首页 > 期刊投稿知识库 > 齿轮轴毕业论文

齿轮轴毕业论文

发布时间:

齿轮轴毕业论文

仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;滚筒直径D=220mm。运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.99×0.95=0.86(2)电机所需的工作功率:Pd=FV/1000η总=1700×1.4/1000×0.86=2.76KW3、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×1.4/π×220=121.5r/min根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比KW 同转 满转 总传动比 带 齿轮1 Y132s-6 3 1000 960 7.9 3 2.632 Y100l2-4 3 1500 1420 11.68 3 3.89综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/121.5=11.682、分配各级传动比(1) 取i带=3(2) ∵i总=i齿×i 带π∴i齿=i总/i带=11.68/3=3.89四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=473.33(r/min)nII=nI/i齿=473.33/3.89=121.67(r/min)滚筒nw=nII=473.33/3.89=121.67(r/min)2、 计算各轴的功率(KW)PI=Pd×η带=2.76×0.96=2.64KWPII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW3、 计算各轴转矩Td=9.55Pd/nm=9550×2.76/1420=18.56N?mTI=9.55p2入/n1 =9550x2.64/473.33=53.26N?mTII =9.55p2入/n2=9550x2.53/121.67=198.58N?m五、传动零件的设计计算1、 皮带轮传动的设计计算(1) 选择普通V带截型由课本[1]P189表10-8得:kA=1.2 P=2.76KWPC=KAP=1.2×2.76=3.3KW据PC=3.3KW和n1=473.33r/min由课本[1]P189图10-12得:选用A型V带(2) 确定带轮基准直径,并验算带速由[1]课本P190表10-9,取dd1=95mm>dmin=75dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm由课本[1]P190表10-9,取dd2=280带速V:V=πdd1n1/60×1000=π×95×1420/60×1000=7.06m/s在5~25m/s范围内,带速合适。(3) 确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×500+3.14(95+280)+(280-95)2/4×450=1605.8mm根据课本[1]表(10-6)选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2=497mm(4) 验算小带轮包角α1=1800-57.30 ×(dd2-dd1)/a=1800-57.30×(280-95)/497=158.670>1200(适用)(5) 确定带的根数单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KWi≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99Z= PC/[(P1+△P1)KαKL]=3.3/[(1.4+0.17) ×0.94×0.99]=2.26 (取3根)(6) 计算轴上压力由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)=791.9N2、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=3.89取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78由课本表6-12取φd=1.1(3)转矩T1T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm(4)载荷系数k : 取k=1.2(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×473.33×10×300×18=1.36x109N2=N/i=1.36x109 /3.89=3.4×108查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05按一般可靠度要求选取安全系数SHmin=1.0[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=49.04mm模数:m=d1/Z1=49.04/20=2.45mm取课本[1]P79标准模数第一数列上的值,m=2.5(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=2.5×20mm=50mmd2=mZ2=2.5×78mm=195mm齿宽:b=φdd1=1.1×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=122.5mm(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×(2.53/121.67)1/3mm=32.44mm考虑键槽的影响以及联轴器孔径系列标准,取d=35mm3、齿轮上作用力的计算齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N齿轮作用力:圆周力:Ft=2T/d=2×198582/195N=2036N径向力:Fr=Fttan200=2036×tan200=741N4、轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。(1)、联轴器的选择可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85(2)、确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位(3)、确定各段轴的直径将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.(5)确定轴各段直径和长度Ⅰ段:d1=35mm 长度取L1=50mmII段:d2=40mm初选用6209深沟球轴承,其内径为45mm,宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+19+55)=96mmIII段直径d3=45mmL3=L1-L=50-2=48mmⅣ段直径d4=50mm长度与右面的套筒相同,即L4=20mmⅤ段直径d5=52mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=96mm(6)按弯矩复合强度计算①求分度圆直径:已知d1=195mm②求转矩:已知T2=198.58N?m③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=2×198.58/195=2.03N④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=2.03×tan200=0.741N⑤因为该轴两轴承对称,所以:LA=LB=48mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:FAY=FBY=Fr/2=0.74/2=0.37NFAZ=FBZ=Ft/2=2.03/2=1.01N由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为MC1=FAyL/2=0.37×96÷2=17.76N?m截面C在水平面上弯矩为:MC2=FAZL/2=1.01×96÷2=48.48N?m(4)绘制合弯矩图(如图d)MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m(5)绘制扭矩图(如图e)转矩:T=9.55×(P2/n2)×106=198.58N?m(6)绘制当量弯矩图(如图f)转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[51.632+(0.2×198.58)2]1/2=65.13N?m(7)校核危险截面C的强度由式(6-3)σe=65.13/0.1d33=65.13x1000/0.1×453=7.14MPa< [σ-1]b=60MPa∴该轴强度足够。主动轴的设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×(2.64/473.33)1/3mm=20.92mm考虑键槽的影响以系列标准,取d=22mm3、齿轮上作用力的计算齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N齿轮作用力:圆周力:Ft=2T/d=2×53265/50N=2130N径向力:Fr=Fttan200=2130×tan200=775N确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,4 确定轴的各段直径和长度初选用6206深沟球轴承,其内径为30mm,宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。(2)按弯扭复合强度计算①求分度圆直径:已知d2=50mm②求转矩:已知T=53.26N?m③求圆周力Ft:根据课本P127(6-34)式得Ft=2T3/d2=2×53.26/50=2.13N④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=2.13×0.36379=0.76N⑤∵两轴承对称∴LA=LB=50mm(1)求支反力FAX、FBY、FAZ、FBZFAX=FBY=Fr/2=0.76/2=0.38NFAZ=FBZ=Ft/2=2.13/2=1.065N(2) 截面C在垂直面弯矩为MC1=FAxL/2=0.38×100/2=19N?m(3)截面C在水平面弯矩为MC2=FAZL/2=1.065×100/2=52.5N?m(4)计算合成弯矩MC=(MC12+MC22)1/2=(192+52.52)1/2=55.83N?m(5)计算当量弯矩:根据课本P235得α=0.4Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2=59.74N?m(6)校核危险截面C的强度由式(10-3)σe=Mec/(0.1d3)=59.74x1000/(0.1×303)=22.12Mpa<[σ-1]b=60Mpa∴此轴强度足够(7) 滚动轴承的选择及校核计算一从动轴上的轴承根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)由初选的轴承的型号为: 6209,查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,查[2]表10.1可知极限转速9000r/min(1)已知nII=121.67(r/min)两轴承径向反力:FR1=FR2=1083N根据课本P265(11-12)得轴承内部轴向力FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=682N FA2=FS2=682N(3)求系数x、yFA1/FR1=682N/1038N =0.63FA2/FR2=682N/1038N =0.63根据课本P265表(14-14)得e=0.68FA1/FR148000h∴预期寿命足够二.主动轴上的轴承:(1)由初选的轴承的型号为:6206查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,查[2]表10.1可知极限转速13000r/min根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)已知nI=473.33(r/min)两轴承径向反力:FR1=FR2=1129N根据课本P265(11-12)得轴承内部轴向力FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=711.8N FA2=FS2=711.8N(3)求系数x、yFA1/FR1=711.8N/711.8N =0.63FA2/FR2=711.8N/711.8N =0.63根据课本P265表(14-14)得e=0.68FA1/FR148000h∴预期寿命足够七、键联接的选择及校核计算1.根据轴径的尺寸,由[1]中表12-6高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79大齿轮与轴连接的键为:键 14×45 GB1096-79轴与联轴器的键为:键10×40 GB1096-792.键的强度校核大齿轮与轴上的键 :键14×45 GB1096-79b×h=14×9,L=45,则Ls=L-b=31mm圆周力:Fr=2TII/d=2×198580/50=7943.2N挤压强度: =56.93<125~150MPa=[σp]因此挤压强度足够剪切强度: =36.60<120MPa=[ ]因此剪切强度足够键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。八、减速器箱体、箱盖及附件的设计计算~1、减速器附件的选择通气器由于在室内使用,选通气器(一次过滤),采用M18×1.5油面指示器选用游标尺M12起吊装置采用箱盖吊耳、箱座吊耳.放油螺塞选用外六角油塞及垫片M18×1.5根据《机械设计基础课程设计》表5.3选择适当型号:起盖螺钉型号:GB/T5780 M18×30,材料Q235高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235螺栓:GB5782~86 M14×100,材料Q235箱体的主要尺寸::(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45取z1=8(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12(4)箱座凸缘厚度b=1.5z=1.5×8=12(5)箱座底凸缘厚度b2=2.5z=2.5×8=20(6)地脚螺钉直径df =0.036a+12=0.036×122.5+12=16.41(取18)(7)地脚螺钉数目n=4 (因为a<250)(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)(10)连接螺栓d2的间距L=150-200(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)(13)定位销直径d=(0.7-0.8)d2=0.8×10=8(14)df.d1.d2至外箱壁距离C1(15) Df.d2(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。(17)外箱壁至轴承座端面的距离C1+C2+(5~10)(18)齿轮顶圆与内箱壁间的距离:>9.6 mm(19)齿轮端面与内箱壁间的距离:=12 mm(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm(21)轴承端盖外径∶D+(5~5.5)d3D~轴承外径(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.九、润滑与密封1.齿轮的润滑采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。2.滚动轴承的润滑由于轴承周向速度为,所以宜开设油沟、飞溅润滑。3.润滑油的选择齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。4.密封方法的选取选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。十、设计小结课程设计体会课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。十一、参考资料目录[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

