层下降关系(两层区域模型)示意图 疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。 疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。 图3 与疏散行动时间预测相关的参数及其关系模型的分析与建立 我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设: u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。 以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。 1号教学楼平面图 教学楼模型的简化与计算假设 我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。 图4 原教室平面简图在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。 图5 简化后教室平面简图 经测量,走廊的总长度为44米,走廊宽为1.8米,单级楼梯的宽度为0.3米,每级楼梯共有26级,楼梯口宽2.0米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。对火灾场景做出如下假设:u 火灾发生在第二层的15号教室;u 发生火灾是每个教室都为满人,这样这层楼共有600人;u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败; 对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。 图6 人员疏散的若干主要参数 Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为: 式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。 这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。 3 结果与讨论 在整个疏散过程中会出现如下几种情况: (1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程; (2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程; (3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程; (4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程; (5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。 起火教室内的人员密度为100/ 125 = 0.8 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为1.1m/ s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为: f0=v0×s0×w0=1.1×0.8×4.7=4.1(人/ s) (3)式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在24.3s 内才能完全疏散完毕。 设人员按照4.1 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为9.2s。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700=0.059 < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为0.5人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第106.5s(60+24.3+9.2+13)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。 起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在129.2s他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为: p1 = 100 ×2 = 200 (人) (4)此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= 0.12 ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:?/P> 0.270.73 f1 = (3400/ 8040) × 200 = 2.2人/ s) (5) 式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在286.5s(180+106.5)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1: p′1 = 200 - (286.5 – 129.2) ×2.2 = -146.1(人) <0 (6) 所以,二层楼的人员已经全部到达一层此后,需要使用二层楼梯间的人数p2 : p2 = 100×3=300 (人) (7)相应此阶段通过二楼楼梯间的流量f 2 :0.270.73 f2 = (3400/8040) × 200 = 2.5(人/ s) (8) 这┤送ü楼楼梯的疏散时间t1 : t1 = 300÷2.5 = 120 ( s) (9) 因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象所以,通过二楼楼梯的总体疏散时间T : T = 286.5+ 120×3 = 646.5 ( s) (10) 最终根据安全系数得出实际疏散时间为T实际: T实际 =646.5×(1.5~2)=969.75~1293( s) (11)图7 二楼楼梯口流量随时间的变化曲线图 关于几点补充说明:以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。 在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。 关于1号教学楼的几个出口:u 大厅有一个大门u A座一楼靠近正厅有一个门u A座大教室旁边有一个门u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)u A、B座大教室各有一个后门 合计: 8个出口致校领导的一封信尊敬的校领导,你们好。针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。 该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为646.5 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为646.5 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。
已发送···
我参加了几次全国数学建模都拿了奖,锅炉的最优问题,古塔变形问题,城市公共自行车的运行问题,预测公司的业绩,国家积极财政科技投入对中国经济的影响,建筑物沉降变形测量的研究。好多,可以追问,望采纳,谢谢。
这个不用做题吧,一个队三个人,一个提供idea,一个编程,另一个写论文就很简单啊,另外你的知识要丰富,个人认为运筹学、线性规划还是要学一学的,另外看到问题你不一定会,关键看你查找资料和理解问题的能力
参考文献那么多,也要看你是写哪一方面的。
参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见D.A.Drennen,ed.,AModernIntroductiontoMetaphysics,NewYork:FreePressofGlencoe,1962。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见R.G.Collingwood,AnEssayonMetaphysics,Oxford:ClarendonPress,1940。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找
小学数学论文参考文献汇总
在日常学习和工作中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是描述学术研究成果进行学术交流的一种工具。那要怎么写好论文呢?下面是我精心整理的小学数学论文参考文献,仅供参考,大家一起来看看吧。
参考文献一
[1]王吉庆.信息素养论[M].上海:上海教育出版社.1998.
[2]张静波等主编.信息素养能力与教育[M].北京:科学出版社,2007.
[3]中华人民共和国教育部.义务教育品德与社会课程标准(2011)[M].北京:北京师范大学出版社,2012.
[4]中华人民共和国教育部.义务教育音乐课程标准(2011)[M].北京:北京师范大学出版社,2012.
[5]中华人民共和国教育部.义务教育英语课程标准(2011)[M].北京:北京师范大学出版社,2012.
[6]中华人民共和国教育部.义务教育体育与健康课程标准(2011)[M].北京:北京师范大学出版社,2012.
[7]义务教育数学课程标准研制组.数学教师教学用书(五年级上册)[M].北京:北京师范大学出版社,2007:3.
[8](英)苏·考利.教会学生思考[M].北京:教育科学出版社,2010.
[9]尹少淳,段鹏.新版课程标准解析与教学指导[M].北京:北京师范大学出版社,2012:15.
[10]陈铁梅.美术教育的`真谛[M]?江苏:江苏教育出版社,2011:3-4
[11]刘淼.作文心理学[M].高等教育出版社,2001.
[12]中华人民共和国教育部制定.义务教育数学课程标准(2011)[M].北京:北京师范大学出版社,2012.
[13]中华人民共和国教育部.义务教育英语课程标准(2011)[M].北京:北京师范大学出版社,2012.
[14]义务教育数学课程标准研制组.数学教师教学用书(五年级上册)[M].北京:北京师范大学出版社,2007:3.
参考文献二
[1]叶澜,白益民.教师角色与教师发展新探[M].北京:教育科学出版社,2001.207
[2]毛杰,杨明春着.成长的阶梯:贫困山区教师专业发展的研究与实践[M].四川:四川大学出版社
[3]叶澜.教师角色与教师发展新探[M]北京:教育科学出版社,2001
[4]陈永明.教师教育研究[M]广东:广东高等教育出版社,2003
[5]余文森,刘冬岩.有效教学的基本策略[M],福建教育出版社.2013
[6]陶行知:中国教育改造[J],北京,东方出版社,1996
[7]黄婧.当代教师人格浅析[J].剑南文学:经典阅读.2012(8):313
[8]叶澜.让课堂焕发出生命活力一论中小学教学改革的深化[J].教育研究.1997(7) :3-7
[9]肖秀萍.国外教师专业发展研究评述[J].中国教育期刊,2002,(5) :57-60
[10]陈向明.质的研究方法与社会科学研究[M].北京:教育科学出版社,2000.12
[11]俞英.特级教师专业发展路径,一个本土的案例[D].万方数据:华东师范大学,2007
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正确答案应该是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!
