首页 > 期刊投稿知识库 > 氧传感器故障检测论文

氧传感器故障检测论文

发布时间:

氧传感器故障检测论文

1、氧传感器:当氧传感器故障时,ECU无法获取这些信息,就不知道喷射的汽油量是否正确,而不合适的油气空燃比会导致发动机功率降低,增加排放污染;2、轮速传感器:它主要是收集汽车的转速来判断汽车有没有打滑的征兆,所以,就有一一个专门收集汽车轮速的传感器来完成这项工作,一般安装在每个车轮的轮毂上,而一旦传感器损坏,ABS会失效;3、水温传感器:当水温传感器故障后,往往冷车启动时显示的还是热车时的温度信号,ECU得不到正确的信号,只能供给发动机较稀薄的混合气,所以发动机冷车不易启动,且还会伴随怠速运转不稳定,加速动力不足的问题;4、电子油门踏板位置传感器:当传感器失效后,ECU无法测得油门位置信号,无法获得油门门踏板的正确位置,所以会出现发动机加速无力的现象,甚至出现发动机不能加速的情况;5、进气压力传感器:进气压力传感器顾名思义就是随着发动机不同的转速负荷,感应一系列的电阻和压力变化,转换成电压信号,供ECU修正喷油量和点火正时角度。一般安装在节气门边上,假如故障了会引起点火困难、怠速不稳、加速无力等问题。

结构和工作原理 在使用三效催化转化器降低排放污染的发动机上,氧传感器是必不可少的。三效催化转化器安装在排气管的中段,它能净化排气中CO、HC和NOx三种主要的有害成分,但只在混合气的空燃比处于接近理论空燃比的一个窄小范围内,三效催化转化器才能有效地起到净化作用。故在排气管中插入氧传感器,借检测废气中的氧浓度测定空燃比。并将其转换成电压信号或电阻信号,反馈给ECU。ECU控制空燃比收敛于理论值。 目前使用的氧传感器有氧化锆式和氧化钛式两种,其中应用最多的是氧化锆式氧传感器。 (1)氧化锆式氧传感器 氧化锆式氧传感器的基本元件是氧化锆陶瓷管(固体电解质),亦称锆管。锆管固定在带有安装螺纹的固定套中,内外表面均覆盖着一层多孔性的铅膜,其内表面与大气接触,外表面与废气接触。氧传感器的接线端有一个金属护套,其上开有一个用于锆管内腔与大气相通的孔;电线将锆管内表面铂极经绝缘套从此接线端引出。 氧化锆在温度超过300℃后,才能进行正常工作。早期使用的氧传感器靠排气加热,这种传感器必须在发动机起动运转数分钟后才能开始工作,它只有一根接线与ECU相连。现在,大部分汽车使用带加热器的氧传感器,这种传感器内有一个电加热元件,可在发动机起动后的20-30s内迅速将氧传感器加热至工作温度。它有三根接线,一根接ECU,另外两根分别接地和电源。 锆管的陶瓷体是多孔的,渗入其中的氧气,在温度较高时发生电离。由于锆管内、外侧氧含量不一致,存在浓差,因而氧离子从大气侧向排气一侧扩散,从而使锆管成为一个微电池,在两铂极间产生电压。当混合气的实际空燃比小于理论空燃比,即发动机以较浓的混合气运转时,排气中氧含量少,但CO、HC、H2等较多。这些气体在锆管外表面的铅催化作用下与氧发生反应,将耗尽排气中残余的氧,使锆管外表面氧气浓度变为零,这就使得锆管内、外侧氧浓差加大,两铅极间电压陡增。因此,锆管氧传感器产生的电压将在理论空燃比时发生突变:稀混合气时,输出电压几乎为零;浓混合气时,输出电压接近1V。 要准确地保持混合气浓度为理论空燃比是不可能的。实际上的反馈控制只能使混合气在理论空燃比附近一个狭小的范围内波动,故氧传感器的输出电压在0.1-0.8V之间不断变化(通常每10s内变化8次以上)。如果氧传感器输出电压变化过缓(每1Os少于8次)或电压保持不变(不论保持在高电位或低电位),则表明氧传感器有故障,需检修。 (2)氧化钛式氧传感器 氧化钛式氧传感器是利用二氧化钛材料的电阻值随排气中氧含量的变化而变化的特性制成的,故又称电阻型氧传感器。二氧化钛式氧传感器的外形和氧化锆式氧传感器相似,在传感器前端的护罩内是一个二氧化钛厚膜元件。纯二氧化钛在常温下是一种高电阻的半导体,但表面一旦缺氧,其品格便出现缺陷,电阻随之减小。由于二氧化钛的电阻也随温度不同而变化,因此,在二氧化钛式氧传感器内部也有一个电加热器,以保持氧化钛式氧传感器在发动机工作过程中的温度恒定不变。 如图 5所示,ECU 2#端子将一个恒定的1V电压加在氧化钛式氧传感器的一端上,传感器的另一端与ECU4#端子相接。当排出的废气中氧浓度随发动机混合气浓度变化而变化时,氧传感器的电阻随之改变,ECU4#端子上的电压降也随着变化。当4#端子上的电压高于参考电压时,ECU判定混合气过浓;当4#端子上的电压低于参考电压时,ECU判定混合气过稀。通过ECU的反馈控制,可保持混合气的浓度在理论空燃比附近。在实际的反馈控制过程中,二氧化钛式氧传感器与ECU连接的4#端子上的电压也是在0.1-0.9V之间不断变化,这一点与氧化锆式氧传感器是相似的。 2、氧传感器的检测 氧传感器的基本电路 (1)氧传感器加热器电阻的检测 点火开关置于“OFF”,拔下氧传感器的导线连接器,用万用表Ω档测量氧传感器接线端中加热器端子与自搭铁端子(图 6的端子1和2)间的电阻其电阻值应符合标准值(一般为4-40Ω;具体数值参见具体车型说明书)。如不符合标准,应更换氧传感器。测量后,接好氧传感器线束连接器,以便作进一步的检测。 (2)氧传感器反馈电压的检测 测量氧传感器反馈电压时,应先拔下氧传感器线束连接器插头,对照被测车型的电路图,从氧传感器反馈电压输出端引出一条细导线,然后插好连接器,在发动机运转时从引出线上测量反馈电压。有些车型也可以从故障诊断插座内测得氧传感器的反馈电压,如丰田汽车公司生产的小轿车,可从故障诊断插座内的OX1或OX2插孔内直接测得氧传感器反馈电压(丰田V型六缸发动机两侧排气管上各有一个氧传感器,分别和故障检测插座内的OX1和OX2插孔连接)。 在对氧传感器的反馈电压进行检测时,最好使用指针型的电压表,以便直观地反映出反馈电压的变化情况。此外,电压表应是低量程(通常为2V)和高阻抗(阻抗太低会损坏氧传感器)的。

