这个论文呀,是发挥你的长处的时候了,加油啊
随机微分方程数值解在泄洪风险分析中的应用摘要: 根据泄洪过程中库水位过程的随机微分方程,利用数值解方法,模拟了随机干扰下的库水位及其波动状况.采用相应公式计算了洪水漫越坝顶事件的概率以及库水位过程在不同时刻的样本均值.并通过比较在同样强度的随机干扰下库水位的高低状况,确定出各种泄洪方案的优劣,从而对防洪工作具有重要的指导意义.关键词: 随机微分方程;数值解;欧拉法;泄洪风险1 引 言收稿日期:2005-06-27基金项目:国家自然科学基金(60474037);教育部新世纪优秀人才支持计划(NCET-04-415) 对于洪水,风暴潮等自然灾害事件,风险分析是一种极为有效的工具[1].由于洪水过程具有很多种不确定性因素,随机性便很自然地被引入到防洪过程的分析.近年来,这方面的很多研究工作都认为洪水过程是一随机点过程[2—4];Sen以一阶马尔科夫过程为工具对具有线性相关结构的水文系列风险进行计算[5].特别地,随机微分方程被引入防洪风险分析,由此建立了水库调洪演算的随机数学模型[6,7].由于随机微分方程本身的复杂性,除了一些线性的或者特殊结构的方程以外,可求出显示解的随机微分方程很少[8,9].本文中讨论的随机微分方程不具有上述性质,因此无法求出显示解.姜树海根据其解过程的一阶概率密度函数满足Fokker-Plank向前方程,而这一方程又是一偏微分方程,从而利用偏微分方程的有限差分法求出其数值解[6],但这种方法不能求得概率特征,于是JC计算方法被用于近似地算出洪水漫越坝顶的概率[7].不难看出,这种方法由于采用多次转化,误差比较大.本文利用随机微分方程数值解方法,结合实际例子,分析总结了库水位在布朗运动干扰下的随机波动状况;直接求出了洪水漫坝的风险概率和库水位过程在不同时刻的数学期望.并且还对不同的方案进行分析比较,以确定哪种方案的效果更好,从而可对防洪决策过程提供一定的依据.2 调洪过程的随机微分方程调洪过程中入库洪水和出库泄量是随机过程,其库容水位满足随机微分方程[6]:dH(t) =Q-(t) -q-(H,c)G(H)dt+dB(t)G(H)H(t0) =H0(1)H(t)为库水位过程;H0为初始库水位,它是一个随机变量;Q(t)为任意时刻入库洪水量;q(h,c)为相应时刻的泄洪流量;Q-,q-分别为来流和泄洪的均值过程线;c为流量系数等水利参数.G(H) =dW(H)dH,W(H)是水库的库容量,B(t)是一均值为零的Wiener过程,dB(t)/dt是一正态白噪声,B(t)的一维概率密度函数f(B)为:f(B) =12πt·σexp -B22σ2t.由上式可以看出,E[B(t)] = 0,D[B(t)] =σ2t.洪水漫越坝顶的泄洪风险率定义为Pf=Pf[H Z],其中,Z为相应的坝高.3 计算方法由于随机微分方程很少可求出显示解,故其数值解方法得到广泛的研究和应用.相对于常微分方程数值法而言,随机微分方程数值解方法引入了随机增量,它将所考虑的时间区间做有限划分,一步一步地在节点处生成样本轨道的逼近值,其数值解方法主要有:Eu-ler法、Milstein法、Runge-Kutta法等.这里采用Euler法.3.1 随机微分方程解的欧拉逼近法考虑一般随机微分方程:dXt=a(t,Xt)dt+b(t,Xt)dWt(2)其中,t0 t T,初始条件是Xt0=X0.我们对时间区间[t0,T]进行离散化:t0=τ0<τ1<…<τn<…<τN=T. 采用Euler逼近法[8],构造一连续过程Y= {Y(t),t0 t T}满足以下迭代格式:Yn+1=Yn+a(τn,Yn)(τn+1-τn) +b(τn,Yn)(Wτn+1-Wτn)其中,n= 0,1,2,…,N- 1,Y0=X0.将通过逐步迭代得出的有限个离散的随机变量作为原随机微分方程在相应时间节点的近似解.显然,如果扩散项系数为零,则原随机微分方程退化为一般的常微分方程,于是随机微分方程的Euler法就退化为常微分方程的Euler法.就数值方法而言,一般讨论其强收敛性.定义1[8] 对于一个最大步长为δ的离散逼近序列Yδ,它在时刻T强收敛于一个Ito∧过 你好,我有相关论文资料(博士硕士论文、期刊论文等)可以对你提供相关帮助,需要的话请加我,7 6 1 3 9 9 4 5 7(扣扣),谢谢。
微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析
天文科普,拉格朗日点,你知道是什么吗
1、对于一阶齐次线性微分方程:
其通解形式为:
其中C为常数,由函数的初始条件决定。
2、对于一阶非齐次线性微分方程:
其对应齐次方程:
解为:
令C=u(x),得:
带入原方程得:
对u’(x)积分得u(x)并带入得其通解形式为:
扩展资料
主要思想:
数学上,分离变量法是一种解析常微分方程或偏微分方程的方法。使用这方法,可以借代数来将方程式重新编排,让方程式的一部分只含有一个变量,而剩余部分则跟此变量无关。这样,隔离出的两个部分的值,都分别等于常数,而两个部分的值的代数和等于零。
利用高数知识、级数求解知识,以及其他巧妙的方法,求出各个方程的通解。最后将这些通解“组装起来”。分离变量法是求解波动方程初边值问题的一种常用方法。
参考资料来源:百度百科-一阶线性微分方程
随机微分方程数值解在泄洪风险分析中的应用摘要: 根据泄洪过程中库水位过程的随机微分方程,利用数值解方法,模拟了随机干扰下的库水位及其波动状况.采用相应公式计算了洪水漫越坝顶事件的概率以及库水位过程在不同时刻的样本均值.并通过比较在同样强度的随机干扰下库水位的高低状况,确定出各种泄洪方案的优劣,从而对防洪工作具有重要的指导意义.关键词: 随机微分方程;数值解;欧拉法;泄洪风险1 引 言收稿日期:2005-06-27基金项目:国家自然科学基金(60474037);教育部新世纪优秀人才支持计划(NCET-04-415) 对于洪水,风暴潮等自然灾害事件,风险分析是一种极为有效的工具[1].由于洪水过程具有很多种不确定性因素,随机性便很自然地被引入到防洪过程的分析.近年来,这方面的很多研究工作都认为洪水过程是一随机点过程[2—4];Sen以一阶马尔科夫过程为工具对具有线性相关结构的水文系列风险进行计算[5].特别地,随机微分方程被引入防洪风险分析,由此建立了水库调洪演算的随机数学模型[6,7].由于随机微分方程本身的复杂性,除了一些线性的或者特殊结构的方程以外,可求出显示解的随机微分方程很少[8,9].本文中讨论的随机微分方程不具有上述性质,因此无法求出显示解.姜树海根据其解过程的一阶概率密度函数满足Fokker-Plank向前方程,而这一方程又是一偏微分方程,从而利用偏微分方程的有限差分法求出其数值解[6],但这种方法不能求得概率特征,于是JC计算方法被用于近似地算出洪水漫越坝顶的概率[7].不难看出,这种方法由于采用多次转化,误差比较大.本文利用随机微分方程数值解方法,结合实际例子,分析总结了库水位在布朗运动干扰下的随机波动状况;直接求出了洪水漫坝的风险概率和库水位过程在不同时刻的数学期望.并且还对不同的方案进行分析比较,以确定哪种方案的效果更好,从而可对防洪决策过程提供一定的依据.2 调洪过程的随机微分方程调洪过程中入库洪水和出库泄量是随机过程,其库容水位满足随机微分方程[6]:dH(t) =Q-(t) -q-(H,c)G(H)dt+dB(t)G(H)H(t0) =H0(1)H(t)为库水位过程;H0为初始库水位,它是一个随机变量;Q(t)为任意时刻入库洪水量;q(h,c)为相应时刻的泄洪流量;Q-,q-分别为来流和泄洪的均值过程线;c为流量系数等水利参数.G(H) =dW(H)dH,W(H)是水库的库容量,B(t)是一均值为零的Wiener过程,dB(t)/dt是一正态白噪声,B(t)的一维概率密度函数f(B)为:f(B) =12πt·σexp -B22σ2t.由上式可以看出,E[B(t)] = 0,D[B(t)] =σ2t.洪水漫越坝顶的泄洪风险率定义为Pf=Pf[H Z],其中,Z为相应的坝高.3 计算方法由于随机微分方程很少可求出显示解,故其数值解方法得到广泛的研究和应用.相对于常微分方程数值法而言,随机微分方程数值解方法引入了随机增量,它将所考虑的时间区间做有限划分,一步一步地在节点处生成样本轨道的逼近值,其数值解方法主要有:Eu-ler法、Milstein法、Runge-Kutta法等.这里采用Euler法.3.1 随机微分方程解的欧拉逼近法考虑一般随机微分方程:dXt=a(t,Xt)dt+b(t,Xt)dWt(2)其中,t0 t T,初始条件是Xt0=X0.我们对时间区间[t0,T]进行离散化:t0=τ0<τ1<…<τn<…<τN=T. 采用Euler逼近法[8],构造一连续过程Y= {Y(t),t0 t T}满足以下迭代格式:Yn+1=Yn+a(τn,Yn)(τn+1-τn) +b(τn,Yn)(Wτn+1-Wτn)其中,n= 0,1,2,…,N- 1,Y0=X0.将通过逐步迭代得出的有限个离散的随机变量作为原随机微分方程在相应时间节点的近似解.显然,如果扩散项系数为零,则原随机微分方程退化为一般的常微分方程,于是随机微分方程的Euler法就退化为常微分方程的Euler法.就数值方法而言,一般讨论其强收敛性.定义1[8] 对于一个最大步长为δ的离散逼近序列Yδ,它在时刻T强收敛于一个Ito∧过 你好,我有相关论文资料(博士硕士论文、期刊论文等)可以对你提供相关帮助,需要的话请加我,7 6 1 3 9 9 4 5 7(扣扣),谢谢。
就跟一次方程一样很简单
问题能否具体点?