有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
模糊不过vncjhvb
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。
《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。
第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段
写作思路:要直接简化任务语言。在叙述中,我们要把直接叙述变成间接叙述,尽可能简化人物语言。这样,即使情节连贯,又使语句“简练”。
今天,我和爸爸坐地铁来到油坊桥去玩,从中我明白了一个道理。
我们先来到地铁,发现地铁有19站,每一站每一站要2分钟,中间停车的时间是1分30秒,这时爸爸给我出了一个难题:如果从经天路到油坊桥一共需要多少分钟?我想了一会儿:“19减去1等于18,18乘以2等于36,18乘以1分30秒等于1小时12分钟。
1小时12分钟加上36分钟等于1小时48分钟。”爸爸听后笑了笑说:“你的算法不太简便,先把19减去1等于18,这样就知道一共有18个停车时间,然后用2分钟加上1分30秒等于3分30秒,再用3分30秒乘以18个站就等于1小时12分钟了!你说这种方法是不是比你的方法简便?”
通过这次坐地铁我明白了生活中虽然有着许许多多的数学,但是有些数学题不简便,等着我们去简便的算它,以后我必须认真的学习数学解答更多的数学难题。
五年级数学小论文500字! 今天,我和妈妈在做数学题。妈妈问我:“阳阳,你会算组合图形的面积吗?”我自以为是地说:“当然会了,这么简单!”妈妈拿出8个完全相同小正方体,摆成一个正方形,问我:“总面积怎么算?”我用直尺量了量,一个正方形的一条边大约是3厘米,我说出算式:“一条边3厘米,那么一个正方形的一个面就是3×3=9(平方厘米),一个正方形有6个面,就是9×6=54(平方厘米),8个就是54×8=432(平方厘米)。”妈妈好像很沮丧,说:“你犯了一个致命的错误!既然是组合图形,有些面肯定会重合了!”我恍然大悟:“对哦。”我又重算了一下:重合了1、2、3、4、5……24个面,24×9=216(平方厘米),432-216=216(平方米)。现在对了吧? 过了一会,妈妈又摆出了另一种组合图形,这个图形上下8个,左右都是2个,前后都是4个,问我:“面积怎么算?”我说:“用 12×6=72(平方厘米)就是上面的面积,再用6×3=18(平方厘米)就是左边的面积,再用12×3=36(平方厘米)就是前面的面积,最后用(72+18+36)×2=252(平方厘米)。”妈妈说:“没有发现一些规律吗?”我看了看,真有嘞!“每个正方体它的上面是什么下面就是什么,左边是什么右边就是什么,前后也一样。”我有些感触。妈妈欣慰地笑了,说“我的女儿真聪明!” 哦,原来如此,组合图形的面积算好前面后面就不要算了,算好上面下面就不要算了,算好左边右边就不要算了。太好了,以后算组合图形的面积就很方便了,你们学会了吗
数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是0.38元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。
在百度文库里查,有很多都是免费的。要不就上图书馆借书了》》》》》》
建议到数学中国下载,那里是中国最大的数学建模论坛,百度数学中国,第一个就是了!各种论文都有打包的,积分用到不多就能下载了!
数学建模--教学楼人员疏散--获校数学建模二等 数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.摘要 文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。 关键字 人员疏散 流体模型 距离控制疏散过程 问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。 前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为2.5kW/m2(烟气层温度约为200℃)。 图1 疏散影响因素 预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。 图2 人员疏散与烟层下降关系(两层区域模型)示意图 疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。 疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。 图3 与疏散行动时间预测相关的参数及其关系模型的分析与建立 我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设: u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。 以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。 1号教学楼平面图 教学楼模型的简化与计算假设 我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。 图4 原教室平面简图在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。 图5 简化后教室平面简图 经测量,走廊的总长度为44米,走廊宽为1.8米,单级楼梯的宽度为0.3米,每级楼梯共有26级,楼梯口宽2.0米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。对火灾场景做出如下假设:u 火灾发生在第二层的15号教室;u 发生火灾是每个教室都为满人,这样这层楼共有600人;u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败; 对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。 图6 人员疏散的若干主要参数 Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为: 式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。 这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。 3 结果与讨论 在整个疏散过程中会出现如下几种情况: (1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程; (2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程; (3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程; (4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程; (5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。 