我为大家整理的汽车科技论文题目,希望你们喜欢。 汽车科技论文题目 1发动机排放技术的应用分析 2微型车怠速不良原因与控制措施 3柴油机电子控制系统的发展 4我国汽车尾气排放控制现状与对策 5发动机自动熄火的诊断分析 6汽车发动机的维护与保养 7柴油机微粒排放的净化技术发展趋势 8汽车污染途径及控制措施 9现代发动机自诊断系统探讨 10关于****型不能着车的故障分析 11***动力不足的检测与维修 12上海通用别克发动机电控系统故障的诊断与检修 13现代伊兰特发动机电控系统故障的诊断与检修 14广本雅阁发动机电控系统故障的诊断与检修 15电子燃油喷射系统的诊断与维修 16帕萨特1.8T排放控制系统的结构控制原理与检修 17广本雅阁排放控制系统的结构控制原理与检修 18汽车发动机怠速成抖动现象的原因及排查方法探讨 19汽车排放控制系统的检修 21论汽车检测技术的发展 22奥迪A6排放控制系统的结构控制原理与检修 23丰田凌志400发动机电控系统故障的诊断与检修 24奥迪A6B5电子燃油喷射系统的诊断与维修 25标致307电子燃油喷射系统的诊断与维修 27汽车转向盘摆振故障分析 28防抱死系统在常用轿车上的使用特点分析 29汽车底盘的故障诊断分析 30汽车的常用转向系统的性能分析 31汽车变速箱故障故障诊断 32安全气囊的发展与应用 33汽车制动系统故障诊断 34分析国产几种汽车行走系统特点 35分析国产几种汽车制动系统特点 36分析国产几种汽车转向系统特点 37机电液一体化技术在汽车中的应用 38丰田系列ABS故障诊断方法的探讨 39通用系列ABS故障诊断探讨 40奔驰560SEL车型ABS系统故障案例分析 41AL4自动变速器的结构控制原理与检修 42汽车四轮定位的探讨 434T65E自动变速器的结构控制原理与检修 44上海通用别克转向系统故障的诊断与检修 45上海通用别克制动系统故障的诊断与检修 46现代伊兰特转向系统故障的诊断与检修 47现代伊兰特制动系统故障的诊断与检修 48SONATA制动系统的结构控制原理与检修 49电控悬架系统的结构控制原理与检修 50上海帕萨特B5自动变速器的结构控制原理与检修 51丰田佳美制动系统的结构控制原理与检修 52丰田凌志400悬架系统的结构控制原理与检修 53标致307制动系统故障的诊断与检修 54标致307手动变速器的结构控制原理与检修 55上海通用别克悬架与车桥故障分析与检修 56电控液动式自动变速器的结构控制原理与维修 57分析轮胎性能对汽车行走行使的影响 58捷达轿车底盘常见故障分析与检修 59汽车转向系课件设计 60汽车ABS综述 61车用防抱死制动系统设计 62汽车蓄电池的维护与故障控制 63信息技术在汽车中的应用 64现代汽车渗漏故障与控制技术 65汽车点火系统故障诊断 66丰田凌志400空调控制系统分析 67桑塔纳故障诊断方法的研究 68汽车空调技术浅析 69蒙迪欧的空调系统分析 70氧传感器故障检测 71传统诊断在轿车维修中的应用 汽车科技论文范文 现代高科技汽车维修技术浅谈 摘 要:现代汽车行业在高科技的道路上蓬勃发展,其技术含量与日俱增,传统的修车模式已经不能满足现代汽车的维修。现代汽车越来越多的由计算机进行控制,各系统模块由程序完成执行操作,这样的发展导致现代汽车维修行业成为了一种新兴技术应用的行业,传统维修理念的改革势在必行,针对我国现代汽车的现状分析,进行策略改革。 关键词:现代汽车;维修;策略;发展趋势 中图分类号:U472.4 文献标识码:A 文章编号:1674-7712 (2013) 24-0000-02 科学技术日新月异,带给汽车行业的也是新兴技术的革新,新技术、新材料、新工艺等高新技术产物,被广泛的集成于汽车制造行业,特别是电子技术、液压技术。新技术的应用使现代汽车俨然成为了先进技术的集成。随着现代汽车的不断翻新,其产生的故障也越来越复杂,对现代汽车的维修已经不能局限于传统观念,对于汽车故障的诊断不能只靠手摸眼看,汽车维修也不再是一门手艺,而是对与时俱进的科技的调试。所以,伴随汽车行业的成长,现代汽车的维修技术也要相应的做出改变,修车理念要不断更新、不断创新。 一、现代汽车维修特征 (一)故障诊断新技术 现代汽车的发展已经与科技的发展相契合,汽车不再是一个代步的机械产物,而是一个集无数高新技术于一身的高科技结晶体。电子技术、数字技术、电脑控制技术被广泛的应用到汽车的各个系统。现代汽车中一些系统的故障检测,已经不再是依靠人为触摸、观察可以感受到的,而是依靠电控元件的自我诊断。汽车中一些主要系统总成均由电控元件全面控制,这些系统有电子燃油喷射系统发电机、安全气囊系统、加速滑动调整器、电子悬挂系统、自动巡航系统、动力牵引系统、防抱死制动系统、电子控制自动变速箱系统、自动空调系统、动力转向系统、中控门锁及防盗系统、还有自我诊断系统。这些高度自动化的系统,如果出现故障,电控单元会自动进行诊断,将诊断的结果以程序代码的形式记录,存储到存储器中。然后工作人员再利用解码器解读故障中的诊断报告,得到故障码,从而对故障发生的地方进行定位,也可以通过在线帮助为顾客提供故障排除。 (二)高新技术维修工具 伴随着现代汽车技术的革新,故障诊断系统的升级,现代汽车检修、维修的设备也有了新的突破。汽车维修保养设备不再以机械工具为主,而是以同样是高科技集成产物的检测设备、仪器为主体。上世纪90年代,我国针对汽车行业引进了一大批先进技术以及仪器设备,其中包括一些检测仪器、维修设备等,如四轮定位仪、汽车专用示波器、解码器、汽车专用电表、发动机分析仪、电脑动平衡机、尾气测试仪等。对于那时的汽车维修行业,这些仪器只能起到精确故障范围、节省人力物力的微小作用,但是现在,这些仪器设备已成为现代汽车维修不可缺少的工具,以其自身精密、高新的技术原理,来应对现代汽车故障,大大增加了现代汽车维修的科技含量,使得汽车维修更加简洁、方便、准确、精密,减少了人工检测时,因经验不足而导致的失误。所以,现代汽车维修的前提,是要求维修人员了解电子技术、数字技术、电脑控制技术的相关知识,了解各种维修检修仪器设备的设计原理和使用方法。 (三)维修人才培训特征 现代汽车维修的理念与传统的维修理念大相径庭。传统汽车维修,大多以一种“江湖手艺”的形式出现,师傅传授徒弟,大多以实践为主,直接上手,在亲手操作中摸索方法、积累经验来实现维修技术的提高,这种模式直接导致汽车维修行业中维修工人文化水平不高、普遍理论基础相当薄弱、外语水平较低、接受新技术的能力较差。随着汽车技术的发展,现代汽车的维修理念需要改革,维修人员的培训模式做出革新。从事汽车维修的人员首先要进行技术理论培训,掌握现代汽车中应用到的科学技术、设计原理,还需进行各种修车必要的仪器设备的使用培训,了解其原理,掌握一门外语,能够看懂国外对汽车先进技术的介绍,同时还要求汽修人员能够熟练的使用电脑控制技术,进行分析和查询,能够通过互联网进行在线查询、维修、咨询、帮助。提升自身素质,才能够适应现代汽车发展的步伐。 二、制约现代汽车维修技术提高的因素 伴随世界汽车技术的蓬勃发展,我国现代汽车技术也在与时俱进,但是,对于现代汽车的维修技术,还有待提高,其中制约我国现代汽车维修技术发展的因素有以下几点: (一)从业人员水平偏低 从传统修车方式发展而来,导致现在的从业人员技术水平、文化水平、业务素质水平普遍偏低,大多从业人员对现代汽车的制造原理、内含的科学技术不是很了解,对于现代设备仪器的原理和使用方法不够明确,学习能力较低,不能够很快适应现代汽车技术的发展。从而,制约了我国现代汽车维修技术的发展。 (二)检测维修设备落后 伴随着现代汽车的迅猛发展,世界先进水平的现代汽车维修技术,已经达到高科技、自动化、数字化、智能化。但是,我国汽车修理行业一直处在闭关状态,依旧保持原有保守传统的修理模式,与外界的先进技术严重脱轨。现阶段,我国维修行业所应用的检测、维修方面的设备,相较世界先进水平,还很落后,与现代汽车的高新技术不同步,这也是我国现代汽车维修技术落后的主要因素之一。 (三)维修理念陈旧 传统维修理念,周期长,成本高,人力物力消耗过大,主要以对汽车进行大拆大卸的解体方式,和简单的手工工具进行故障检测,靠的是长期积累的经验和猜测。这样的检测不准确、不科学、不省时,更不能应对现代汽车高新技术方面出现的问题。陈旧的维修理念已经严重阻碍了我国现代汽车维修技术的发展了,所以,建立现代的维修理念迫在眉睫,必须要向机、电、液一体化的现代化理念转变,以检测、诊断技术为现代汽车维修技术的核心。 三、现代汽车维修策略 为适应现代汽车的发展步伐,我国现代汽车维修技术应该做出相应的改革,制定现代汽车维修策略,以提升现代汽车的维修技术,使其摆脱落后局面。 (一)掌握现代汽车新技术的发展方向 现代汽车的发展蓬勃迅猛,新技术如雨后春笋相继应用到汽车的各个系统,使现代汽车成为智能化、自动化的产物。所以,掌握现代汽车新技术的发展方向,提前进入对其的研究,对其可能出现的故障进行预测,模拟检修。例如,环保作为各行各业永恒的话题,现代汽车为了达到环保的要求,减少尾气排放对环境造成的污染,增加改进了很多装置,汽油机电控燃油喷射系统、高能电子点火系统、双燃料汽车的CPG系统等。还有,人们对现代汽车的要求已不只是代步工具,而更多地要求其舒适度、安全性,所以微电脑控制系统在汽车中逐步开始应用,安全气囊防碰撞系统、制动抱死系统、自动变速控制系统、空调自动控制系统、渐进式动力转向机构等。所以,如果维修人员能够掌握这些新技术的原理及应用,那么当汽车在这些方面出现故障的时候,就可以轻车熟路的解决问题,从容的面对汽车中新技术的改进。 (二)改变传统的维修理念 现代汽车的高科技进程,传统的维修理念已经不能够满足其需求。传统修理理念是凭借经验、手感、猜测进行故障检测,将汽车大拆大卸之后,逐一排除,周期长、成本高、耗资大,不科学、不经济。现阶段,对于科技含量高的现代汽车,这种传统的修理模式,只会使系统故障更加复杂,增加汽车故障检测、修理的难度。所以,要想提高我国现代汽车维修技术,必须要摒弃传统陈旧的维修理念,建立新兴的、高科技水平的维修理念。增加维修人员的理论基础,使他们了解汽车行业现应用的科学技术、应用原理,理论联系实践,将维修重点放在故障的检测及排查上面,善用高科技仪器设备,进行检测维修。建立现代的维修理念,才能适应现代汽车的发展,才不会在面临汽车故障时束手无策,在改进维修理念的同时,维修人员自身的知识储备、眼光见解、维修经验都会得到升级。 (三)提高维修技术水平 现代汽车维修技术越来越向智能化、自动化、现代化发展,在维修汽车时,经验不再是修车的主体,技术才是修理现代汽车不可缺少的。基于现在汽车行业的发展,不但现代汽车本身为高新技术的产物,而且维修汽车要用到的设备仪器也是高科技含量的,低水平的技术人员如果仅凭经验,是无法诊断故障所在,更不要说进行修理。所以,维修人员作为汽车修理的操作者,应该具备一定的专业素养,对汽车中各个系统的组成及原理较为了解,能够通过使用一些检测仪器对其进行诊断,提高诊断的准确率,减少不必要的人力物力的浪费,其中应掌握的知识应包括:现代汽车的原理结构、传感器技术的应用、液压控制技术、自动控制技术等。汽车维修企业的管理也直接关系到汽车维修人员的技术水平,企业应该积极引进新的技术,为维修人员的学习研究提供平台。维修人员的水平提高,定能够提高现代汽车维修技术的整体水平。 (四)诊断时注重数据的分析和应用 信息时代,通讯发达,使各个领域都是一派新气象。汽车行业也不例外,汽车不论从外观,还是结构原理都离不开数据、程序、资料等。对于汽车这样一个高科技产物,其中的数字化、自动化应用设备层出不穷,各种软件控制模拟控制,需要大量的数据、程序。仅靠经验积累已经不能主宰汽车维修这个行业,技术人员对数据、信息的采集,和通过对其分析处理来发现故障所在,针对诊断结果进行检修。所以,技术人员在进行诊断时,应该注重数据积累,提高数据信息的利用率,通过网络进行信息管理以及在线查询帮助等。现代汽车维修技术中,熟练查阅各种汽车数据、正确运用汽车数据是技术人员必须要掌握的技能。 (五)配备现代化的检测、诊断、维修设备 现代汽车技术中很多系统都是程序化、智能化,依靠数据、程序进行控制,基本已经实现机、电、液一体化,其中大部分故障是仅靠经验或手感无法检测出来的。应对高科技水平的现代汽车,我们的维修设备不能仅局限于手工工具,而是应该引进高科技含量的设备仪器,对其进行检测,对其内部代码、组成、结构进行自动诊断,发现其内部控制的故障。诊断时现代汽车维修的重中之重,正确的诊断出故障所在,不但能够减少人力物力的资源浪费,还能够将维修时的失误降到最低,这便需要高精度的仪器设备。对于内部故障,如程序代码、或控制系统出现异常,维修时也要依靠外加设备,进行漏洞修补和完善。针对现代汽车技术的维修,检测、诊断、维修设备已成为必不可少的工具,如四轮定位仪、汽车专用示波器、解码器、汽车专用电表、发动机分析仪、电脑动平衡机、尾气测试仪等。 (六)建立故障诊断专家系统 目前,我国车辆数目逐年快速增加,进口先进车型也越来越多,品种繁多,车型复杂,各种品牌的车的结构控制方式有所不同,汽车修理人员不可能熟悉所有车型的构造,应对一种车型的经验,也不足以支撑其它车型的修理调试,所以很多汽车维修企业因缺乏相关维修专家的技术指导而不能适应现代汽车维修市场的需求,所以需要建立一个故障诊断专家系统,利用计算机网络强大的信息处理功能,广泛采集各种品牌、车型的技术数据、故障表现、诊断程序、修理工艺以及各个系统的组成原理、可能出现的故障和处理预防办法。这样的网络,能够实现现代汽车维修技术的共享,使我国现代汽车维修技术的整体水平得到提升。 (七)建立网络平台提供在线咨询服务 现代汽车维修设备新、车型复杂、技术含量高,如果没有相应的结构介绍、诊断数据、电路图、相关程序等大量数据信息,技术人员无从下手。而汽车构造越复杂,可能出现的故障越细微,对其检测维修的难度越大,维修人员越是需要数据信息对其进行分析、排查,但是,对车型的不熟悉、控制的不同会导致维修进行的很艰难,所以建立网络平台提供在线咨询服务,能够减轻维修技术人员的压力,能够为技术人员收集数据提供一个平台,解决在维修中遇到的疑难杂症。 四、现代汽车的发展趋势 随着局域网控制、数据总线技术和嵌入式系统的成熟,汽车电子技术的集成化将成为现代汽车的发展方向,如发动机管理系统和自动变速器控制系统,集成为动力传动系统的综合控制等。智能控制方法将自适应控制、模糊控制、鲁棒控制、最优控制、神经网络控制等引入,推动了汽车智能化的发展,汽车的智能化也将成为汽车发展的一个方向。同时,现代汽车也会向网络化继续发展,车载网络系统也将成为大势所趋。 面对现代汽车行业的发展趋势,现代汽车维修也应做出姿态,适应汽车的发展,与其同步。总之,在现代汽车维修行业中,要不断更新技术,改进设备,进行品牌化经营,提高技术人员的综合素质和诊断分析能力,摒弃传统观念,建立现代观念,注重维护,注重效率,倡导汽车维修行业的服务优质化、品牌化、现代化势在必行。 参考文献: [1]张晶,王云龙.现代汽车维修中应用传统诊断技术浅析[J].中国科技财富,2011(14):34-37. [2]潘彩凤.浅析传统故障诊断法在现代汽车维修中的应用[J].商品与质量・学术观察,2013(05):13-16. [3]张国彬.现代汽车维修的特征与技术分析[J].中国科技投资,2013(16):04-07. 看了“汽车科技论文题目”的人还看: 1. 关于汽车的科技论文3000字 2. 关于汽车的科技论文 3. 科技论文题目 4. 关于创新科技论文题目 5. 浅谈汽车技术管理论文

氧传感器的故障检测毕业论文

怎么和你交流探讨呢?