随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系
这个论文呀,是发挥你的长处的时候了,加油啊
现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。已知兔子、狼是匀速跑且狼的速度是兔子的两倍。 要求:(1)建立狼的运动轨迹微分模型。 (2)画出兔子与狼的运动轨迹图形。 (3)用解析方法求解,问兔子能否安全回到巢穴? (4)用数值方法求解,问兔子能否安全回到巢穴? 【注】常微分方程高阶初值问题的MATLAB库函数为:ode45。 语法为:[t,Y] =ode45(odefun,tspan,y0) 例如函数: function dy = rigid(t,y) dy = zeros(3,1); % a column vector dy(1) = y(2) * y(3); dy(2) = -y(1) * y(3); dy(3) = -0.51 * y(1) * y(2); 设置选项: options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]); 求解得: [t,Y] = ode45(@rigid,[0 12],[0 1 1],options); 画出解函数曲线图形: plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')
1500字太夸张了,给你一下提示吧! 1、运用微分方程或微分方程组,可以描述经济系统的动态运行规律。2、运用微分方程,可以分析经济系统的均衡与稳定性。3、在微分方程中加入控制变量,将经济学问题转化为最优控制问题,可以分析经济系统的最优控制策略。目前比较常用的微分方程在经济学中的应用有:(1)最早的哈罗德-多马经济增长模型、索罗模型等均属于微分方程(或转化为差分方程)模型。(2)后来的经济增长的世代交替模型等也是运用的微分方程。(3)技术扩散的巴斯模型,以及分析竞争洛克塔-瓦塔利亚模型也是微分方程模型。(4)亚瑟的路径依赖与锁定模型是随机微分方程。(5)布莱克-斯科尔斯期权定价模型,源于随机微分方程和变分法。(6)各种进化博弈模型中的复制动态方程是微分方程。
欢迎采纳,不要点错答案哦╮(╯◇╰)╭
欢迎采纳,不要点错答案哦╮(╯◇╰)╭
这几类微分方程是可降阶的高阶微分方程。
1、用降价的思想可以解上图中的三种类型的高阶微分方程。
2、第一种用降价的思想可以解上图中的第一行种类型的高阶微分方程。此高阶微分方程,接连积分n次,就可以得到微分方程的通解。
3、第二种用降价的思想可以解上图中的第二行种类型的高阶微分方程。
此高阶微分方程,先换元,化为p,x的一阶微分方程,按一阶微分的方法,求出通解,再求原方程的通解。
4、第三种用降价的思想可以解上图中的第七行类型的高阶微分方程。
此高阶微分方程,先换元,注意:y"=pdp/dy化为p,y的一阶微分方程,就可以得到微分方程的通解。
具体的三种用降价的思想可以解的高阶微分方程的类型及求解微分方程的方法说明,见上。
解:∵dy/dx+py=q ==>dy+(py-q)dx=0 ∴μdy+μ(py-q)dx=0 ∵μ是原微分方程的积分因子的充要条件是:μ关于x的偏导数=(py-q)关于y的偏导数 经检验,只有答案(A)中的μ才满足上述条件 ∴应该选择答案(A)。
我猜你是问 M(x,y)dx+N(x,y)dy=0 存在解析解的充要条件由全微分性质,若存在连续函数 T(x,y),满足 dT(x,y)=M(x,y)dx+N(x,y)dy ,其充要条件为:∂M(x,y)/∂y=∂N(x,y)/∂x