起火教室内的人员密度为100/ 125 = 0.8 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为1.1m/ s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为: f0=v0×s0×w0=1.1×0.8×4.7=4.1(人/ s) (3)式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在24.3s 内才能完全疏散完毕。 设人员按照4.1 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为9.2s。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700=0.059 < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为0.5人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第106.5s(60+24.3+9.2+13)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。 起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在129.2s他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为: p1 = 100 ×2 = 200 (人) (4)此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= 0.12 ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:?/P> 0.270.73 f1 = (3400/ 8040) × 200 = 2.2人/ s) (5) 式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在286.5s(180+106.5)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1: p′1 = 200 - (286.5 – 129.2) ×2.2 = -146.1(人) <0 (6) 所以,二层楼的人员已经全部到达一层此后,需要使用二层楼梯间的人数p2 : p2 = 100×3=300 (人) (7)相应此阶段通过二楼楼梯间的流量f 2 :0.270.73 f2 = (3400/8040) × 200 = 2.5(人/ s) (8) 这┤送ü楼楼梯的疏散时间t1 : t1 = 300÷2.5 = 120 ( s) (9) 因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象所以,通过二楼楼梯的总体疏散时间T : T = 286.5+ 120×3 = 646.5 ( s) (10) 最终根据安全系数得出实际疏散时间为T实际: T实际 =646.5×(1.5~2)=969.75~1293( s) (11)图7 二楼楼梯口流量随时间的变化曲线图 关于几点补充说明:以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。 在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。 关于1号教学楼的几个出口:u 大厅有一个大门u A座一楼靠近正厅有一个门u A座大教室旁边有一个门u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)u A、B座大教室各有一个后门 合计: 8个出口致校领导的一封信尊敬的校领导,你们好。针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。 该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为646.5 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为646.5 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。
1992年全国大学生数学建模竞赛赛题- - 某地区作物生长所需的营养素主要是氮(N),钾(K),磷(P)。某作物研究所在该地区对土豆与生菜做了一定数量的实验,实验数据如下列表格所示,其中ha表示公顷,t表示吨, 表示公斤,当一个营养素的施肥量变化时,总将另二个营养素的施肥量做实验晨,P与K 的施肥量分别取为196kg/ha与372kg/ha. 土豆:N P K 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 0 34 67 101 135 202 259 336 404 471 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.84 30.75 0 24 49 73 98 147 196 245 294 342 33.46 32.47 36.06 37.96 41.04 40.09 41.26 42.17 40.36 42.73 0 47 93 140 186 279 372 465 258 251 18.98 27.35 34.86 38.52 38.44 39.73 38.43 43.87 42.77 65.22 生菜:N P K 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 0 28 56 84 112 168 224 280 336 392 11.02 12.70 14.56 16.27 17.75 22.59 21.63 19.34 16.12 14.11 0 49 98 147 196 294 391 489 587 685 6.39 9.48 12.46 14.33 17.10 21.94 22.64 21.34 22.07 24.53 0 47 93 140 186 279 372 465 558 651 15.75 16.76 16.89 16.24 17.56 19.20 17.97 15.84 20.11 19.40 试分析施肥量与产量之间关系,并对所得结果从应用价值与如何改进等方面作出估价。 ------------------------------ B题 实验数据分解 组成生命蛋白质的若干种氨基酸可形成不同的组合,通过质谱试验测定分子量来分析某个生命蛋白质分子的组成时,遇到的首要问题主是如何将它的分子量x分解为几个氨基酸的已知分子量a[i](i=1.2,......,n)之和。某实验室所研究的问题中: n=18, a[1:18]=57,71,87,97,99,101,103,113,114,115,128,129,131,137 ,147,156,163,186. x为正整数≤1000, 针对该实验室拥有或不拥有微型计算机的情况,对上述问题提出你们的解答,并就所研讨的数学模型与方法在一般情形下进行讨论。 2005高教社杯全国大学生数学建模竞赛题目 (请先阅读 “对论文格式的统一要求”) A题: 长江水质的评价和预测 水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源的保护和治理应是重中之重。专家们呼吁:“以人为本,建设文明和谐社会,改善人与自然的环境,减少污染。” 