利用尾气分析发动机的故障有一辆1995年生产的尼桑蓝鸟轿车,故障现象是冷车时挂挡后踩油门有轻微的冲击,怠速不良,做过许多检查和修理,始终不能解决问题。该车最初进厂修理是因为冲洗发动机后不能着车,拖进厂后检查发现点火系统进水,进行请洁干燥之后重新装复,车虽然着了,但是怠速有些不稳。经过检查发现高压线有漏电现象,分火头和分电器盖也有些烧蚀。征得用户同意后对上述部件进行了更换,发动机故障基本排除,但用户反映车不好用,冷车挂档后踩油门有轻微的冲击。虽然故障现象非常不明显,但用户执意要求检修,并声称如果问题不能解决,就要把前面的修理费用免掉。我接到这辆车时正是热车,由于一时不能验证故障现象,便先根据用户描述的情况进行分析,认为故障可能出在油路上。随后在热车状态下进行无负荷测试尾气,测试结果如下:怠速时HC为275ppm(标准值为220ppm),CO为0.3%(标准值为1.2%);高怠速时HC为120—150ppm,CO为0.3%一0.5%(该厂仅有一台两气废气分析仪)。测量气缸压力,各缸压力正常。进行气缸功率平衡测试,各缸工作都正常。进行断缸测试,各缸HC和CO值变化都一样。从上面的数据当中是否可以发现问题呢7当然可以。尽管两气尾气分析仪本身没有数据分析和混合比浓度测试的功能(一般四气尾气分析仪可以通过CO,、O2以及过量空气系数入直接看出混合比浓度),但通过数据可以看出,这辆车的尾气排放偏低,对于没有安装氧传感器和三元催化器的车辆来说是太低了。CO含量高一般是因为混合比偏浓,而CO含量太低的一个主要原因是混合比偏稀。根据这个思路,我将该车的尾气调高,将CO调到1.0,HC调到200ppm。当车完全冷却后再次进行检测,尾气排放没有超标,原来的故障现象也彻底消失了。各系统故障的方法,其目的是对发动机的燃烧状况进行综合评价。尾气分析的主要内容有混合气空燃比、点火正时及催化转化器转化效率等,主要的分析参数有CO、HC、CO2,和O2等的含量,还有空燃比(A/F)或过量空气系数入。尾气分析的项目如表1所示。二、尾气分析的基本规则HC和O2的读数高,是由点火系统不良或混合气过稀失火引起的。当测试的CO、HC值高,而C02、02值低时,表明发动机工作混合气很浓。如果燃烧室中没有足够的氧气保证正常燃烧,通常情况下,CO2的读数和CO的读数相反。燃烧越完全,CO2的读数就越高,其最大值在13.5%—14.8%之间,此时CO的读数应该等于或接近于0.O2的读数是最有用的诊断数据之—,02的读数和其它3个读数一起,能帮助找出故障诊断的难点。通常,装有催化转化器的汽车,O2的读数应该是1.0%—2.0%,说明发动机燃烧很好,只有少量未燃烧的02通过气缸排出。如果02的读数小于1.0%,则说明混合气太浓,不利于燃烧。如果02的读数超过2%,则说明混合气太稀。利用功率平衡试验(根据制造厂的使用说明)和四气尾气分析仪的读数,可以看出每个缸的工作状况。如果每个缸C0和C02的读数都下降,HC和C02的读数都上升,且上升和下降的量都一样,则证明每个缸都工作正常。如果只有一个缸的变化很小,其它缸都一样,则表明这个缸点火或燃烧不正常。一个调整好的闭环控制电控汽车的尾气排放中,HC的含量大约为55~100ppm,CO应低于0.5%,O2为1.0%~2.0%,C02为13.8%~15.0%。汽车尾气测试值与系统故障的判断分析如表2所示。三、几种常见的气分析仪汽车尾气分析仪有两气、四气和五气等多种类型,下面分别进行介绍。两气尾气分析仪两气尾气分析仪是用来测量汽车尾气排放中C0和HC的体积分数的。但是,如果一辆车的排气管或尾气分析仪的测量管路有泄漏,那么所检测到的就是被外部空气稀释了的尾气,C0和HC的测量值将降低,自然就不能反映尾气的真实含量。目前国内所用的两气尾气分析仪大多都不具有检查自身泄漏的功能,因此即使用两气尾气分析仪测量车辆尾气,也不能真实地反映出发动机的故障来。2.四气尾气分析仪随着装有三元催化转化器和电子控制系统汽车的增多,汽车的排放标准也更加严格,因此需要更精确地测量尾气并诊断车辆排放超标的原因。四气尾气分析仪不仅具备两气尾气分析仪的所有功能,而且还能进行故障诊断和分析,它除了能测量C0和HC外,还能测量C02和02、发动机油温、转速等,以及计算过量空气系数入和空燃比A/F等。所以四气尾气分析仪不仅可作为环保检测仪器使用,作为发动机故障检测分析的诊断工具也非常有用。对于几种尾气的分析,前面我们已经做过阐述,在这里只对过星空气系数入进行简要的说明。过星空气系数入可以直观地告诉我们空燃比的情况,从理论上讲,混合气的过星空气系数入=1最为标准,但实际上不可能没有变化,所以一般情况下入被设计为0.97—1.04(有些车有具体说明),可以看成是理想的匹配。若入大于该值,说明空燃比过大,混合气过稀;若入小于该值,则为空燃比过小,混合气过浓。四气尾气分析仪还可提供发动机转速(RPM)和发动机温度(TEMP)参数,作为故障诊断时的参考数据o五气尾气分析仪当C0和HC降低时,可能会引起尾气中的N0x浓度升高,若要监测N0x的浓度,就得使用五气尾气分析仪。而且,N0x常常是在高温大负荷的情况下产生的,若没有底盘测功机,就只能靠路试去测量。四、几个应用实例一辆捷达轿车,装备ATK新2气门发动机,配有三元催化转换器。用户反映该车发动机工作不稳,测量尾气排放严重超标。捷达新2气门ATK发动机采用电子控制多点顺序燃油喷射管理系统,该系统是一个集喷油、点火、怠速、爆震、空调、自我诊断及陂行回家等功能于一体的闭环集中控制系统。根据该车故障现象,首先检查火花塞,发现火花塞间隙偏大,更换新件后,尾气排放情况略有好转,但未得到明显改善。连接故障诊断仪V.A.G1552对发动机电控系统进行检测,调出1个故障码(氧传感器)。按故障码的提示,检查氧传感器至发动机电脑的连接线束,未发现短路、断路情况,于是将氧传感器更换。随后试车,继续测量尾气,尾气排放指标依然偏高,但发动机电控系统已无故障显示。用燃油压力表测量喷射系统压力,发动机怠速时油压为250kPa,急加速时为300kPa;关闭点火开关10min后,系统保持压力为200kPa,以上各项数据均正常。接下来拆下喷油嘴进行超声波清洗,测量其电阻值为15Ω,也符合标准。连接压力机,观察喷油嘴雾化状态良好,检查喷油嘴连接线束,也无短路、断路情况。继续检查点火系统,用万用表测量点火线圈、高压线电阻均正常。将发动机恢复后试车,故障依旧。用V.A.G1552查寻故障存储,仍没有故障码出现。在读取测量数据时,观察到氧传感器信号电压在0.2—0.8V之间变动,属正常;进气压力传感器的数据也符合标准。于是怀疑三元催化转换器有问题,将其更换后试车,尾气排放依然超标。检查配气相位,正时标记正确;怀疑汽油质量有问题,清洗油箱及管路并更换优质汽油后,情况丝毫不见好转。经仔细观察发现:如果起动发动机后怠速运转而不进行路试,尾气排放基本合格;路试约2km后尾气排放指标升高;若每次起动间隔时间超过30min,怠速测量基本合格。根据上述情况,决定更换发动机电脑,但将电脑更换了也无济于事。其它部分是否存在问题呢?于是抱着试试看的想法,拆下排气歧管进行检查,并与新的排气歧管进行比较,发现该车氧传感器的排气取样孔偏小。换上新的排气歧管进行尾气检测,各项指标显著降低。对该车进行路试,尾气排放依然合格。恢复该车所换的其它配件,继续试车,尾气排放始终未超标。由此可以断定,故障部位就在氧传感器排气取样孔。由于从气缸内排出的废气处于高速流动状态,行至氧传感器取样孔处时形成涡流,导致排出的废气不能及时在此处更新,使氧传感器不能准确地向发动机电脑反馈同步信号,造成发动机电脑不能根据实际工况对喷油脉宽进行正确修正,最终出现发动机工作异常,尾气排放严重超标的故障。有一个时期,曾有一批车出现过此类故障,都是由于进行尾气改造后,氧传感器取样孔打得不合适,导致氧传感器不能有效采集尾气,造成信号失准。一辆装备5S—FE发动机的丰田佳美轿车,发动机怠速不稳,经常熄火。该车采用TCCS发动机电子控制系统。首先调取故障代码,仪表板上的发动机故障指示灯显示为正常代码。用四气尾气分析仪进行检测,仪器显示的检测结果如表3所示。由检测结果可以看出:HC和02都较高,这是空燃比失衡的一个重要特征;C0值较低,而C02在峰值,这说明可燃混合气已充分燃烧,点火系统应该不会有什么问题;入值较高。综合分析表明,该发动机工作时的混合气偏稀,因此应从进气系统和供油系统着手进行故障检查。对车辆进行检测:真空管无漏气、错插现象;PCV阀密封良好,机油尺插口良好。起动发动机,将化油器清洗剂喷在进气管垫和EGR阀周围,发现随着转速上升,怠速逐渐稳定。取下EGR阀,发现针阀周围有少量积碳,EGR阀通道上有很多积碳,针阀不能落入阀座,致使进气歧管的混合气被废气稀释,从而怠速不稳,发动机容易熄火。对EGR阀进行彻底清洗,并换上新垫,起动发动机,一切恢复正常。再次用尾气分析仪进行检测,结果如表4所示,所有数据都在标准范围之内,故障排除。从这个故障诊断实例可以看出,在对有故障的车辆做完必要的常规检查之后,使用尾气分析仪可以很快发现故障的本质原因,缩小检修范围。一辆广东三星6510汽车,套装97款克菜斯勒道奇3.3L发动机,行驶里程为140000km。故障现象:挂档轻加油门至1200r/min时有时熄火,不熄火时怠速降至400—500r/min甚至更低;急加油门没有任何故障,熄火后起动容易。故障分析:试车过程中,没有明显的断油或断火的感觉,但总感觉进入的空气量不够用。经检查,怠速系统没有任何故障,怠速马达在其它修理厂进行过替换试验,没有问题;节气门体也进行过更换试验,没有问题;用额外补充进气量的办法(断开一个节气门体后面的真空管),同样没有解决任何问题。原地不挂档加油门试验,无论怎样试验均没有任何故障征兆,发动机转速从1200r/min到800r/min下降非常平稳。怀疑是进气压力传感器有故障,有可能缓加油门时不能很好地感知进气量,所以使用检测仪的数据流功能,对各个数据进行实时观察,没发现有错误的数据流,MAP数值正常。对供油系统和点火系统进行仔细检查和测量,均没有发现任何故障。到现在为止应该说仅是凭经验感觉一点故障线索,那就是感觉好像进气量太少。既然怀疑是因为进气量太少造成的故障,那么通过尾气检测一定可以发现一些线索,所以对尾气进行了测量,怠速时的检测结果如表5所示。通过测量结果我们可以发现,混合气偏稀(入大于1.03),燃烧比较好 (CO2较高,接近于15%)。通过上面的分析,可以间接证明该车进气或者供油系统有故障。为了检验这一分析,将所有影响进气量或感知进气量的元件一一列出,采取逐步分析排除的办法确定故障元件。这些元件有:怠速马达、节气门体及其传感器、MAP传感器、EGR阀。前几种元件已经检验和试验过, 目前只剩下EGR阀没进行过检验。EGR排气再循环阀的功用是在发动机工作过程中,将一部分废气引到吸入的新鲜空气(或混合气)中返回气缸进行再循环,以减少N0x的排放量。因为N0x主要是在高温富氧条件下生成的,废气为惰性气体,在燃烧过程中吸收热量,这样将降低最高燃烧温度,也减少了N0x的生成量。但是过度的排气再循环会影响发动机的正常运行,特别是在怠速、低速小负荷及发动机冷态运行时,参与再循环的废气会明显降低发动机的性能。因此应根据工况及工作条件的变化,自动调整参与再循环的废气量。根据发动机结构不同,进入进气歧管的废气量一般控制在6%—13%之间。在EGR系统中,通过一个特殊的通道将排气歧管与进气歧管连通,在该通道上装有EGR阀,通过控制EGR阀的开度来控制参与再循环的废气量(如图1所示)。EGR阀开启或关闭是由阀上方真空气室的真空度来控制的,而真空度则由受ECU控制的EGR真空电磁阀控制。EGR电磁阀受ECU控制,ECU根据发动机转速、空气流量、进气管压力、温度等信号控制EGR电磁线圈通电时间的长短,以此来控制进入EGR阀真空气室上方的真空度,从而控制EGR阀的开度,改变参与再循环的废气量。装有背压修正阀的EGR排气再循环系统,在EGR(真空)电磁阀与EGR阀间的真空管路中装有一个背压修正阀,其功用是根据排气歧管中的背压附加控制月F气再循环。即当发动机在小负荷工况,排气背压低时,背压修正阀保持EGR阀处于关闭状态,不进行排气再循环;只有在发动机负荷增大,排气歧管背压增大时,背压修正阀才允许EGR阀打开,进行排气再循环。排气歧管的背压通过管路作用在背压修正阀的背压气室下方,当发动机处于小负荷工况,排气背压低时,在阀门弹簧的作用下气室膜片向下移动,使修正阀门关闭真空通道,此时EGR阀在其阀门弹簧作用下保持关闭,因而不进行排气再循环;当发动机负荷增大,排气歧管背压升高时,修正阀背压气室下方的背压升高,使膜片克服阀门弹簧弹力向上运动,将修正阀门打开,由EGR电磁阀控制的真空通过背压修正阀进入EGR阀上方真空气室,将EGR阀吸开,月F气再循环通道打开,废气进行再循环。EGR电磁阀受ECU控市IJ,ECU根据转速信号、进气压力信号、水温信号、空气流量信号等,通过控制EGR电磁阀的开度来控制进入EGR阀的真空度,从而控制EGR阀的开度,改变参与再循环的废气量。通过上面的EGR阀工作原理分析可知,EGR在怠速工况和小负荷情况下是不参与工作的,否则会有一部分尾气进入燃烧室,不但会降低燃烧室的温度,还会恶化燃烧环境,阻碍新鲜空气的进入。故障排除:更换EGR阀,故障彻底消失。一辆奥迪A6轿车,装备2.8LJV6电控发动机,怠速时有轻微抖动,并且加速迟缓。故障检查:检测点火波形基本正常,但稍有不稳。测量尾气,C0为0.3%一0.5%,HC为200一500ppm,且在此范围内波动。用V.A.G1552检测仪检查,无故障代码输出。用V人.G1552故障检测仪进行数据流检测,发动机电控系统运行参数正常。检测结果分析:根据对客户的询问和加速迟缓的症状,应考虑对喷油器进行清洗;C0值正常,HC值虽然符合排放污染物的限制标准,但该车装有氧传感器和催化转化器,其C0值应低于0.5%,HC应低于100 ppm,而检测结果表明该车HC值高于此,标准且有波动,从出厂标准考虑为不正常,因此考虑发动机可能有失火现象,应进一步检查点火系统是否有轻微断路或短路,特别是短路故障。故障检修:清洗喷油器,观察各缸喷油器的雾化状况和流星的均匀性,均良好。检查点火系统,发现有一个缸的高压线有轻微短路(漏电)现象,为此更换了高压线。因火花塞间隙偏大,也同时更换了。复检发动机抖动稍有改善,但未彻底消除;尾气检查HC值下降不大,并仍有波动,分析认为故障仍可能是失火所致。为了进一步诊断故障,分别在左、右两侧月F气歧管氧传感器旁边的尾气检测口(该口通常用一个螺栓密封)进行检测,结果发现:左侧气缸排出的尾气C0值在0.5%左右,HC值在125ppm左右(因在催化转化器前测量,其值会比在月F气民管测量值稍高),且波动极小;右侧气缸排出的尾气中C0值也在0.5%左右,但HC值却在125—250ppm之间,且时有波动。因此间题应在右侧气缸中。为此检查右侧气缸的高压线和火花塞,发现第2缸火花塞的3个电极中有一个间隙过小,调整后重新安装,故障完全消除,尾气检测值也符合出厂标准。目前,安装催化转化器的车型越来越多,测量尾气有时比较困难,在不能很好分析故障的时候,可以尽量在催化转化器前方测量,这样可能更真实地反映发动机的排放情况。同时,还应将催化转化器前、后的测量结果加以比较,以便判断催化转化器的转化效率是否正常。一辆奔驰S320轿车,发动机怠速不稳,抖动严重,但加速正常。故障检测:调取该车故障代码,显示为正常代码;用示波器测试点火二次波形,结果正常;对各缸气缸压力进行测试,均在标准范围之内;进气及真空系统不漏气;用四气尾气分析仪检测尾气,发现怠速时数据很不稳定,第1组数据如表6所示,4种气体的检测数值全都较高。再次测试,其数据如表7所示。检测结果分析:将上述检测结果进行对比分析发现,HC和Co总是同时升高或降低,C02时高时低,燃烧效率很不稳定,02不能充分参与反应,数值一直较高。从而可以判定为混合气的形成与燃烧环境十分恶劣。推测是喷油器堵塞,导致喷油器针阀与阀座配合不密封,各缸喷油器在应该喷油时不喷油或少喷油,而在不需喷油时却持续喷油,因而造成供油不正常,致使4种气体的检测数据极不稳定。故障检修:做喷油脉冲宽度试验,怠速时为3.5ms,在正常范围内。拆下各缸喷油器检查,果然每个喷油器都有不同程度的堵塞。经过彻底清洗,装复试车,一切恢复正常。从该故障的检修过程可以看出,在燃油系统的检查中,利用尾气分析仪可以省去一些检修环节,如油压的测试,燃油泵、油压调节器和燃油滤请装置的检测。换个角度来考虑,假如在应急修理中,在未做相关检查之前,就用尾气分析仪进行检测,也许在诊断一开始就能找到故障点。一辆奥迪100型轿车,装备2.6LV6电控发动机,运转时严重抖动,加速无力,排气管排出的气体气味呛人。故障检测:用V.A.G1552微机故障检测仪对发动机电控系统进行检测,存在故障代码,故障代码的含义是“右侧燃油自适应修正已达极限”。用V.A.G1552微机故障诊断仪对发动机电控系统进行数据流检测,发现左、右两侧的燃油修正因数相差过大,左侧为—3.8%—0%,而右侧为10%—12.9%。用发动机综合分析仪检查点火系统并进行气缸压力分析,发现第3缸点火波形的击穿电压较低,且该缸气缸压力偏低(气缸压力相差过大也会导致发动机抖动)。用尾气分析仪检测尾气,Co为0.9%—1.3%, 而HC高达2800—2900 PPmo检测结果分析:根据检测结果可认为右侧混合气过稀,控制电脑对右侧燃油系统进行连续加浓且已达到修正极限。为判断是否是由于右侧氧传感器的信号导致这种结果,先对左、右两侧的氧传感器信号及其对空燃比变化的反应、电控单元对氧传感器信号变化的响应能力进行测试。为此,人为地制造混合气过浓和过稀的状态,发现氧传感器和电控单元的功能均正常,因此可以认为故障是控制系统以外的原因导致的。根据上述检测结果,点火波形基本正常,可以认为点火系统正常,但HC过高表示失火,因此可以认为这种失火很可能是由于混合气过稀,超出着火界限所致。但从尾气中的Co值看,实际混合气并不过稀,因此判断故障很可能是进气系统漏气所致。测量气缸压力,发现第3缸压力比其它缸低约100kPao故障检修:在拆解进气歧管时,发现进气歧管垫的实际压合面宽度只有1mm左右(至少应有4—5mm),其原因是进气歧管的安装面为v形,在安装密封垫后,再安装进气歧管时,由于不小心使该垫下滑,从而减小了密封带,导致严重漏气,即使燃油修正已达到极限,但仍无法完全补偿,这是机械原因导致的故障。将上述故障点彻底排除后试车,故障排除。一辆上海别克G轿车,故障症状是发动机排气冒黑烟。诊断与排除:大修发动机后试车,开始时一切正常,只是排气管接口垫有些轻微漏气。继续试车发现,发动机热车后出现怠速不稳、加速不畅现象,同时故障灯点亮报警。经检查,显示故障码为四131,即氧传感器故障。发动机热车运转时就车测量(不拔下括头),氧传感器电压为0.28V且不变化,更换一个氧传感器后,发动机刚着车时还好,但运转一会儿后故障重现,怠速不稳,排气管冒黑烟。拆下火花塞检查,发现已有积碳,更换一组新火花塞后,运转约半小时,怠速又不稳,检查火花塞又被积碳糊死。此时故障灯再次点亮,经检查显示故障码P0171,即混合气太稀。因更换氧传感器后故障不但没有好转反而加重,所以修理工认为故障不在氧传感器。经测量,油压正常,又检查、试换7空气流星、水温、节气门位置等传感器,故障始终未能排除,于是回过头来再检查新换的氧传感器。经就车测量,氧传感器电压为0.18V左右,与用检测仪查到的数据相同,证明检测仪可以完全接收到氧传感器电压。断开氧传感器括头,测量PCM端接线,电压只有0.32V(理论值为0.45V),于是怀疑电路有故障或PCM损坏。用尾气分析仪检查尾气,发现在怠速时C0含量接近4%,HC达到300ppm左右。通过尾气分析可以认为此时的混合气不是太浓。就车测量氧传感器,电压仍旧很低(这种现象又可以解释为混合气过稀)。断开氧传感器括头,用数字万用表测量PCM端电压为0.44V,说明线路及PCM基本情况正常。为什么会出现浓、稀两种截然不同的解释呢7难道是新换的氧传感器有故障7于是,使用模拟器模拟氧传感器数值的功能。将模拟器的绿色氧传感器专用线和黑色连线连接在车上氧传感器的输出回路上;将中间功能选择开关置于Knock/0xy位置;将右侧功能选择开关置于VoHs/0xy位置;使发动机起动运转,然后打开SST皿,此时SST皿4寄产生一个0.15V的恒定的连续信号来模拟稀混合气状态下的氧传感器发出的信号;按下模拟器上方的“0(y”键,模拟器将产生一个0.85V的恒定的连续信号来模拟浓混合气状态下的氧传感器发出的信号;在使用模拟器模拟7氧传感器后,再用检测仪读取数据流,发现氧传感器的输入信号也一同变化;当模拟器的电压较长时间为0.85V时,观察尾气的C0值降为0.65%,说明PCM对系统的控制完好,故障原因还是在氧传感器。将氧传感器安装到其它车辆上进行试验,没有发现任何故障,数据流、燃烧、尾气、行驶都很正常。通过上面的试验可以证明:系统几乎没有故障,问题的原因在于氧传感器信号。因为此车有漏气现象,会不会是因为排气包漏气,导致排气包中形成负压,将外界的真空引进排气系统当中了呢7经检查ldF气系统确有漏气之处,将排气管修好之后试车,故障排除。