长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府部门和专家们的高度重视。2004年10月,由全国政协与中国发展研究院联合组成“保护长江万里行”考察团,从长江上游宜宾到下游上海,对沿线21个重点城市做了实地考察,揭示了一幅长江污染的真实画面,其污染程度让人触目惊心。为此,专家们提出“若不及时拯救,长江生态10年内将濒临崩溃”(附件1),并发出了“拿什么拯救癌变长江”的呼唤(附件2)。 附件3给出了长江沿线17个观测站(地区)近两年多主要水质指标的检测数据,以及干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速)。通常认为一个观测站(地区)的水质污染主要来自于本地区的排污和上游的污水。一般说来,江河自身对污染物都有一定的自然净化能力,即污染物在水环境中通过物理降解、化学降解和生物降解等使水中污染物的浓度降低。反映江河自然净化能力的指标称为降解系数。事实上,长江干流的自然净化能力可以认为是近似均匀的,根据检测可知,主要污染物高锰酸盐指数和氨氮的降解系数通常介于0.1~0.5之间,比如可以考虑取0.2 (单位:1/天)。附件4是“1995~2004年长江流域水质报告”给出的主要统计数据。下面的附表是国标(GB3838-2002) 给出的《地表水环境质量标准》中4个主要项目标准限值,其中Ⅰ、Ⅱ、Ⅲ类为可饮用水。 请你们研究下列问题: (1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染状况。 (2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪些地区? (3)假如不采取更有效的治理措施,依照过去10年的主要统计数据,对长江未来水质污染的发展趋势做出预测分析,比如研究未来10年的情况。 (4)根据你的预测分析,如果未来10年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比例控制在20%以内,且没有劣Ⅴ类水,那么每年需要处理多少污水? (5)你对解决长江水质污染问题有什么切实可行的建议和意见。 附表: 《地表水环境质量标准》(GB3838—2002)中4个主要项目标准限值 单位:mg/L 序号 分 类 标准值 项 目 Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类 Ⅴ类 劣Ⅴ类 1 溶解氧(DO) ≥ 7.5(或饱和率90%) 6 5 3 2 0 2 高锰酸盐指数(CODMn) ≤ 2 4 6 10 15 ∞ 3 氨氮(NH3-N) ≤ 0.15 0.5 1.0 1.5 2.0 ∞ 4 PH值(无量纲) 6---9
锐哲教育服务中心帮您解答 我站提供的期刊杂志都是经国家新闻出版署批准,具有CN(国内统一)刊号,ISSN(国际标准)刊号的省级正刊及国家中文核心期刊的正规期刊。 本站受多家杂志期刊委托,目前主要代理教育、法律、经济,社会科学,计算机,财务,工程,机械,贸易,化工,冶金,医药,文化等论文发表。论文快速发表 论文代写 公司运做 决不欺诈 投稿信箱:中国学术期刊网:
巨人网首页>> 2009教师绩效工资如何算2009农村“特岗教师”专题说课稿与评课稿大全 导航 设为首页 加入收藏 题库 专题 下载 社区 育儿 素材 小升初 推优 问答 风向标 课程 家教 中考 初一 初二 新闻 时评 调查 高考 高一 高二 名师 人物 育儿 奥数 作文 英语 艺术 体育 科技 竞赛 考级 图说天下 超常教育 教学资源 冬夏令营 加盟中心 教辅书架 巨人教育 教育网址 网站导航热点推荐: 英语 高考 小升初 作文 艺术 体育 科技 冬夏令营 教师首页 最新资讯 教学资源 教案 试卷 计划 总结 反思 班务 校务 说课 评课 资格考试 指导 真题 模拟题 普通话 心理学 教育学 教学论文 语文 数学 英语 物理 化学 生物 政治 历史 地理 音乐 美术 体育 班主任 基本功比赛 教师招聘 征稿 初中数学教学论文当前位置:教师资源频道 >> 教学论文 >> 初中教学论文 >> 初中数学教学论文初中数学教学论文:如何搞好课堂教学(09-01 02:45) 心灵的对话——“数学日记”沟通师生间的感情(07-13 04:27) 初中数学教学论文精华汇编(05-04 03:29) 初中数学教学论文:分类思想在初中教学中的渗透(04-23 11:49) 初中数学教学论文:对分层教学的一些实践和体会(04-23 11:49) 初中数学教学论文:教会学生解初中数学会考中的难题(04-23 11:49) 初中数学教学论文:初写数学论文的几个要点(04-23 11:49) 初中数学论文:国家级课改实验区中考改革方案详解(04-23 11:49) 初中数学教学论文:中考成绩等级制大势所趋(04-23 11:49) 初中数学教学论文:把“数学的美丽”还给学生(04-23 11:49) 初中数学教学论文:我的学生为什么喜欢学数学(04-23 11:49) 初中数学教学论文:浅淡初中数学作业的批改(04-23 11:49) 初中数学教学论文:一个中学数学老师的困惑(04-23 11:49) 初中数学教学论文:从初中数学课改看中考发展方向(04-23 11:49) 初中数学教学论文:北师大数学实验教材编写的思考(04-23 11:49) 初中数学教学论文:华东师大初中数学教材介绍(04-23 11:49) 初中数学教学论文:学生数学自主学习能力的培养(04-23 11:49) 初中数学教学论文:改革评价方法(04-23 11:49) 初中数学教学论文:从一堂数学课看“课堂心育”(04-23 11:49) 初中数学教学论文:数学学习联结导向策略(04-23 11:49) 初中数学教学论文:新教材、新理念、新思维(04-23 11:49) 初中数学教学论文:“有理数加法”的教法初探(04-23 11:49) 初中数学教学论文:数学课堂教学新设想(04-23 11:49) 初中数学教学论文:“活”用教材(04-23 11:49) 初中数学教学论文:初写数学论文的几个要点2009-04-23 来源:互联网 作者:佚名 [打印]教师绩效工资最新消息 随着教育科研意识的不断深化,很多教师希望把自己的研究成果,以论文形式公开发表。 根据笔者的切身经历,我认为初写数学论文的教师, 为了尽可能的少走弯路,应充分注意以下几点。 一、借鉴成果,博采众长 对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情。 一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴。 就初中数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息。 信息的表现形式多种多样,大致可以分为三类:(1)书面形式,比如各种书籍、报纸、刊物等;(2)口头形式,比如各种会议、听课、交流、咨询等;(3)电子形式,比如以网络、光盘、软盘等为载体的信息。 来源于不同形式的信息各有千秋,有的权威性高,有的时效性快,有的针对性强,有的信息量大。 这些信息的保存方式也各不相同,主要有四种:(1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容,主要用于一般性的信息;(2)做摘记,写在本上,编好序号目录,以便查找,所记内容比卡片更详尽,适用于比较重要的信息;(3)复印,对于特别重要并且篇幅较长的文章,可以全文复印,复印件应用同样大小的复印纸,对不同大小的原件缩放得一样大,便于装订、排序、编目;(4)存盘,这是针对电子信息形式的特殊性采用的一种保存方式,复制到微机硬盘或软盘上。 有条件的,还能使用录音、录像、刻录光盘等等方式。 自1996年以来,我手抄20多万字,复印存盘10多万字,这些宝贵的文献资料,为我的教育科研和论文写作,提供了强大的理论支持和实践指导。 二、完备素材,厚积薄发 论文只是教研结果的表现形式之一,有人提出“论文还自教研始”、“论文在研不在写”等观点,有一定的道理。 如果只看重论文发表这一结果,急功近利,做无病之呻吟,效果肯定不好。 “厚积”是基础,没有来源于实践的经验教训、数据统计等等素材的积累,想要写出比较有价值的论文,几乎是不可能的。 这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”。 具体说来,素材的来源主要有以下几方面:(1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习的过程;(2)课后反思,对每节课的成败得失都及时的总结下来,以便进一步研究;(3)作业记录,从学生作业中不但能发现具有共性的问题,提示我们教学教研的改革方向,而且学生中也会有许多新颖的解题思想,值得教师学习;(4)考试总结,测验考试是对学生知识的集中检验,即使在素质教育中,也不能把考试视为应试教育的“余孽”,“打入冷宫”,关键是如何改革考试制度和内容,适应素质教育;(5)解题分析,教师平时应坚持解答一定数量的数学题,解题是数学的核心任务之一,这样做可以活跃思维,并从中探索解题规律和命题趋势;(6)调查反馈,调查可以用谈心、问卷等多种形式进行,从中所反馈的信息是难得的写作素材;(7)成果质疑,学习他人但不要迷信他人,在阅读他人的论文时,有时也能发现其存在的不足甚至是错误之处,对此只要自己的理由充分就要敢于质疑;(8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度;(9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,但这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起。 几年来,我以“教学手记”形式,积累的素材已达200多份45万字,在此基础上进一步整理成文,已在国家级、省级报刊发表各类数学论文(或文章)100余篇17万字。 其中,有些论文的素材积累投入了很大力度,比如发表于《理科考试研究》(初中版)2001年第10期的《“动”了五年的压轴题》一文,是在对1997年~2001年五年间,河北省中考压轴题的命题规律进行研究的基础上,汇总整理而成的;发表于《校园学习。数学》2002年第1~2期的《方程(组)中考复习精要》一文,素材源于对2001年70余份中考试题的分析精选。
生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。 数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
有关中学数学教学的论文范文
在日常学习、工作生活中,大家肯定对论文都不陌生吧,论文是讨论某种问题或研究某种问题的文章。你知道论文怎样才能写的好吗?以下是我整理的关于中学数学教学的论文范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
中学数学教学创新思维的培养有利于提高学生对知识的渴求意愿和自主思维、动手能力。在教学中应针对存在的问题,建立系统化的理论形成过程,改进传统教学手段,注重理论与实践双管齐下,全面培养学生的创新思维。
一、中学数学教学中创新思维培养意义。
1、提高自主思维能力。
在中学数学教学课堂上,通过对于学生创新思维的培养,能够让学生形成一个良好的自主思维的能力。具有一定的创新思维能够让学生对于知识的见解可以拥有很多不同的角度,他们能够通过创新的思维来形成自己的看法,而不是一味的被教师和旁人的思想所左右。
2、提高学生动手能力。
创新思维的存在,还能够提高学生的动手能力。在创新思维的指导下,学生对于知识的兴趣会不仅仅停留在理论的学习上。通过知识的积累,他们能够在脑海中形成一定的对于知识如何呈现在现实生活中做出一定的假想,然后在可以实现的条件之下,通过自己动手来进行验证。
3、提高对知识的渴求意愿。
虽然创新思维在很大程度上能够带来实践层面上的行为,也就是创新思维的开发和培养,能够提升学生的动手能力和自主思维方式,但是这些转变最终还是会回归到理论本身上来。也就是说,当创新思维发展到一定的阶段时,学生对于创新意识的运用已经不仅仅能够对于如何去使用理论知识起到帮助,还能够将这种实践中的结论和猜想反馈到理论上来,当他们发现有些问题已经达到了自己能够解答的上限的时候,就会回到理论中去寻求支撑,从而进一步的提高他们对于知识的渴求意愿。
二、中学数学教学现状。
1、传统教学模式占据主流。
在目前中学数学教学中,教师和学生之间的教学关系主要还是沿用了以往的传统的教学模式,也就是教师在讲堂上把考试中的数学知识要点进行讲解,学生在大多数情况下,只是一个被动的接受者,在这样的情况下,学生学习的兴趣难以被调动起来,另外由于中学学生要应付考试繁重的课业,因此在这样的情况下,学生的学习兴趣很难被调动起来,从而变成了一个简单的知识的储备工具,长此以往,造成了学生在数学创新思维上的匮乏。
2、数学教学对创新思维的压制。
前文所述,在现有的中学数学教学中,因为传统模式是主要的教学模式,因此学生的学习兴趣不大,再加上中学数学教学的主要目的在于培养他们面对试题的解答能力,因此教师在进行教学的时候,会更加注重对教学难点和教学重点进行讲解,所以就导致了在课堂上,教师所传授的知识主要是出于应试教育的目的。
三、中学数学教学的创新思维培养不足之处。
1、忽略学生的猜想乐趣。
中国的教学模式基本上都是在教学中将已经有结论的理论拿出来,让学生记住,然后再教他们如何在解题的时候去运用。这一点相信很多人都深有体会。比如说在讲到长方体的体积应该如何计算的时候,相信有很多老师是直接让学生记住公式,然后在做题目的时候,将这个公式直接套用进去。这样确实能够为学生的考试分数提供优势,但是同时也剥夺了学生对于知识的猜想乐趣,而且这样填鸭式的教学也让学生没有了创新的余地。
2、传统教学手段稍显死板。
现在中学教育对于教学手段的运用,还是较为死板的。这其中有一部分原因是因为应试教育的存在,还有一部分原因是因为很多教师在教学的过程中,除了自己所必须要讲解的知识之外,也不愿意再多花时间在教学手段的研究上。但是其实数学这门学科在实际生活的运用中是十分广泛的,也就是说数学这门学科在进行教学的时候,其实是可以和现实生活紧密相关的。这样一个本应该是生动活泼的学科,因为教学手段的死板,扼杀了很多学生的创新思维的形成。在这种死板的教学手段之下,形成的也是死板的学习思维。
3、动笔多于动手。
中国应试教育的存在,能够为学生提供一条相比于社会更加公平公正的竞争渠道,因此也造成了很多家长对于中学教育的重视,导致学校也主要是以培养学生的解题能力作为主要目标,而忽视了对于学生动手能力的培养。可以说,在中国数学教学中,动手的时间不会超过整个教学过程的五分之一。在这样的情况下,学生的动手能力被弱化,学生的学习兴趣也不会得到强化。
四、中学数学教学的创新思维培养对策。
1、建立系统化的理论形成过程。