浅谈汽车电控发动机起动故障的诊断与排除摘要:试就汽车电控发动机无法起动的故障进行分析,指出了故障诊断与排除的方法。 关键词:电控发动机;故障;诊断;排除 0 引言 随着电控燃油喷射技术的发展和维修认识水平的不断提高,现代轿车中在对装有电控燃油喷射发动机的汽车进行维修时,使用故障诊断仪对发动机电控单元(ECU)进行检测,并根据ECU存储的故障代码进行检修,大多数都能判明故障可能发生的原因和部位,会给维修人员的工作带来很大的方便。 运用数据流进行电控发动机故障的诊断,首先要打好理论基础,有了这些理论基础,在查找故障时就会找出问题的主要根源进行分析;然后要了解各传感器数据的表现形式。结合实际维修工作中的维修实例,谈谈运用“数据流”进行电控系统故障诊断的体会。 1 利用“静态数据流”分析故障 静态数据流是指接通点火开关,不起动发动机时,利用故障诊断仪读取的发动机电控系统的数据。例如进气压力传感器的静态数据应接近标准大气压力(100-102kPa);冷却液温度传感器的静态数据凉车时应接近环境温度等。下面是利用“静态数据流”进行诊断的一个实例:故障现象:一辆捷达王轿车,在入冬后的一天早晨无法起动。检查与判断:首先进行问诊,车主反映:前几天早晨起动很困难,有时经很长时间也能起动起来,起动后再起动就一切正常。 一开始在别的修理厂修理过,发动机的燃油压力和气缸压力、喷油嘴、配气相位、点火正时以及火花塞的跳火情况都做了检查,也没有解决问题。通过对以上项目重新进行仔细检查,同样没发现问题,发动机有油、有火,就是不能起动,到底是什么原因呢? 后来发现,虽经多次起动,可火花塞却没有被“淹”的迹象,这说明故障原因是冷起动加浓不够。如果冷起动加浓不够,又是什么原因造成的呢?冷却液温度传感器是否正常呢? 用故障诊断仪检测发动机ECU,无故障码输出。通过读取该车发动机静态数据流发现,发动机ECU输出的冷却液温度为105℃,而此时发动机的实际温度只有2-3℃,很明显,发动机ECU所收到的水温信号是错误的,说明冷却液温度传感器出现了问题。为进一步确认,用万用表测量冷却液温度传感器与电脑之间线束,既没有断路,也没有短路,电脑给冷却液温度传感器的5V参考电压也正常, 于是将冷却液温度传感器更换,再起动正常,故障排除。 这起故障案例实际并不复杂,对于有经验的维修人员,可能会直接从冷却液温度传感器着手,找到问题的症结。但它说明一个问题,那就是电控燃油喷射发动机系统的ECU对于某些故障是不进行记忆存储的,比如该车的冷却液温度传感器,既没有断路,也没有短路,只是信号失真,ECU的自诊断功能就不会认为是故障。再比如氧传感器反馈信号失真,空气流量计电压信号漂移造成空气流量计所检测到的进气量与实际进气量出现差异等,都不能被ECU认可为故障。在这种情况下,阅读控制单元数据成为解决问题的关键。 2 利用“动态数据流”分析故障 动态数据流是指接通点火开关,起动发动机时,利用诊断仪读取的发动机电控系统的数据。这些数据随发动机工况的变化而不断变化,如进气压力传感器的动态数据随节气门开度的变化而变化;氧传感器的信号应在0.1-0.9V之间不断变化等。通过阅读控制单元动态数据,能够了解各传感器输送到ECU的信号值,通过与真实值的比较,能快速找出确切的故障部位。 2.1 有故障码时的方法 可重点针对与故障码相关的传感器的数据进行,分析是什么导致数据的变化,以找出故障原因所在。 故障现象:一辆桑塔纳1.6i轿车(出租车),百公里油耗增加1L。检查与判断:车主反映:前几天换了火花塞,调整了点火正时,油耗还是高,通过与车主交流确认不是油品的问题。于是连接故障诊断仪,进入“发动机系统”,读取故障码为“氧传感器信号超差”,是氧传感器坏了吗?进入“读测数据块”,读取16通道“氧传感器”的数据,显示为0.01V不变。 氧传感器长时间显示低于0.45V的数值,说明两点:一是说明混合气稀,二是说明氧传感器自身信号错误。是混合气稀吗?通过发动机的动力表现来看,不应是混合气稀,那就重点检查氧传感器,方法是人为给混合气加浓(连加几脚油),同时观察氧传感器的数据变化情况。通过观察,在连加几脚油的情况下,氧传感器的数据由“0.01V”微变为“0.03V”,也就是说几乎不变,进一步检查氧传感器的加热线电压正常,说明氧传感器损坏。更换氧传感器,再用诊断仪读其数据显示0.1-0.9V变化正常,至此维修过程结束。第二天,车主反映油耗恢复正常,故障排除。这是一起典型的由氧传感器损坏引起的油耗高的故障。 2.2 无故障码时的方法 通过对基本传感器信号数据的关联分析和定量对应分析来确定故障部位。 故障现象:一汽佳宝微面,加速无力、加速回火,有时急加速熄火。检查与判断:初步判定是混合气过稀,为了证明这一点,我用两个方法进行了验证。 一个方法是拆下空气滤清器,向进气道喷射化油器清洗剂,与此同时进行加速试验,明显感到加速有力,也不回火,故障现象消失,这可以证明混合气过稀的判断;另一个方法是连接诊断仪,读取故障码,显示无故障码;读取数据流,观察氧传感器的数据,显示在0.3-0.4V左右徘徊,加几脚油门,氧传感器数据立即越过0.45V上升到0.9V,然后其数据又回到0.3-0.4V左右徘徊,这说明氧传感器是好的,因为它在人为对混合气加浓后,数据反应及时,变化正常,同时也证明混合气确实是过稀。是什么原因造成混合气过稀呢?通过分析,主要考虑进气压力传感器和燃油系统油压。首先判断进气压力传感器,进入“读测数据流”,读取进气压力传感器的数据,显示:静态数据1010mbar,为大气压力,正常;怠速时为380mbar,基本正常;急加速时数据可迅速升至950mbar以上,这些数据及其变化都表明,进气压力传感器基本正常。接下来开始检测油压,但由于油压表坏了,无法测量燃油系统油压,只好直接更换油泵。更换油泵后试车,故障现象消失,故障排除。最后的结果说明故障是因为油泵的供油能力不足导致混合气过稀而造成的。 3 结束语 运用“数据流”进行故障分析,便于维修人员了解汽车的综合运行参数,可以定量分析电控发动机的故障,有目的地去检测更换有关元件,在实际维修工作中可以少走很多弯路,减少诊断时间,极大地提高工作效率。 参考文献: [1]新雷.电控汽油喷射式发动机排放检测诊断故障的实用性研究代[D].西安:长安大学,2005.

选题不论简不简单,关键看大纲,大纲写好了,就简单了

氧传感器故障检测及工作原理论文

1、氧传感器:当氧传感器故障时,ECU无法获取这些信息,就不知道喷射的汽油量是否正确,而不合适的油气空燃比会导致发动机功率降低,增加排放污染;2、轮速传感器:它主要是收集汽车的转速来判断汽车有没有打滑的征兆,所以,就有一一个专门收集汽车轮速的传感器来完成这项工作,一般安装在每个车轮的轮毂上,而一旦传感器损坏,ABS会失效;3、水温传感器:当水温传感器故障后,往往冷车启动时显示的还是热车时的温度信号,ECU得不到正确的信号,只能供给发动机较稀薄的混合气,所以发动机冷车不易启动,且还会伴随怠速运转不稳定,加速动力不足的问题;4、电子油门踏板位置传感器:当传感器失效后,ECU无法测得油门位置信号,无法获得油门门踏板的正确位置,所以会出现发动机加速无力的现象,甚至出现发动机不能加速的情况;5、进气压力传感器:进气压力传感器顾名思义就是随着发动机不同的转速负荷,感应一系列的电阻和压力变化,转换成电压信号,供ECU修正喷油量和点火正时角度。一般安装在节气门边上,假如故障了会引起点火困难、怠速不稳、加速无力等问题。

你是。。。。。我们老师也布置了这作业,顺便发到我邮箱吧,,,,谢谢啦,

结构和工作原理 在使用三效催化转化器降低排放污染的发动机上,氧传感器是必不可少的。三效催化转化器安装在排气管的中段,它能净化排气中CO、HC和NOx三种主要的有害成分,但只在混合气的空燃比处于接近理论空燃比的一个窄小范围内,三效催化转化器才能有效地起到净化作用。故在排气管中插入氧传感器,借检测废气中的氧浓度测定空燃比。并将其转换成电压信号或电阻信号,反馈给ECU。ECU控制空燃比收敛于理论值。 目前使用的氧传感器有氧化锆式和氧化钛式两种,其中应用最多的是氧化锆式氧传感器。 (1)氧化锆式氧传感器 氧化锆式氧传感器的基本元件是氧化锆陶瓷管(固体电解质),亦称锆管。锆管固定在带有安装螺纹的固定套中,内外表面均覆盖着一层多孔性的铅膜,其内表面与大气接触,外表面与废气接触。氧传感器的接线端有一个金属护套,其上开有一个用于锆管内腔与大气相通的孔;电线将锆管内表面铂极经绝缘套从此接线端引出。 氧化锆在温度超过300℃后,才能进行正常工作。早期使用的氧传感器靠排气加热,这种传感器必须在发动机起动运转数分钟后才能开始工作,它只有一根接线与ECU相连。现在,大部分汽车使用带加热器的氧传感器,这种传感器内有一个电加热元件,可在发动机起动后的20-30s内迅速将氧传感器加热至工作温度。它有三根接线,一根接ECU,另外两根分别接地和电源。 锆管的陶瓷体是多孔的,渗入其中的氧气,在温度较高时发生电离。由于锆管内、外侧氧含量不一致,存在浓差,因而氧离子从大气侧向排气一侧扩散,从而使锆管成为一个微电池,在两铂极间产生电压。当混合气的实际空燃比小于理论空燃比,即发动机以较浓的混合气运转时,排气中氧含量少,但CO、HC、H2等较多。这些气体在锆管外表面的铅催化作用下与氧发生反应,将耗尽排气中残余的氧,使锆管外表面氧气浓度变为零,这就使得锆管内、外侧氧浓差加大,两铅极间电压陡增。因此,锆管氧传感器产生的电压将在理论空燃比时发生突变:稀混合气时,输出电压几乎为零;浓混合气时,输出电压接近1V。 要准确地保持混合气浓度为理论空燃比是不可能的。实际上的反馈控制只能使混合气在理论空燃比附近一个狭小的范围内波动,故氧传感器的输出电压在0.1-0.8V之间不断变化(通常每10s内变化8次以上)。如果氧传感器输出电压变化过缓(每1Os少于8次)或电压保持不变(不论保持在高电位或低电位),则表明氧传感器有故障,需检修。 (2)氧化钛式氧传感器 氧化钛式氧传感器是利用二氧化钛材料的电阻值随排气中氧含量的变化而变化的特性制成的,故又称电阻型氧传感器。二氧化钛式氧传感器的外形和氧化锆式氧传感器相似,在传感器前端的护罩内是一个二氧化钛厚膜元件。纯二氧化钛在常温下是一种高电阻的半导体,但表面一旦缺氧,其品格便出现缺陷,电阻随之减小。由于二氧化钛的电阻也随温度不同而变化,因此,在二氧化钛式氧传感器内部也有一个电加热器,以保持氧化钛式氧传感器在发动机工作过程中的温度恒定不变。 如图 5所示,ECU 2#端子将一个恒定的1V电压加在氧化钛式氧传感器的一端上,传感器的另一端与ECU4#端子相接。当排出的废气中氧浓度随发动机混合气浓度变化而变化时,氧传感器的电阻随之改变,ECU4#端子上的电压降也随着变化。当4#端子上的电压高于参考电压时,ECU判定混合气过浓;当4#端子上的电压低于参考电压时,ECU判定混合气过稀。通过ECU的反馈控制,可保持混合气的浓度在理论空燃比附近。在实际的反馈控制过程中,二氧化钛式氧传感器与ECU连接的4#端子上的电压也是在0.1-0.9V之间不断变化,这一点与氧化锆式氧传感器是相似的。 2、氧传感器的检测 氧传感器的基本电路 (1)氧传感器加热器电阻的检测 点火开关置于“OFF”,拔下氧传感器的导线连接器,用万用表Ω档测量氧传感器接线端中加热器端子与自搭铁端子(图 6的端子1和2)间的电阻其电阻值应符合标准值(一般为4-40Ω;具体数值参见具体车型说明书)。如不符合标准,应更换氧传感器。测量后,接好氧传感器线束连接器,以便作进一步的检测。 (2)氧传感器反馈电压的检测 测量氧传感器反馈电压时,应先拔下氧传感器线束连接器插头,对照被测车型的电路图,从氧传感器反馈电压输出端引出一条细导线,然后插好连接器,在发动机运转时从引出线上测量反馈电压。有些车型也可以从故障诊断插座内测得氧传感器的反馈电压,如丰田汽车公司生产的小轿车,可从故障诊断插座内的OX1或OX2插孔内直接测得氧传感器反馈电压(丰田V型六缸发动机两侧排气管上各有一个氧传感器,分别和故障检测插座内的OX1和OX2插孔连接)。 在对氧传感器的反馈电压进行检测时,最好使用指针型的电压表,以便直观地反映出反馈电压的变化情况。此外,电压表应是低量程(通常为2V)和高阻抗(阻抗太低会损坏氧传感器)的。