针对现在很多中学数学教学课堂中出现的,在进行某一个知识点的讲解的时候,可以先不要一下子将理论结果直接说出来,而是可以通过给学生设定一个情景,让他们在这个情景中去解开具体的某一个问题的方式,来让他们自己慢慢的摸索。通过教师在一旁的指导,能够及时对学生对于理论的发现与探讨的过程进行正确的指引,而且也培养了他们自主思维的形成,另外还让他们体验了自己发现一个知识过程的乐趣所在。
2、改进传统教学手段。
改进传统教学手段主要可以通过教学信息化技术的使用来实现。其主要运用的手段可以在课堂导学、课堂讨论以及课堂讲授中进行。
在课堂导学中,可以通过播放与课堂内容相关的相应的影音图像的方式,让学生能够对于课堂要教授的内容产生兴趣,让学生对于知识点产生深究下去的欲望。譬如在讲到有关于立体几何形的知识的时候,可以通过播放影片的方式让学生对于立体几何形的空间关系有一个直观的感受。另外还可以通过让他们自己用做图软件进行立体图形绘制的方式,培养他们的空间感,从而加强他们创新思维的培养。
在课堂讨论的环节能够激发学生创造力的实现,并且能够让学生积极主动的参与到课堂教学的过程中来。但是在传统的教学中,这个环节通常都是教学上的短板。在信息化教学方式中,对于这个问题也可以使其得到妥善解决。最为主要的一个方式就是,可以通过播放一个影片,让学生来进行分组讨论,通过小组展开探讨的方式来创造一个浓厚的学习氛围。
在课堂教学中,教师也应该改变自己的教学思维。首先,教师在课堂上讲授知识的时候,可以将一些知识点的介绍与现实生活结合起来。譬如在讲解有关路程、时间与速度的题目的时候,可以先让学生说出一次他们经历的旅行,在旅行的过程中他们所选择的班车,然后设定一定的情景,让学生算出自己讲在何时到达何地。这种和现实生活相互结合的教学方式能够做到教学与娱乐相结合,激发学生学习兴趣,促进学生对于知识点的实际运用能力。
其次,在课堂讲授中,教师要注重信息化教学手段只是促进学生学习的一个工具,而并不能取代教师与学生的课堂主体作用。因此,在课堂教授的过程中,教师可以利用信息化的教学手段来进行知识点的讲解,但是更为重要的是,要让学生知道,在信息发达的时代里,可以如何利用信息化手段来进行资料的查找、收集与使用的方式,让学生在学习到知识点的同时,还能够学会如何合理的利用信息化手段实现自己的学习目的。
3、理论与实践双管齐下。
创新思维的培养,是需要一定的实践能力作为辅助的,在动手的过程中,学生会自己发现问题并且尝试解决问题,因此要改变现在教学模式中因为动手实践互动不足而导致的创新思维不足的现象,就需要在教学中,尽可能多的让学生在实践中,通过自己的行动去进行数学知识的学习。主要的方法可以通过号召学生展开数学趣味竞赛、提出与现实生活息息相关的问题的方式让学生去进行解决,培养学生的动手能力,从而起到配套他们创新思维的目的。
【摘要】 要在中学数学教学中培养学生的思维能力,“提问”是一种行之有效的方法。提问时需要做到:有效性、针对性、启发性、注意方法、多倾听、适当的激励和表扬。我们注意探索提问的技巧,用提问来启发学生的思维,帮助学生找到打开知识宝库的大门,就可以做一名富有效率的受人爱戴的教师,引导学生一步步走向成功。
【关键词】 数学;教学;提问;技巧
数学是一门特别需要思考和分析能力的科学。思考和分析能力,我们又只能在数学教学去努力培养。在培养思维能力方面,提问在教学中已是一种必不可少的工具和技巧,尤其是在当今的中学数学教学中,显得非常重要。所谓“提问”式教学,就是教师根据学生所学知识,围绕一定范围的教学内容,结合自己所了解到的情况对学生提问,再由学生回答。其主要目的是启发学生思考问题,发挥学生的主观能动性,通过学生自己的分析与讨论,找出解决问题的正确办法的一种教学方法。那么,在中学数学教学中,“提问”需要注意哪些问题呢?下面,谈谈笔者的肤浅看法。
1.有效性原则
最初的有效教学,就是“如何有效地讲授”。老师首先是“讲师”,是“教书先生”,是文化知识的“传递”者。为了能够把知识讲清楚,于是就有“教学重点”、“教学难点”等系列说法。当教师把关注的焦点定位在“如何有效地讲授”的时候,“接受学习”就成为普遍的学习方式。学生的使命是“上课认真听讲”、“积极地接收知识”。课堂教学中大量流行的话语往往是老师一系列焦急的询问:“听清楚了吗?”、“听懂了吗?”,好像学习倒成了一种欣赏和练习“听”的艺术。有效地提问就意味着教师所提出的问题能够引起学生的回应或回答,且这种回应或回答让学生更积极地参与学习过程,以达到提问的目的,体现提问的有效性。
2.针对性原则
提问是有它的目的性和针对性,否则,就会大大地降低你的课堂效率,所以,我们提问前要弄清楚:提这个问题要达到什么样的目的,能起到什么样的效果,有多少学生能够回答,可能得到解决些什么样的答案,错误原因何在,如何纠错,与该问题相关的知识或方法有哪些,等等;因此,我们绝不能为了提问而提问,盲目地提问;而要有目的,有针对性地提问。
3.启发性原则
教师根据教学内容提出问题,并且对提出的问题可能需要有所暗示,以启发学生思考。如果学生的回答不正确,教师也不要急于纠正,而是针对学生的错误认识提出补充问题,再次启发学生,使学生意识到自己的错误所在,并尽可能自觉地加以纠正,教师所提的问题一定要让学生有思考,对学生有所启发。
4.提问要注意方法
学生的智慧潜能如宝藏一样,需要开采、需要激发,“知识就是力量,方法就是智慧。”美国哈佛儿童教育学家尼普斯坦说:孩子的表现达不到老师的要求时,老师觉得孩子教不会,其实这是因为老师还没有找到正确的方法去激活孩子的智慧和潜能,只要用对方法,即使最顽劣的孩子,也是可以教好的。
要想激发学生在课堂上的学习热情,有一定的学习方式和技巧。例如,我们在上《特殊的平行四边形》这一课时,就可以这样提问:假如平行四边形的一组邻边互相垂直,四边形的形状可能发生什么改变?若改为“邻边相等”呢?除了边的改变,还可以怎样改变条件(比如角、对角线等),使一般的平行四边形变成特殊的平行四边形;可以有些什么样的具体改变?把这些条件组合起来,形成的特殊平行四边形会有什么特征?比较各种特殊四边形的异同点。这样的有效提问,发散了学生思维空间,摆脱单一的对话式问答。
5.提问后要学会倾听
在中学数学教学中的提问,问题一般会保持一定的开放性。当教师的提问缺乏基本的开放性时,教师的提问不仅不能给教学带来生机,反而对课堂教学带来“满堂问”的干扰。如果用过于琐碎的无意义的问题牵着学生鼻子走,用只有唯一答案的问题领着学生朝同一方向迈进,学生就会丢失自己,迷失自己的方向——大人们为我设计的道路,总是让我迷路。退一步说,毕竟学生的许多想法和点子都是有道理的呀,你不仔细倾听,怎么能了解学生呢?。学生一旦主动学习,教师的责任就由讲授、提问转换为倾听。倾听是一种对话,好的对话者总善于倾听。教师在提问之后,给学生留出足够的等待的时间,为学生的回答提供及时的反馈。善于倾听的教师总是能够将学生的声音转化为有效教学资源。
6.适当的激励和表扬
教师不只是教授知识,更要传播人生的信念。当学生回答教师的问题后,无论其答案正确与否,都应适当地给与学生适当的鼓励或表扬,哪怕他的答案一无是处。只有这样,你以后的提问,才会得到积极响应,你在课堂上才能最大限度地调动学生的主观能动性,并让学生对教师产生充分的信任感。
7.做一名富有效率的教师
人类文化传播方式的改变尤其是书本和网络资源的出现,使学习者由原来的“听讲学习”转向“阅读学习”和“发现学习”成为可能。但这种转向的程度是有限的,教师仍然在充当“供给者”、“提供者”的角色;学生仍然只是“接受者”、“承受者”的角色。只有当教师由原来的“供给者”转向“激励者”“导向者”时,学生才有可能真正地亲自去发现学习,成为数学学习的“发现者”和“建构者”。为了使我们的授课更加富有效率,我们在课后还得有反思。也就是还得多对自己提问:这堂课的得失在哪里?下一次我会怎样改进?
总之,虽然教学无定法,但也有一定的规律可遁,提问没有现成的办法,但也得注意一些基本技巧。愿我们在中学数学教学中继承先辈们的宝贵遗产的同时,努力探索,多多实践,注意提问技巧,提高课堂效率,振兴国家的教育事业,为中华民族的繁荣富强贡献自己的力量。
作为一名中学数学教师,我在此结合当前中学数学学科的课改精神和自身的教学实际,从新课程理念的角度谈谈自己对新课程理念的理解、对新教材的挖掘,以及在此基础上展开的教学方法的改革与创新。
一、针对问题精心创设情境
能否设计一个好情境是教师在课堂教学中激发学生求知欲的首要问题。教材中提供的情境往往只具有一般性,还要求教师能够在新课程理念的引领下,根据本地情况和学生实际来精心设计一些让学生感受到浓厚兴趣的问题,让学生体会到数学并不是枯燥无味的数字和符号的堆积,而是与我们的生产生活密切相关的。从中体会到数学的价值,培养学生用数学的眼光看世界,用数学知识解决生活中的问题的能力。注意体现把教学活动建立在学生的认知发展水平和已有知识经验基础之上的精神。
例如,在华东师大版《数学》八年级(下)第20章的扇形统计图教学中,我考虑到学生在小学高年级阶段就已有了对扇形统计图有初步的了解,除了课前安排学生收集报刊杂志中的扇形统计图之外,还请学生以四人一组为单位,请他们对班级中来自不同区域的学生数量情况进行调查登记,通过课前预习,自己先试着绘制一张扇形统计图,并分别涂上自己喜欢的颜色。由于课程从学生熟悉的生活内容入手,每个学生对上课的内容都产生了很大的兴趣,课堂气氛活跃,教学效果有了明显的提高。在此研究型的学习过程中,学生带着感兴趣的问题去探索发现,通过收集数据,分析处理,师生交流,生生交流,独立思考,归纳总结,学会运用数学知识分析并解决实际问题。学生在发表见解、各抒己见、和谐民主、生动活泼的学习气氛中,能充分地融入课堂学习,提高数学能力和学习效率。有的学生在研究问题的过程中,还提出了扇形统计图反映数据情况的优缺点,在教材知识的基础上更上了一层楼。这种在充满探索的过程中学习数学,让数学知识和数学体验上升到了一个新的层次,让他们感受到运用知识解决问题的乐趣,增强学习积极性,形成应用意识,创新意识,达到开发潜力,提高能力的目的。
二、作业设置多样化,正确评价学生
新课程则要求作业既要有巩固和检查功能,也要有深化和提高功能,还要有体验和发展功能。所以我们布置作业时,内容上宜注意突出开放性和探究性,形式上要体现新颖性和多样性,容量上要考虑量力性和差异性。作业形式可以有解答题、探究题、想一想、动手做一做等。开展同学间作业相互纠错。注意作业评判的过程性和激励性,作业批改不能只是简单的一勾一叉和打个分数,而要重视学生在解题时的思维过程。同时要以学生的发展为出发点,尽量使用一些鼓励性的评语,既指出不足,又要保护学生的自尊心和进一步学习的积极性。
例如在结束了扇形统计图知识的学习后,我布置学生自定主题,设计一个扇形统计图,并涂上彩色作为作业上交。学生们确定的主题很多,设计出的扇形统计图也美丽自然。比如调查学校或班级同学姓氏、同学年龄、出生月份或生肖星座、男女生比例、喜欢的电影或歌曲类型、喜欢的明星类型、喜欢的科目或书籍类型、喜欢的颜色、喜欢的饮料或水果、近视情况、家庭人口数量、长短发、爱好的体育活动或球类、团员和非团员比例、拥有QQ号和上网时间、上学使用的交通工具、课余时间的安排,林林总总,让人目不暇接。三、多关注和赞赏学生,使学生健康成长
使学生身心处于最佳状态,建立和谐的师生关系是教学相长的前提。从讲台上走下来,到同学们中间,从权威者的角色转变为组织者引导者的角色,不但做学生的良师,也做他们的益友。只有当学生从心理上认同这位老师了,他们学起这个科目来自然就会有更大的信心和兴趣。
尊重每一位学生,努力挖掘他们的闪光点。尤其不能歧视那些学习上有困难的'学生。鼓励他们只要讲究学习方法,坚持不懈地付出努力,大家都能成才。须知,由于每个人的先天和后天的成长条件不尽相同,自然会造成能力上的差异,但这并不是他们将来能否成功的惟一决定因素。况且人的智力和能力发展有先后快慢之分,即使是那些大名鼎鼎的科学家小时候的学习成绩也未必是一流的。我们不经意的偏见和冷眼也许会让世界少了一个爱迪生。学生王某,初中刚入学时数学不及格,一直以来对这门学科带有极大的恐惧心理。我通过观察发现,该生实际上有学习潜力,主要是从小没有养成良好的学习习惯,以致成绩不理想,信心不足。于是平常注意对她多加鼓励,定期给她指导科学的学习方法,并结合其实际情况给她制定了阶段学习目标,加强基础知识的巩固,培养其学习兴趣。通过三年来的努力,该生的中考数学成绩已经跃居中上。由此可见,教师的鼓励支持是学生找回自信、勇于努力进取的最佳良方。
对那些爱动脑筋,有较强思维能力的学生可以通过组织兴趣小组等活动,积极引导,大力培养其兴趣爱好,鼓励他们发展自己的爱好特长,不断超越自我。
在小学数学教学中往往会存在一定比例学习困难的学生,并且随着年级的增高,知识难度的增加,这些学生所占比例也越来越大。能否有效地转化“学困生”,提高学困生的学习能力成为课堂教学成败的重要一环。因此,教师要转变角色,更多地站在中学数学教学困生的立场考虑问题,关心爱护每一位学困生,提高自身的教学艺术,运用多种教学方法和激励方式,激发学困生的学习兴趣,帮助他们树立学习的信心,提高学习能力。
在小学数学教学中,由于学生兴趣、学习习惯、学习基础等多方面的差异,导致部分学生学习兴趣低落,数学基础不扎实,学习浮躁,缺乏概括归纳、举一反三的能力,学习能力下降,我们把这样特征的学生简称为学困生。怎样才能使学困生的学习能力逐渐得到提升和发展呢?下面结合实际教学情况,我谈几点自己的心得体会。
一、教师要转变角色,树立全心全意为每一位学生服务的理念,尊重理解,关心爱护每一位学困生
(一)立德才能树人
数学教师不仅要授业、解惑,更要精于传道,必须转变教师一言堂,学生整节课侧耳倾听坐冷板凳的现状。教师要有意识地提问、倾听学困生的困惑,为什么思路出现了分歧?他们掌握知识重难点的薄弱环节出现在哪里?我采用哪种方法能够降低知识的梯度,使学困生容易理解接受呢?