[编辑本段]氧传感器的作用在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。电喷车为获得高排气净化率,降低排气中(CO)一氧化碳、(HC)碳氢化合物和(NOx)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14.7:1)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。 [编辑本段]氧传感器的组成主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加 热传感器,使能精确检测氧气浓度。在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。应当指出采用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。 [编辑本段]氧传感器的工作原理氧传感器是利用陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。 氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用。其基本工作原理是:在一定条件下(高温和铂催化),利用氧化锆内外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。 在高温及铂的催化下,带负电的氧离子吸附在氧化锆套管的内外表面上。由于大气中的氧气比废气中的氧气多,套管上与大气相通一侧比废气一侧吸附更多的负离子,两侧离子的浓度差产生电动势。当套管废气一侧的氧浓度低时,在电极之间产生一个高电压(0。6~1V),这个电压信号被送到ECU放大处理,ECU把高电压信号看作浓混合气,而把低电压信号看作稀混合气。根据氧传感器的电压信号,电脑按照尽可能接近14.7:1的理论最佳空燃比来稀释或加浓混合气。因此氧传感器是电子控制燃油计量的关键传感器。氧传感器只有在高温时(端部达到300°C以上)其特性才能充分体现,才能输出电压。它在约800°C时,对混合气的变化反应最快,而在低温时这种特性会发生很大变化。 [编辑本段]氧传感器的杂波分析概述1.为什么要研究氧传感器波形上的杂波信号呢? 这是因为杂波可能是由于燃烧效率低造成的,只要上流动系统不是处在正确的工作状态下,催化器就不能被精确地测试,氧传感器波形的杂波能警告各个发动机气缸性能的下降,这时废气诊断是最主要的。因为它能发现催化器转换效率的降低和个别气缸的性能降低。杂波信号也妨碍燃油反馈控制系统控制器的正常运行(在发动机控制电脑中的反馈程序运行),“燃油反馈控制系统控制器”专门指起作用的软件程序(从现在起,称之为“反馈控制器”),它是接受氧传感器电压信号并计算正确的即时喷油或混合气控制命令的程序。 通常,反馈控制器程序不是设计成有效地去处理由非正常的系统操作和燃油控制命令所产生的氧传感器信号频率。杂乱的高频变动信号能使反馈控制器失掉控制精度,或失去“反馈节奏”。这里有几个影响,首先,当反馈控制器的操作精度受影响时,燃油混合比就会超出催化剂窗口,这将影响转换器的工作效率和废气排放。其次,当反馈控制器的操作精度受影响时,发动机性能也将受到影响。 杂波可以成为失去控制的废气进入催化剂的判定性指示,经常可发现当杂波存在时,进入催化剂的废气便没有了正确的混合气空燃比,理解氧传感器波形上的杂波对废气排放的修理诊断是很重要的。在一些情况下,杂波是催化转换效率减少的明显信号,随后就是尾气排放超出标准。此外,氧传感器波形上杂波的解释、对发动机性能或行驶能力诊断是一个有价值的工具。杂波是燃烧效率从一缸到另一个缸不平衡指示。对氧传器波形上的杂波的解释和理解对有效地运用氧传感器信号修理验证也是很重要的。 在氧传感强器波形上的杂波表明排气变化从一个缸到另一个缸的不平衡,或者是比较特别地从个别的燃烧过程中没有得到较高的氧的含量。大多数氧传感器当工作正常时能够比较快的反馈各个燃烧过程所产生的电压偏差。杂波的信号限制越大,从各个燃烧过程测得氧成分的差别就越大,在不同行驶方式下看到的杂波不但对确定稳态和瞬态废气试验失效的根本原因是重要的,而且也是有效的可驾驶性能诊断的判断依据。 在加速方式下与BC的峰值毛刺形成一对一废气波形的氧传感器信号杂波是一种非常重要的诊断信号,因为它意味着在有负荷的情况下点火出现断火现象。通常,杂波幅度越大。在排气中氧传感器的成份就越多,所以杂波是由于进入催化器的反馈气平均氧含量升高造成氧化氮排前增加的指示,在浓氧环境中(稀混合气)催化器中的氧化氮不能被减少(化学地)。 综上所述,已知一些反馈类型系统完全正常的氧传感器波形上的杂波信号对废气或发动机性能不产生明显影响。对于少量的杂波可以不去管它,而大量的杂波是重要的。这正说明诊断是一种艺术,要学会判断什么是正常的杂波,什么不是就需要实践,而最好的老师是经验,学习的最好方法是从观察不同行驶里程和不同类型的汽车上观察氧传感器波形。理解什么是正常的杂波,什么是不正常杂波,对有效地进行废气排放修理以及行驶能力诊断是非常有价值的,它值得花时间去学习。 对于大多数普通系统,一个软件波形是绝对有价值的,对正在控制着的系统拥有一张氧传感器参考波形,能判断出什么样的杂波是允许的、正常的,而什么样的杂波是应该关注的,关于好的杂波标准是:如果发动机性能是好的,则应该没有真空泄漏,废气中的碳氢(HC)化合物和氧含量是正常的。 在本部分的试验中将尽可能地给出大量的资料,以便去理解在这个训练中正好有充分的时间和空间来包括所有的关于这个的课题。 2.杂波产生的原因 氧传感器信号的杂波通常由以下原因引起: A.缸的点火不良(各种不同的根本原因,点火系统造成的点火不良,气缸压力造成的点火不良真空泄漏和喷油嘴不平衡造成的点火不良);B.系统设计,例如不同的进气管通道长度等等; C.由于发动机和零部件老化造成的系统设计问题的扩大(由于气缸压力不平衡造成的不同的进气管通道长度问题的扩大); D.系统设计,例如不同的进气管通道等等。 3.由点火不良气缸引起氧传感器波形的杂波,发动机的点火不良是如何引起杂波呢?在点火不良状态下波形上的毛刺和杂波由那些燃烧不完全或根本不燃烧的单个燃烧时间或系列燃烧事件引起,它导致在气缸中有效氧化部分被利用,剩下的多余氧走到排气管中,并经过氧传感器。当传感器发现排气中氧成分变化时,它就非常快地产生一个低压或毛刺,一系列这些高频毛刺就组成称之为“杂波”东西。 4.产生毛刺的不同点火不良类型 a)点火系统造成的点火不良(例如:损坏的火花塞、高压线、分电器盖、分火头、点火线圈或只影响单个气缸或一对气缸的初级点火问题)。通常点火示波器可以用来确定这些问题或排除这些故障); b)送至气缸的混合气浓造成的点火不良(各种可能的原因)对给定的危险混合气空燃比例约为13:1; c)送至气缸的混合气过稀造成的点火不良(各种可能的原因)对给定的危险的混合气空燃比例为17:1; d)由气缸压力造成的点火不良,它是由机械问题造成的,它使得在点火前燃油空气混合气的压力降低,并不能产生足够的热,这就妨碍了燃烧,它增加了排气中的氧含量。(例如气门烧损,活塞环断裂或磨损,凸轮磨损,气门卡住等); e)一个缸或几个缸有真空泄漏造成的不良,这可以通过对所怀疑的真空泄漏区域(进气叶轮、进气歧管垫、真空管等)加入丙烷的方法来确定,看示波器的波形什么时候因加丙烷使信号变多,尖峰消失,当与一个缸或几个缸有关的真空泄漏造成进入气缸的混合气超过17:1时,真空泄漏造成的点火不良就发生了。 f)就喷油嘴喷射不平衡造成的点火不良仅在多点喷射发动机中,一个缸的油浓或稀混合气造成点火不良是因为喷油时每个喷油嘴实际喷射的油量太多了或太少(喷油嘴堵塞或卡住)造成的。当一个气缸或几个汽油中的混合气空燃比超过危险时17:1就产生了稀点火不良,低于13:1也产生浓点火不良,这就造成了喷油嘴喷油不平衡产生的点火不良。 通常,可以用排除由点火系统造成的点火不良、气缸压力的点火不良和单个气缸真空泄漏造成的可能性来判断。喷油不平衡。可以用汽车示波器排除自点火系统和气缸压力造成的点火不良(用发现点火系统造成的点火不良和动力平衡气缸压力问题)。排除与个别气缸有关的真空泄漏,通常采用往可能产生真空泄漏的区域或周围加丙烷(进气歧管、化油器垫等)的方法,同时像从前说过的那样,从示波器上观察氧传感器信号波形的方法达到目的。通常,在多点燃油喷射发动机,如果不能证实a、b、和c类型造成的点火不良,那么不平衡造成氧传感器波形中的严重杂波的可能性就可以确定。 判断氧传感器的杂波的规则 如果氧传感器的信号上有明显的杂波,这种杂波对所判断的那一类系统是不正常的话,通常这将伴随着重复的、可测试出的怠速时的发动机故障(例如:每次气缸点火的的爆震)。通常,如果杂波是明显的,发动机的故障最终将与波形上的各个尖峰有关,没有明显的伴随着发动机故障的杂波是不容易消除的杂波(在某些情况下这是正确的),也就是说当在波形上产生杂波的个别尖峰最终与发动机故障无关时,那么在修理中想要排除它的可能性很小。 综上所说,判断杂泼的规则是:如果可断定进气歧管无真空泄漏,排气的碳氢化合物(HC)和氧的含量正常,发动机的转动或怠速都比较平衡的话,那么杂波或许是可以接收的,或是正常的。许多汽车燃油反馈控制系统中,不但安装一个氧传感器,福特3.8L V6型从1980年制造出来的就装有两个氧传感,为了适应不断加强的EPA的废气控制要求,使用多个氧传感器的系统数量在不断增加。在1988年和更新的汽车上氧传感器的数目在连续地增加。此外,从1994年起一些汽车在催化器前和后各装一个氧传感器,这种结何可以用装在汽车上的OBD-Ⅱ系统来检查催化器的性能,在一定情况下,还可以增加对空燃比控制的精度。在任何情况下,由于氧传感器信号快使其成为最有价值的发动机性能诊断工具之一,氧传感器越多,对检修技术人员越有好处。通常,燃油反馈控制系统的工程逻辑决定,氧传感器在靠近燃烧室的地方,燃油控制的精度越高,这主要是由于排气空气气流的特性确定的:例如气体的速度,通道的长度(气体瞬时太滞后)和传感器的响应的时间等等。许多制造商在每个气缸的每个排气歧管底下安装一个氧传感器,这样就能判定哪一个气缸有问题,这就排除了诊断失误的可能性,在许多情况下靠排除至少一半潜在有问题气缸来减少诊断时间。 用双氧传感器进行催化器监视 一个工作正常的催化转换器,配上正常控制燃油分配系统的燃油反馈控制系统,它可以保证最安全的将有害的排气成份变为相对无害的氧化碳和水蒸气,但是,催化器会因过热而受损(由点火不良等等),这导致催化剂表面减少和孔板金属烧结,这两点都将使催化器永久损坏。当催化剂失效时就能知道,对环境和废气系统修理时,技术人员是十分重要的。OBD-Ⅱ诊断系统的出现,对环境和催化剂的随车监视系统、OBD-II监视系统依据好或坏的催化剂的氧化特征作精确的检测手段。在稳定运行时,催化剂后面好的氧传感器(热的)应比催化剂前的任何一个氧传感器的信号波动少得多,这是由于在转换碳氢化合物和一氧化碳时正常运行的催化剂消耗氧化能力,这就减少了后氧传感器信号的波动。后氧传感器的信号波动比氧传感器的信号波动要小的多。也要注意当催化剂“关断”(或达到运行温度),催化器开始储存和用氧做催化转换时,信号由于在排气中氧越来越少而升高。当催化剂完全损坏时,催化剂的转换效率、以及它的氧储存能力丧失,因此,催化剂后部的排气中氧的含量如果不完全的话,则十分接近催化剂前部的排气中的氧的含量。 [编辑本段]氧传感器的检测装有排气氧传感器的电控燃油喷射发动机,如果在运转中出现怠速不稳、加速无力、油耗增加、尾气超标等故障而供油、点火装置又无其他故障,那么极有可能是氧传感器及相关线路出了问题。大多数发动机的电控系统都有自检功能,当氧传感器或相关部位发生故障时,电脑会自动记下故障内容,维修人员只需用专门的解码器读出故障代码即可发现问题所在。但如果没有专用设备怎么办呢?这里有几个方法可以很快检查出氧传感器的好坏。如果怀疑怠速不稳或加速不良等故障是氧传感器引起的,检修时只需拔下氧传感器接头,如果发动机的故障消失,则说明氧传感器已经损坏,必须更换,如果发动机故障依旧,那么还要从其他地方找原因。利用高阻抗的电压表也可以检查出氧传感器的好坏。把电压表并联在氧传感器的输出端,正常情况下,电压应在0-1V之间变化,中值在500mV左右,如果输出电压长时间保持某一数值而无变化,则表明氧传感器已经损坏。实际上,氧传感器是一个相当耐用的部件,只要燃油质量过关,它可以使用3年或更长的时间。氧传感器的非正常损坏大多是由于燃油中含铅量超标造成的。这一点,驾驶装有三元催化装置汽车的司机务必要加以重视. [编辑本段]氧传感器的表征与故障在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线和三根引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。因此,必须及时地排除故障或更换。氧传感器的常见故障1.氧传感器中毒氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。另外,氧传感器发生硅中毒也是常有的事。一般来说,汽油和润滑油中含有的硅化合物燃烧后生成的二氧化硅,硅橡胶密封垫圈使用不当散发出的有机硅气体,都会使氧传感器失效,因而要使用质量好的燃油和润滑油。修理时要正确选用和安装橡胶垫圈,不要在传感器上涂敷制造厂规定使用以外的溶剂和防粘剂等。2.积碳由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。3.氧传感器陶瓷碎裂氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。因此,处理时要特别小心,发现问题及时更换。4.加热器电阻丝烧断对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。5.氧传感器内部线路断脱。6氧传感器外观颜色的检查从排气管上拆下氧传感器,检查传感器外壳上的通气孔有无堵塞,陶瓷芯有无破损。如有破损,则应更换氧传感器。通过观察氧传感器顶尖部位的颜色也可以判断故障:①淡灰色顶尖:这是氧传感器的正常颜色;②白色顶尖:由硅污染造成的,此时必须更换氧传感器;③棕色顶尖:由铅污染造成的,如果严重,也必须更换氧传感器;④黑色顶尖:由积碳造成的,在排除发动机积碳故障后,一般可以自动清除氧传感器上的积碳。氧传感器的作用电喷车为获得高排气净化率,降低排气中(CO))一氧化碳、(HC)碳氢化合物和(NOX)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14/:7)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加热传感器,使能精确检测氧气浓度。在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。应当指出采用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。

氧传感器检测论文

[编辑本段]氧传感器的作用在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。电喷车为获得高排气净化率,降低排气中(CO)一氧化碳、(HC)碳氢化合物和(NOx)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14.7:1)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。 [编辑本段]氧传感器的组成主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加 热传感器,使能精确检测氧气浓度。在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。应当指出采用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。 [编辑本段]氧传感器的工作原理氧传感器是利用陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。 氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用。其基本工作原理是:在一定条件下(高温和铂催化),利用氧化锆内外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。 在高温及铂的催化下,带负电的氧离子吸附在氧化锆套管的内外表面上。由于大气中的氧气比废气中的氧气多,套管上与大气相通一侧比废气一侧吸附更多的负离子,两侧离子的浓度差产生电动势。当套管废气一侧的氧浓度低时,在电极之间产生一个高电压(0。6~1V),这个电压信号被送到ECU放大处理,ECU把高电压信号看作浓混合气,而把低电压信号看作稀混合气。根据氧传感器的电压信号,电脑按照尽可能接近14.7:1的理论最佳空燃比来稀释或加浓混合气。因此氧传感器是电子控制燃油计量的关键传感器。氧传感器只有在高温时(端部达到300°C以上)其特性才能充分体现,才能输出电压。它在约800°C时,对混合气的变化反应最快,而在低温时这种特性会发生很大变化。 [编辑本段]氧传感器的杂波分析概述1.为什么要研究氧传感器波形上的杂波信号呢? 这是因为杂波可能是由于燃烧效率低造成的,只要上流动系统不是处在正确的工作状态下,催化器就不能被精确地测试,氧传感器波形的杂波能警告各个发动机气缸性能的下降,这时废气诊断是最主要的。因为它能发现催化器转换效率的降低和个别气缸的性能降低。杂波信号也妨碍燃油反馈控制系统控制器的正常运行(在发动机控制电脑中的反馈程序运行),“燃油反馈控制系统控制器”专门指起作用的软件程序(从现在起,称之为“反馈控制器”),它是接受氧传感器电压信号并计算正确的即时喷油或混合气控制命令的程序。 通常,反馈控制器程序不是设计成有效地去处理由非正常的系统操作和燃油控制命令所产生的氧传感器信号频率。杂乱的高频变动信号能使反馈控制器失掉控制精度,或失去“反馈节奏”。这里有几个影响,首先,当反馈控制器的操作精度受影响时,燃油混合比就会超出催化剂窗口,这将影响转换器的工作效率和废气排放。其次,当反馈控制器的操作精度受影响时,发动机性能也将受到影响。 杂波可以成为失去控制的废气进入催化剂的判定性指示,经常可发现当杂波存在时,进入催化剂的废气便没有了正确的混合气空燃比,理解氧传感器波形上的杂波对废气排放的修理诊断是很重要的。在一些情况下,杂波是催化转换效率减少的明显信号,随后就是尾气排放超出标准。此外,氧传感器波形上杂波的解释、对发动机性能或行驶能力诊断是一个有价值的工具。杂波是燃烧效率从一缸到另一个缸不平衡指示。对氧传器波形上的杂波的解释和理解对有效地运用氧传感器信号修理验证也是很重要的。 在氧传感强器波形上的杂波表明排气变化从一个缸到另一个缸的不平衡,或者是比较特别地从个别的燃烧过程中没有得到较高的氧的含量。大多数氧传感器当工作正常时能够比较快的反馈各个燃烧过程所产生的电压偏差。杂波的信号限制越大,从各个燃烧过程测得氧成分的差别就越大,在不同行驶方式下看到的杂波不但对确定稳态和瞬态废气试验失效的根本原因是重要的,而且也是有效的可驾驶性能诊断的判断依据。 在加速方式下与BC的峰值毛刺形成一对一废气波形的氧传感器信号杂波是一种非常重要的诊断信号,因为它意味着在有负荷的情况下点火出现断火现象。通常,杂波幅度越大。在排气中氧传感器的成份就越多,所以杂波是由于进入催化器的反馈气平均氧含量升高造成氧化氮排前增加的指示,在浓氧环境中(稀混合气)催化器中的氧化氮不能被减少(化学地)。 综上所述,已知一些反馈类型系统完全正常的氧传感器波形上的杂波信号对废气或发动机性能不产生明显影响。对于少量的杂波可以不去管它,而大量的杂波是重要的。这正说明诊断是一种艺术,要学会判断什么是正常的杂波,什么不是就需要实践,而最好的老师是经验,学习的最好方法是从观察不同行驶里程和不同类型的汽车上观察氧传感器波形。理解什么是正常的杂波,什么是不正常杂波,对有效地进行废气排放修理以及行驶能力诊断是非常有价值的,它值得花时间去学习。 对于大多数普通系统,一个软件波形是绝对有价值的,对正在控制着的系统拥有一张氧传感器参考波形,能判断出什么样的杂波是允许的、正常的,而什么样的杂波是应该关注的,关于好的杂波标准是:如果发动机性能是好的,则应该没有真空泄漏,废气中的碳氢(HC)化合物和氧含量是正常的。 在本部分的试验中将尽可能地给出大量的资料,以便去理解在这个训练中正好有充分的时间和空间来包括所有的关于这个的课题。 2.杂波产生的原因 氧传感器信号的杂波通常由以下原因引起: A.缸的点火不良(各种不同的根本原因,点火系统造成的点火不良,气缸压力造成的点火不良真空泄漏和喷油嘴不平衡造成的点火不良);B.系统设计,例如不同的进气管通道长度等等; C.由于发动机和零部件老化造成的系统设计问题的扩大(由于气缸压力不平衡造成的不同的进气管通道长度问题的扩大); D.系统设计,例如不同的进气管通道等等。 3.由点火不良气缸引起氧传感器波形的杂波,发动机的点火不良是如何引起杂波呢?在点火不良状态下波形上的毛刺和杂波由那些燃烧不完全或根本不燃烧的单个燃烧时间或系列燃烧事件引起,它导致在气缸中有效氧化部分被利用,剩下的多余氧走到排气管中,并经过氧传感器。当传感器发现排气中氧成分变化时,它就非常快地产生一个低压或毛刺,一系列这些高频毛刺就组成称之为“杂波”东西。 4.产生毛刺的不同点火不良类型 a)点火系统造成的点火不良(例如:损坏的火花塞、高压线、分电器盖、分火头、点火线圈或只影响单个气缸或一对气缸的初级点火问题)。通常点火示波器可以用来确定这些问题或排除这些故障); b)送至气缸的混合气浓造成的点火不良(各种可能的原因)对给定的危险混合气空燃比例约为13:1; c)送至气缸的混合气过稀造成的点火不良(各种可能的原因)对给定的危险的混合气空燃比例为17:1; d)由气缸压力造成的点火不良,它是由机械问题造成的,它使得在点火前燃油空气混合气的压力降低,并不能产生足够的热,这就妨碍了燃烧,它增加了排气中的氧含量。(例如气门烧损,活塞环断裂或磨损,凸轮磨损,气门卡住等); e)一个缸或几个缸有真空泄漏造成的不良,这可以通过对所怀疑的真空泄漏区域(进气叶轮、进气歧管垫、真空管等)加入丙烷的方法来确定,看示波器的波形什么时候因加丙烷使信号变多,尖峰消失,当与一个缸或几个缸有关的真空泄漏造成进入气缸的混合气超过17:1时,真空泄漏造成的点火不良就发生了。 f)就喷油嘴喷射不平衡造成的点火不良仅在多点喷射发动机中,一个缸的油浓或稀混合气造成点火不良是因为喷油时每个喷油嘴实际喷射的油量太多了或太少(喷油嘴堵塞或卡住)造成的。当一个气缸或几个汽油中的混合气空燃比超过危险时17:1就产生了稀点火不良,低于13:1也产生浓点火不良,这就造成了喷油嘴喷油不平衡产生的点火不良。 通常,可以用排除由点火系统造成的点火不良、气缸压力的点火不良和单个气缸真空泄漏造成的可能性来判断。喷油不平衡。可以用汽车示波器排除自点火系统和气缸压力造成的点火不良(用发现点火系统造成的点火不良和动力平衡气缸压力问题)。排除与个别气缸有关的真空泄漏,通常采用往可能产生真空泄漏的区域或周围加丙烷(进气歧管、化油器垫等)的方法,同时像从前说过的那样,从示波器上观察氧传感器信号波形的方法达到目的。通常,在多点燃油喷射发动机,如果不能证实a、b、和c类型造成的点火不良,那么不平衡造成氧传感器波形中的严重杂波的可能性就可以确定。 判断氧传感器的杂波的规则 如果氧传感器的信号上有明显的杂波,这种杂波对所判断的那一类系统是不正常的话,通常这将伴随着重复的、可测试出的怠速时的发动机故障(例如:每次气缸点火的的爆震)。通常,如果杂波是明显的,发动机的故障最终将与波形上的各个尖峰有关,没有明显的伴随着发动机故障的杂波是不容易消除的杂波(在某些情况下这是正确的),也就是说当在波形上产生杂波的个别尖峰最终与发动机故障无关时,那么在修理中想要排除它的可能性很小。 综上所说,判断杂泼的规则是:如果可断定进气歧管无真空泄漏,排气的碳氢化合物(HC)和氧的含量正常,发动机的转动或怠速都比较平衡的话,那么杂波或许是可以接收的,或是正常的。许多汽车燃油反馈控制系统中,不但安装一个氧传感器,福特3.8L V6型从1980年制造出来的就装有两个氧传感,为了适应不断加强的EPA的废气控制要求,使用多个氧传感器的系统数量在不断增加。在1988年和更新的汽车上氧传感器的数目在连续地增加。此外,从1994年起一些汽车在催化器前和后各装一个氧传感器,这种结何可以用装在汽车上的OBD-Ⅱ系统来检查催化器的性能,在一定情况下,还可以增加对空燃比控制的精度。在任何情况下,由于氧传感器信号快使其成为最有价值的发动机性能诊断工具之一,氧传感器越多,对检修技术人员越有好处。通常,燃油反馈控制系统的工程逻辑决定,氧传感器在靠近燃烧室的地方,燃油控制的精度越高,这主要是由于排气空气气流的特性确定的:例如气体的速度,通道的长度(气体瞬时太滞后)和传感器的响应的时间等等。许多制造商在每个气缸的每个排气歧管底下安装一个氧传感器,这样就能判定哪一个气缸有问题,这就排除了诊断失误的可能性,在许多情况下靠排除至少一半潜在有问题气缸来减少诊断时间。 用双氧传感器进行催化器监视 一个工作正常的催化转换器,配上正常控制燃油分配系统的燃油反馈控制系统,它可以保证最安全的将有害的排气成份变为相对无害的氧化碳和水蒸气,但是,催化器会因过热而受损(由点火不良等等),这导致催化剂表面减少和孔板金属烧结,这两点都将使催化器永久损坏。当催化剂失效时就能知道,对环境和废气系统修理时,技术人员是十分重要的。OBD-Ⅱ诊断系统的出现,对环境和催化剂的随车监视系统、OBD-II监视系统依据好或坏的催化剂的氧化特征作精确的检测手段。在稳定运行时,催化剂后面好的氧传感器(热的)应比催化剂前的任何一个氧传感器的信号波动少得多,这是由于在转换碳氢化合物和一氧化碳时正常运行的催化剂消耗氧化能力,这就减少了后氧传感器信号的波动。后氧传感器的信号波动比氧传感器的信号波动要小的多。也要注意当催化剂“关断”(或达到运行温度),催化器开始储存和用氧做催化转换时,信号由于在排气中氧越来越少而升高。当催化剂完全损坏时,催化剂的转换效率、以及它的氧储存能力丧失,因此,催化剂后部的排气中氧的含量如果不完全的话,则十分接近催化剂前部的排气中的氧的含量。 [编辑本段]氧传感器的检测装有排气氧传感器的电控燃油喷射发动机,如果在运转中出现怠速不稳、加速无力、油耗增加、尾气超标等故障而供油、点火装置又无其他故障,那么极有可能是氧传感器及相关线路出了问题。大多数发动机的电控系统都有自检功能,当氧传感器或相关部位发生故障时,电脑会自动记下故障内容,维修人员只需用专门的解码器读出故障代码即可发现问题所在。但如果没有专用设备怎么办呢?这里有几个方法可以很快检查出氧传感器的好坏。如果怀疑怠速不稳或加速不良等故障是氧传感器引起的,检修时只需拔下氧传感器接头,如果发动机的故障消失,则说明氧传感器已经损坏,必须更换,如果发动机故障依旧,那么还要从其他地方找原因。利用高阻抗的电压表也可以检查出氧传感器的好坏。把电压表并联在氧传感器的输出端,正常情况下,电压应在0-1V之间变化,中值在500mV左右,如果输出电压长时间保持某一数值而无变化,则表明氧传感器已经损坏。实际上,氧传感器是一个相当耐用的部件,只要燃油质量过关,它可以使用3年或更长的时间。氧传感器的非正常损坏大多是由于燃油中含铅量超标造成的。这一点,驾驶装有三元催化装置汽车的司机务必要加以重视. [编辑本段]氧传感器的表征与故障在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线和三根引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。因此,必须及时地排除故障或更换。氧传感器的常见故障1.氧传感器中毒氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。另外,氧传感器发生硅中毒也是常有的事。一般来说,汽油和润滑油中含有的硅化合物燃烧后生成的二氧化硅,硅橡胶密封垫圈使用不当散发出的有机硅气体,都会使氧传感器失效,因而要使用质量好的燃油和润滑油。修理时要正确选用和安装橡胶垫圈,不要在传感器上涂敷制造厂规定使用以外的溶剂和防粘剂等。2.积碳由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。3.氧传感器陶瓷碎裂氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。因此,处理时要特别小心,发现问题及时更换。4.加热器电阻丝烧断对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。5.氧传感器内部线路断脱。6氧传感器外观颜色的检查从排气管上拆下氧传感器,检查传感器外壳上的通气孔有无堵塞,陶瓷芯有无破损。如有破损,则应更换氧传感器。通过观察氧传感器顶尖部位的颜色也可以判断故障:①淡灰色顶尖:这是氧传感器的正常颜色;②白色顶尖:由硅污染造成的,此时必须更换氧传感器;③棕色顶尖:由铅污染造成的,如果严重,也必须更换氧传感器;④黑色顶尖:由积碳造成的,在排除发动机积碳故障后,一般可以自动清除氧传感器上的积碳。氧传感器的作用电喷车为获得高排气净化率,降低排气中(CO))一氧化碳、(HC)碳氢化合物和(NOX)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14/:7)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加热传感器,使能精确检测氧气浓度。在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。应当指出采用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。