(二)尊其师才能信其道,数学教师立德才能育人
教师只有课前心中装着学困生,课堂上眼中有了学困生,课后辅导环节中关照学困生,真诚地尊重、关心爱护每一位学困生的心理感受和尊严,学困生就能从潜移默化地授业的数学教师的一言一行中得到熏陶和感染,喜欢上数学教师,喜欢上数学课程。
二、提高教学艺术,树立教师人格魅力,激发学生的学习兴趣
(一)想方设法,千方百计地积极调动学困生的学习兴趣就显得非常重要
教师的语言是一门艺术,而数学教师恰如其分又精湛的语言也有助于提高学困生的学习兴趣。例如,新课数字叙述式的导入,复习课开门见山式的启发,练习课煽情期盼挑战式的语言,这些方式都有助于激发学困生跃跃欲试,体验成功快乐的数学学习兴趣。
(二)数学教师要重视研究教法,改进教法
传统粉笔加黑板的方法是难以打造高效数学课堂的,而应因地制宜地采用多媒体课件、幻灯片、电子白板等现代教育技术,不仅有助于提高学困生的学习兴趣,简洁明了的媒体展示,更有利于帮助学困生理解与突破知识重难点。
(三)采用自主探究合作等启发式教学
采用自主探究合作等启发式教学,应重点在于精准的点拨探索、体验、实践活动能充分调动学生思维的积极性,尤其更能培养学困生的动手实践能力和创新精神。教师要使用艺术性的数学语言来活跃课堂气氛,对于一些抽象概念可以让他们在玩中体会,加深对知识的理解,师生互动找出适合学困生自己的学习方法。
三、灵活运用教学方法,提高学困生学习数学的能力
(一)低起点,师生劳逸结合
数学课堂不同的年级要疏密有度,既要有适宜快乐的课堂练习,也要有降低学生脑力疲劳,思维迟钝时鼓励式的课堂小插曲:低年级的拍手操,中年级的数字接龙,高年级的数学故事链接拓展。在设置课堂作业时,数学教师要高低有梯度,既要优选优等生“吃不饱”的挑战性练习题,也要精选中等生“吃不好”的典型例题,更要筛选学困生“吃不了”的失误测试题,不求多,不求快,只求学困生融会贯通知识点,这样学困生就会触类旁通,举一反三,数学能力逐步提高。
(二)多归纳,勤练习,培养数学习惯
大部分学困生与正常学生除思维的差异外,差异主要表现在数学学习习惯方面。我们数学教师既要善于运用数学语言帮助学困生积累知识,更要充分运用线段图、集合圈等多种练习方法,帮助学困生总结归纳知识重难点,自觉养成细心认真、一丝不苟的心理品格,培养严谨踏实的良好数学学习习惯,提高学习效率,为学困生的全面可持续发展打下扎实的数学基础。
(三)及时反馈,建立民主和谐的新型师生关系
数学教师在激发学困生学习兴趣的同时,更要培养学困生克服困难的自信、解决困难的果敢坚毅、在师生共同互助中理想必胜的信念。数学教师要善于捕捉时机,在学困生遇到困难时要及时与其谈心谈话,循循善诱,以科学家和名人的成长经历告诉学生要有志气,保持学习的旺盛势头,办法总比困难多。在学困生取得点滴进步时,全班师生都要为他们鼓掌喝彩,使他们获得继续学习的动力,轻松接受新的学习任务!
四、重视课堂的激励评价,使学困生获得成就感
(一)书面作业评价,鼓励进步
数学课堂作业是学生课堂数学技能的体现。在学困生的书面作业上批阅评价,目的是为了全面了解学生的数学学习历程,激发学生的学习和改进教师的教学。例如,我在个别学困生数学作业中采用“等级+评语”的评价方法。用这种方法批阅点评学困生作业,既能启迪思维,又可以指明努力方向,学困生的主体地位真正得到了充分尊重。
(二)课堂口头表扬、榜样示范、学生自评,有助于学困生树立学习自信
数学课堂上,学生的口头表达是学生数学思维逻辑严密性的具体表现。例如,我建议学困生在数学作业中用画“笑脸”“哭脸”的方式自评当天作业的书写、做题正确率,改进学习方法,促进学生发展。
事实上,家长与学校教师的互动的评价,更能树立学困生的责任感。让家长每天对学生在家里对数学学习的态度,完成作业的情况等方面作出评价,学困生也能在家长的评价中体会到父母的关心爱护,不断增强主动学习的责任感。
综上所述,数学教师转变观念,激发学困生学习兴趣,灵活运用多种教学方法,激励评价等因素,无疑是提高学困生数学知识与技能、过程与方法、情感态度价值观这个“三维目标”的关键环节。