技师专业论文工种:汽车维修工题目:凌志LS400轿车故障灯亮故障排除及氧传器系统报警检测姓名:钱亚亮校:西安北汽车修理职业培训校期:200912月3凌志LS400轿车故障灯亮故障排除及氧传器系统报警检测作者:钱亚亮间:200912月3摘要:本文主要介绍部99凌志LS400轿车行驶仪表内发机故障指示灯点亮用仪器读取故障码25或26(25代表混合比稀26代表混合比浓)知供油系故障维修汽车行驶再点亮意味着维修能完全依据故障码修理要全面考虑关键词:故障码;供油系统;氧传器前言:汽车电控制燃油喷射发机机电体化高新技术产物尤其发机控制系统设置传器、执行器电控制元件控制系统工作各种信号相互交叉渗透控制进气、喷油点火发故障则症状界限模糊且系统现故障使电脑控制显示另系统故障码所我必须全面深刻解电控制燃油喷射发机结构原理掌握关功能作用运用科析维修技巧制定切实行维修案文故障现象:辆凌志LS400(UCF10 发机)轿车发机故障灯亮读取故障码25或26故障排除:根据资料知供油系统故障(25代表混合比稀26代表混合比浓)般情况读取故障码显示25或26知供油系统故障步便应先检查油电路即检查火花塞、高压线等点火元件更换汽油滤清器、清洗喷油嘴等做目保证发机点火、通畅供油确喷油些工作做完消除故障码则故障灯灭车辆维修厂行驶200Km左右发机故障灯亮起厂返修读取故障码25或26供油系统应该没问题我仔细查找与点火供油关元件结发现氧传器电压波值明显符合规定要求(标准:输电压低于0.35V或高于0.7V10S内跳4)更换氧传器故障灯便再亮故障析:明明氧传器工作良却显示混合比稀或浓故障码25或26显示氧传器故障21、27或28根据燃油喷射工作原理析知喷油间短电脑依据各控制元件所提供输信号修由于氧传器工作良(并未完全失效)即输电压值符合规定要求电脑氧传器处确电压信号给喷油嘴错误喷油脉冲宽度造喷油量少或混合比稀或浓故障数累计事实电脑便形故障记忆便维修厂行驶200km左右故障灯亮起原种故障给我启示即凌志LS400发机故障灯亮调取故障码显示25或26应先测氧传器否若低于规定电压值定要更换再检查油电路便彻底消除故障总结:情况则恰恰相反即氧传器本身故障电控汽油喷射发机氧传器用于燃料系统闭环控制电器元件主要用测废气氧含量并所测量数据用电压信号形式反馈给ECU控制发机空燃比保持14.7;同种故障信号报警元件氧化锆传器种见氧传器其故障表现表面铅化物或碳化物覆盖使气体能渗透、氧离能扩散导致失效故障灯报警并读取传器故障码必须其进行故障诊断氧传器系统报警定表示传器故障其报警信号受列素影响:①点火系统工作状况;②进所系统密封性能;③排气系统否堵塞;④喷油器工作状况;⑤供油系统油压高低1. 氧传器故障诊断由氧化锆传器特性知:空燃比维持14.7,报警信号基准电压0.4-0.5V;空燃比于14.7,其电压升至0.8-1V,表混合气浓;空燃比于14.7,电压降至0.2V左右,表明混合气稀.诊断氧传器工作状况:(1) 保持发机转速2500r/min左右,预热传器2min.(2) 拔传器插线(加热线圈传器注意插脚位置),用万用表测量反馈电压,检查10S内电压表指针摆数;(1)若电压表指针摆数少于8应再预热传器,并每检查10S内指针摆数.若指针摆8表明氧传器工作;(2)若仍少于8,则应脱传器线束插,再测量其反馈电压;电压于4.5V脱进气管真空管,若压仍于0.45V,说明传器损坏;若于0.45V,说明混合气浓,应燃料\进气或控制系统进行检查.电压于0.45V,拔水温传器插,接4-8KΩ电阻,,若电压仍于0.45V,说明传器损坏;若于0.45V,则表明混合气稀.2.点火系统工作状况检测首先微机控制点火系进行规检查.检查内容包括火花塞、高压线工作状况及火花能量、点火、点火提前角等点火:灯红夹接蓄电池传器接缸高压线点火灯准发机前皮带轮点火标记发机转速升高点火提前角应增用手锤或扳手敲击爆震传器固定螺钉或缸盖四周点火提前角应明显推迟3.进气系统密封性能检查进气歧管接真空表发机怠速运转进气管真空度应57.33-70.66kpa范围内,否则进气系统漏气.若真空表指针逐渐零,则表示排气系统阻塞.4.喷油器性能检查喷油器喷油量取决于喷油脉冲宽度,脉冲宽度定,则取决于喷孔断面喷油压力.喷油器试验台喷油器喷油量、雾化性能、密封性能进行测试其主要性能参数喷油持续间2ms针阀升程0.15mm ,稳定电流2A,电磁线圈电阻3-15 Ω,15S喷油量45-55 ml,各缸差值于5 ml.5.供油系统油压检测发机工作,燃油配管测压孔或节气门体喷射(TBI)燃油压力测试点接油压表测量油压.点应200--350kpa,单点应62--90 kpa;或发机工作,夹住油管,油压应升100 kpa,发机转速升高100r/min,说明供油系统.参考文献:发机传器原理与检测:辽宁科技术版社:主编:张 伟电控汽车维修数据手册:黑龙江科技术版社:主编:张月相 赵英君

水温传感器的故障检测论文

电喷车冷起动困难故障的修复 姓名XXX工作单位 XXXXX一、摘要 本文主要介绍一部曰产蓝鸟轿车,由于发动机ECU的部分控制功能有故障,造成该车冷起动困难,通过增加一个由水温传感器和继电器组成的电路,即使不更换新的ECU这一昂贵电脑部件,也能使该轿车回复良好的起动性能。 关键词:冷起动困难;喷油脉宽;水温传感器 二、前言 汽车电子控制燃油喷射发动机是机电一体化高新技术的产物,尤其是发动机的控制系统,它设置有多个传感器、执行器和电子控制元件。控制系统工作时,各种信号相互交叉渗透,控制进气、喷油和点火。一旦发生故障,则症状的界限模糊。而且只是局部发生故障而其他部分仍完好的可能性极高。而控制单元一般都是一个整体,为排除局部故障而去整体更换总成,经济上不合算。所以我们必须全面深刻了解电子控制燃油喷射发动机的结构原理,掌握有关功能作用,运用科学的分析方法和维修技巧,制定出切实可行而又经济的维修方案,通过采取一些简单的补偿措施,去弥补这部分的功能作用。以达到排除此局部故障的目的。 三、正文 (一)故障现象 有台曰产蓝鸟U13的轿车,发动机型号为SB20DE,冷起动时,要起动十多次才能着车,起动时踩不踩油门对着车影响不大,热车相对好一些,起动后发动机工作一切正常,无其他异常现象。但这起动困难的现象会大大缩短蓄电池和起动机的使用寿命。 (二)故障检测与分析 电子控制燃油喷射系统的发动机,工作时,通过控制系统不断地检测各传感器输入的信号,按程序中设定的算法进行运算,计算出最佳喷油量、最佳初级电路导通时间,并转变成控制信号,控制喷油器、点火线圈等执行机构工作,以控制喷油量和点火提前角。从而使发动机在各种工况下都能获得最佳工作状态。 从汽油发动机的工作原理可知,要使发动机能顺利着车,必须具备以下条件:①供给的混合气要符合工作状况所需的空燃比(浓度);②工作时要有合适的气缸压缩压力和喷油压力;③点火时要有足够的电火花能量。为诊断出上述车辆故障的原因,根据上述的分析进行如下的检测: (1)起动发动机,连续4次起动,都没有着车迹象。把油门踏到底,再继续起动2次,依然没有着火迹象。用万用表测量,起动时蓄电池电压为11V,属于正常。用声音探听器对着喷油器,起动时可听到针阀“嗒、嗒”的动作声,喷油器动作正常。 (2)拔掉中央高压线对着缸盖约距7mm,起动发动机试火,高压线发出呈蓝白色的强火花,声音响亮、不断火。拆下4个缸的火花塞,没有发现湿润现象。把火花塞分别插到分火线上,插回中央高压线试火,发出火花也正常。 (3)拔下燃油泵保险丝,起动3次,释放燃油压力,测量冷车状态下的气缸压力。依次测得4个气缸的气缸压力值为1108kPa、1110kPa、1112kPa、1110kPa,与标准值1226kPa(热机状态下测得)及最小值1030kPa(热机状态下测得)相比较是正常的。 (4)测量燃油压力。把燃油压力表用三通管连接在汽油滤清器至发动机输油管中间,装回燃油泵保险丝,打开点火开关,重复一次,看到压力表读数为295kPa,起动时燃油压力不下降,与标准值294kPa相比是正常的。 (5)分析以上测试结果,发动机起动时喷油压力、电火花能量、压缩压力等均正常,故障原因可能是混合气的浓度过稀所致。于是拆开空气滤清器上盖,用化油器清洗剂边加浓、边起动,结果一起动,即能着车,再重复2次,都能顺利着车,证明上述判断是正确的。 那么,影响混合气浓度的因素有哪些呢?辅助空气控制AAC阀、节气门传感器、空气流量计、水温传感器等都有可能。但从该车故障现象和已检测的结果分析,起动后发动机工作正常。发动机故障灯又没有亮起,以及参照ECU的故障——保险系统的设置条件,节气门传感器、空气流量计、水温传感器至少没有存在硬性故障。辅助空气控制AAC阀也不会在起动时造成混合气过稀现象。根据电子控制燃油喷射系统的工作原理,发动机在起动时,ECU在收到起动信号后,会提供起动加浓补偿喷油脉宽,补偿量的大小取决于检测到的发动机温度。现在问题是在起动时ECU有没有收到起动信号?水温传感器信号有没有问题?提供的喷油脉宽补偿量够不够?参阅BLUEBIRD U13 SR20DE发动机的线路图(见附页),用万能表测量ECU的34号脚,在起动时的电压为llV,证明已有起动信号送至ECU。拔掉水温传感器配线插头,打开点火开关,测量信号电压为4.9V,属于正常。测量此时水温传感器的电阻为1.4kΩ。关闭点火开关,拆下电池头,拔掉ECU配线插头,测量水温传感器配线到对应ECU的18号、21号脚接柱,正常导通。装回配线插头及电池头。再更换一个新的水温传感器、实测电阻为1.5kΩ,插上配线插头,起动发动机,仍然不能马上着车。说明该车水温传感器无问题。 (6)用发动机故障检测仪测量喷油脉宽,连接好配线,打开点火开关,点击菜单进入故障诊断程序。首先,读取发动机故障码,显示“系统正常”。选择“读取数据流”显示当前温度为30℃起动发动机,喷油脉宽为8.8ms。由于查不到起动时相关详细的喷油脉宽数据资料,故只能用另外一台同一型号的正常车去测取数据作为参考。用检测仪实测得到的不同温度下正常车起动时的喷油脉宽数值如表1。 表1 发动机温度(℃) 起动时喷油脉宽(ms) 26 sp; 12.4 30 11.3 60 9.5 80 9.0 (三)故障诊断 通过与测得的数据对比分析,发现该车在起动时的喷油脉宽加浓补偿痹积常车小了。会不会是ECU自身出了问题呢?为了尽快得出结论,决定将正常车的ECU与其互换。结果该车互换ECU后冷起动能顺利着车,重复几次,都能顺利起动。而另外一台“正常车”却不能马上起动,要在第四次起动后才能着车。试验结果说明了该车冷起动困难就是由于ECU自身存在故障造成的。 装回该车有故障的ECU,拔下水温传感器插头,冷车起动发动机,着车顺利,但此时发动机故障灯亮起,读取发动机故障码为“13”,表示水温传感器故障,表明ECU已启动故障—保险系统。按20℃时预存值进行起动,此时测得20℃的预存起动喷油脉宽为17.8ms。根据前面检查,正常车发动机在温度30℃时起动喷油脉宽为11.5ms,而测得该车在当前温度30℃时,喷油脉宽只为8.7ms,由此得出结论,在同一温度下,ECU内预存的起动喷油脉宽与依据水温传感器信号所提供的起动喷油脉宽存在一定的差值。 这就反映出该ECU在发动机冷起动时所检测到的信号,不能运算出对应起动温度所需要的喷油脉宽,使喷油脉宽减少,造成起动时喷油量减少,令混合气的浓度变稀,不适应起动状态的需要,故要多次起动待混合气浓度加大了才能着车。 起动后发动机工作一切正常的现象表明,该ECU只是冷起动这部分功能失效而其他功能还是正常的,如更换新的ECU,价钱很昂贵。只是为恢复起动功能而去换新的ECU,既浪费也不值得,能否在不需要换新的ECU的情况下,去克服冷起动困难的故障呢? (四)故障排除 根据水温传感器的负温度变化特性,水温越低,水温传感器的电阻值就越大。令ECU所检测到输入信号后,根据运算提供的喷油脉宽也就越大,使供给发动机的混合气越浓。既然有故障的ECU把起动时检测到的输入信号变小了,不能运算出足够的喷油脉宽去提供足够的燃油,以满足低温时需要浓混合气的要求,那只要我们通过增大水温传感器两端电阻,就可以弥补ECU内起动控制部分的故障,令ECU检测到的信号相应提高,使其本身喷油脉宽相应提高,以满足起动时的浓度需要。 增加电阻值虽能使发动机在冷状态下顺利起动,但也会影响起动后发动机的正常工作。要保证起动后发动机回复正常工作状态,就要考虑冷起动时增加的电阻,在起动后能自动消除,要满足以上条件,可以通过加装一个继电器电路(如图3)来实现。 通过一个五脚继电器,利用起动信号作为控制电源,在起动时,触点1—3闭合,把电阻R串联在水温传感器的回路上增加电阻,实现起动加浓;在起动后,触点1—3断开,触点1—2闭合,恢复原水温传感器电阻以满足发动机起动后的正常工作不受影响。 电阻R的选用,根据以上的检测结果可知,当温度约为30Ω左右时,2个水温传感器的串联电阻阻值约为2.5kΩ,此时ECU提供的喷油脉宽可以使冷车顺利起动。热车是否能顺利起动呢?根据对起动时喷油脉宽的检测结果分析,从理论上讲,只要使电阻R保持不小于一定的阻值,就可以达到热车顺利起动的目的。为实现这一目的,只需将电阻R(1个水温传感器)安置在不受发动机温度影响的位置,使总的电阻值在起动时,能让ECU按收到的水温信号提供足够的喷油脉宽,满足顺利起动即可。以热车发动机80℃时为例,水温传感器标准电阻为330Ω,外界温度在29℃时,电阻R约1.3kΩ,此时的总阻值约1.63kΩ,在起动时ECU提供的喷油脉宽将为11.0ms左右,可以使发动机顺利起动。 把电阻R(1个水温传感器)、继电器用导线按照改装后的电路图(如图3)安装好。为保证电阻R在起动时保持不小于一定的阻值,把电阻R安置在ECU旁边,以避免受发动机温度的影响。然后,起动发动机,一次就能顺利起动,重复一次,测得此时的起动喷油脉宽为11.1ms,温度显示为34℃。让发动机暧机,使水温达到80℃,关闭点火开关,重新起动,顺利着车,测得起动喷油脉宽为9.1ms,重复多次,都能顺顺利利起动。实验证明,电阻R选用1个水温传感器是可行的。让发动机再次降温、试车,冷、热状态下发动机都可以顺利起动,故障排除。 (五)维修后的效果 该车经过加装电阻后,冷热状态下发动机都能顺利起动,发动机的正常工作性能没有受到影响,恢复了该车的正常使用。从维修至今仍在继续运行,再没有出现过冷起动困难的故障,实践证明这次维修是成功的,加装的设备是有效的。而且经济效益也相当可观,因为换ECU的费用约6500元,而改装所需的材料费不足130元,大大降低了维修费用。 (六)结论 综上所述,当遇上冷起动困难,且只是ECU冷起动这部分控制功能失效,而其他功能正常的故障时,我们就不必考虑更换整个ECU系统,而只需在温度传感器上再串联一个适当阻值的电阻,就可以解决冷起动困难的故障。 以上用了较多篇幅叙述轿车故障排除的方法,是为了更具体论述一个观点,就是当贵重的电脑元件有故障时,不一定非要采用更换的做法。尤其只是某部分功能有问题,而其他功能还是完好时,可否通过某种适当的措施,去恢复其有问题的那部分功能,用简单修复的方法,达到既解决问题又节约费用的效果

一辆佳美车装用直列四缸1.8L SV20发动机,采用中央单点喷射(CFI)和集成式点火系统(IIA),发生启动不着的故障。检查处理先在喷油器燃油输入侧接上油压表,启动发动机,此时油压表指示为0.26MPa,表示燃油系统供油正常。接着进行跳火试验,无火花;直接用最长的分电器线一端套在火花塞上,另一端靠近点火线圈次级端子进行跳火试验,火花正常,说明分电器盖或分火头有缺陷。检测证实是分电器盖不良(中心触头接触不好以及各侧电极与分火头间的间隙过大)。换上新件再试,发动机能顺利启动,但车头发抖较严重,且怠速约为500r/min。转动怠速调整螺钉,却无法调高怠速,然而发动机加速性能良好,说明怠速失常。从排放黑烟的情况可知混合气过浓。于是,拆下中央喷油器总成进行清洗,此时发现由水温控制的怠速空气阀积炭严重,节气门起始位置调节螺钉不起作用,节气门处于完全关闭位置。安装好喷油器总成(安装时应避免损坏密封胶圈),并把节气门调整至正确位置,使怠速为750r/min,点火提前角调到5°,故障排除。92款佳美,装备SXV10 5S—FE型发动机。抛锚在外,车主打电话要求救援。故障检修我们带了一套组合工作、万用表匆匆赶到现场,先检查点火系统,拔出高压线插进带来的备用火花塞,打马达试跳火,发现有火花,点火系统基本无问题;接下来检查油路,打马达轻踩油门用带来的化油器清洗剂向进气歧管内喷射,仍不着车。有油、有电、有气,怎么不着车呢?因带来的工具和检测仪无法继续深入检测,决定将车托回厂内维修。到厂后拆下进气管发现节气门体较脏,拆下节气门体和怠速马达进行清洗,清洗后装后仍着不了车。短接诊断座TEl—E1脚调码,无故障码出现。重新检查点火系统,测量分电器中点火线圈的初级、次级电阻,均在正常标准范围,高压线电阻均小于25k欧姆,用仪器测量跳火电压均在10kV左右,也在正常范围。当我们拔出高压线重新插上拆下来的火花塞时,打马达发现有火花但火花特别弱。是什么原因导致火花弱呢?我们决定用调换的方式将同种车型的分电器总成调换过来试验。打马达火花还是弱,高压线无问题,难道是火花塞问题?换上原厂白金火花塞,打马达试验火花特别强。将白金火花塞换上,打马达后便很顺利着车,至此故障解决故障现象:一辆丰田佳美(CAMRY)轿车,5S-FE型发动机,此车放置了两天后,再起动却无法起动。据此车车主说:此车在出差的过程中没有异常情况,但不知怎么了,回来后停放了两天再起动,怎么也起动不着了,到附近的一家修理厂检修时,他们说是点火放大器坏了,但换上新件后,故障依旧,等了几天还是没有修好。故障检测诊断:打开点火开关,将点火开关置起动位置,可怎么也起动不了,在起动过程中发动机运转很协调,说明电源电压正常,可见此故障现象正如车主所述。本想通过故障诊断接口调取故障代码,但由于线路已有所改动,找不到故障诊断接口只好作罢。将点火开关置起动位置,倾听喷油器的动作声,结果都无动作,当即拔掉高压电缆线进行跳火试验,结果没有火花。很明显此时电脑处于安全失效保护状态,电脑接不到点火信号当然就控制喷油器不让其工作。根据此依据分析,故障很可能是点火系统的故障而导致不能起动。为了能准确查找故障部位,防止点火系统有隐性故障或出现其他故障的可能,只好对点火系统进行彻底的清查,虽然比较浪费时间,但已别无其他办法。将万用表置于欧姆档,测得点火线圈初级电阻值为0.46Ω;次级电阻为13.8Ω,此值都在正常范围内;点火线圈已没有问题了。因点火放大器是刚换上的新件,故障存在于此的可能性较小,但在此地步为了放心一些,只好对其进行检查,结果正常。难道是拾波线圈是有问题而导致电脑接不到其信号?关闭点火开关,拔下插接件对其分别检测,结果测量其电阻值分别为:G+(曲轴位置信号)与G-之间的电阻值为260Ω;Ne+(发动机转速信号)与G-之间的电阻值为520Ω检测值均在正常值范围内。又对分电器和相关线路进行检查,结果没有发现异点。是电脑坏了吗?此次检查已到了非常棘手的地步。再检查就要检查电脑了,但为了缩小故障范围,又再一次将点火系统细致地检查了一遍,其各组件及线路都很正常。 怎么办?只能对电脑进行检查了,通过认真的考虑后,决定拆下电脑检查。正当准备拆下电脑时,脑子里忽然这么想:仅测点火系统的相关电阻与线路,电压正常不正常呢?这一非常重要的环节?当即对电脑的工作电压检查,结果电压为0V,因为,此电压是受主继电器控制,所以认为主继电器损坏,拆下主继电器,此为四插脚式,当对其进行导通检查时,发现其余两端不导通,可见主继电器已损坏,换一新件后故障完全消失。原来由于主继电器不工作,致使电脑无工作电压,而导致发电机不能起动。此故障完全排除。丰田佳美3VZ-FE V6 3.0L发动机怠速不稳,加速无力,故障指示灯亮故障现象:怠速不稳,加速无力,故障指示灯亮。 故障检测:首先调取故障代码,为45——混合气过稀;12——空气流量计信号不良。怠速时,测量空气流量计信号电压为0.6V左右,偏离标准值(1.1~1.5V)较多。空气流量计信号低,必然造成喷油量减小,混合气过稀。那么,空气流量计信号偏低的原因是什么呢?根据经验与分析,大致有两点:①真空漏气;②空气流量计故障。首先从漏气查起,没有明显泄漏处。接入真空表测其怠速下真空度为52.63kPa,歧管真空度正常。说明从节气门以后的歧管各处不存在漏气,那么最大可能是在节气门前漏气。仔细检查发现主气道与节气门接口松动,重新紧固后,发动机性能明显变好,再测空气流量计信号为1.2V,正常。故障指示灯熄灭,故障排除。 故障分析:此车的空气流量计为叶板式,叶板转动的角度与空气流量大小相关联。与此同时,叶板带动电位计触点滑动到一个位置上,此点便有一个代表空气量的电压信号输入电脑。由于空气道漏气,它没有经过空气流量计的测量,故使叶板转动的角度变小,即信号变小,造成混合气过稀。为什么检测真空度时是正常的呢?这是因为怠速时,节气门是全关闭状态,进入歧管的空气只能经过怠速控制阀旁通气道,节气门前漏气与歧管内真空度无关。若检测时发现真空度较低,应重点检查节气门之后是否有漏气部位。丰田佳美轿车起动困难故障排除故障现象:一辆87年产丰田佳美轿车,3S-FE发动机。起动困难,没有快怠速,尤其是冷起动更加困难。点火开关至ST挡发动机着火,回到IG挡发动机在30S左右熄火,连续起动十几次,发动机工作温度达到40℃ 以上才能维持着火。发动机怠速转数900r/min,加速响应性不好,尤其低速向高速过渡不佳,发动机转速超过2500r/min时能正常工作。快速进入中国汽车修理网有问必答区几十万海量问答,解决你的各种修车问题故障检测:根据以上故障现象得知,维持发动机怠速运转时的空燃比太稀。影响发动机空燃比的因素很多,尤其是EFI系统机电结合的非常紧密,很难直接判断故障点。只好求助于故障代码,在发动机左侧空气流量计附近找到长方型诊断座。点火开关至OFF挡,将诊断座的TE1和E1用跨线短接,点火开关至ON挡,仪表板上的“CHECK”指示灯只亮不闪。又用故障码检测仪(元征公司431ME7.0版电眼睛)进行检测,点火开关至OFF挡,将故障码检测仪连接诊断座,点火开关至ON 挡,操作故障码检测仪使其进入发动机诊断系统主菜单,读故障代码功能菜单,故障码检测仪显示“发动机ECU无应答”,这表明发动机ECU与故障码检测仪ECU不能进行信息交换。是没有故障码,还是自诊断系统出现故障呢?在CD机下面找到发动机ECU,拆下固定螺丝,用数字表直流电压挡测ECU插座,测W端子对地电压为0.3V,标准电压为10-14V,显然电压太低,当短接诊断座TE1和E1时发现数字表显示的电压由0-0.3V有规律的变化。为了看的更清楚,用指针表直流电压1V挡测试,点火开关至OFF挡,将红表笔接在W端子上,黑表笔搭铁,点火开关至IG挡,4S后指针摆动2次,2次摆动间隔0.5S,而后间隔1.5S又摆动2次,这表示故障码为22,冷却水温传感器或线路有问题,用数字表测冷却水温传感器为开路状态,电阻值不随发动机温度变化。 故障分析:水温传感器在EFI系统的作用是检测发动机冷却水温度,向ECU输入温度信号,作为燃油喷射和点火正时的修正信号,同时也是其它系统的控制信号如图1所示。当水温传感器正常工作时,其输出电压信号在0.1-4.8V范围内变化,如果水温传感器电压低于0.1V(相当于水温高于139℃ )或电压高于4.8V(相当于水温低于-50℃ )时,ECU即判断为故障信号,并设定一故障代码。由于水温传感器开路状态,ECU收到5V的高电平信号,所以水温信号不能参与发动机喷油量和点火正时的修正,低温起动时ECU不能控制喷油 脉冲宽度的增加,从而达到控制喷油量的目的,其结果造成发动机低温起动空燃比太稀,难以起动的后果。为什么跨接诊断座TE1和E1时,仪表板“CHECK”指示灯不闪呢?是因为ECU控制驱动“CHECK”指示灯的功率块损坏。故障码检测仪不能提取故障码是因为诊断座上W线开路,接上诊断座的W线,故障码检测仪显示的结果与万用表所测的故障码一样。 故障排除:找到问题所在,就有解决的办法。为了看到水温传感器在EFI系统的控制作用,笔者用0-20KΩ可变电阻,根据下表所示:找到0℃ 、20℃ 、80℃ 所对应的电阻值,标好刻度,引出线接到水温传感器的插座上,低温起动时人为将电阻值调到3KΩ-5KΩ,相当于给ECU输入一个20℃ 以下,0℃ 以上的控制信号,发动机顺利起动,进入快怠速状态,发动机转速1800r/min,随着发动机水温升高,相应调节电位器怠速转数逐渐下降,当发动机达到正常工作温度时,将可变电阻的阻值调到200Ω-400Ω,发动机怠速为850r/min。试车,发动机加速响应性、动力性、排放性都很好。原车的水温传感器价格很高,又不好买,为了彻底解决这个故障,将损坏的水温传感器拆下,用48钻头从水温传感器的插头端钻到底,但不钻透,用300Ω-15KΩ的NTC热敏电阻,焊上导线,放入孔底部,用树脂胶封好,1小时后将水温传感器装回原处,将引线接到传感器的插座上,故障彻底排除。

  • 索引序列
  • 氧传感器故障检测论文
  • 氧传感器的故障检测毕业论文
  • 氧传感器故障检测及工作原理论文
  • 氧传感器检测论文
  • 水温传感器的故障检测论文
  • 返回顶部