给你提供几个相关和内容,因字数限制,所以内容有限!!你可以作为参考!!简易数控电源小功率数控直流电压源经济型数控车床控制系统设计数控车床系统XY工作台与控制系统设计特殊螺纹轴的数控加工工艺设计数控铣削加工工艺规程设计SSCK20A数控车床主轴和箱体加工编程数控机床的电气维修技术超高压水切割X6132型铣床的经济型数控化改造设计--垂向范文:机械传动装置设计及典型零件的数控加工 摘要:带式传送装置的减速装置是带式传动装置的关键设备,用来控制传动的速度大小。减速器是通过两根轴上啮合的不同大小的齿轮之间因转速不同而产生的传动比和链传动比来达到变速的目的的。为使减速器达到使用要求,我们首先对电动机进行了设计和计算,根据结果选择了合适的电动机型号,并对齿轮和齿轮轴的材料进行了设计计算,并对强度进行了校合。根据总的传动比合理的分配了各级的传动比,然后绘制齿轮及齿轮轴的零件图。 关键词:传动比、减速器、设计 Abstract :Belt transmission device with a slowdown device is the key-transmission equipment, used to control the speed of transmission size. Reducer through the meshing of the two axes of different sizes between the gear due to the different speed than the transmission and chain drive to achieve than the speed of purpose. To meet the requirement reducer, we first had to motor design and calculation, based on the results select the appropriate motor models, and gears and gear shaft of the design materials, ..第一章 前言 随着物料运输量的增大,带式输送机取得了巨大的发晨 出现了大量的新型结构和新型的带式输送机。在这些新型带式输送机中具有代表性的主要有:大倾角带式输送机(包括深槽带式输送机、花纹带输送机、波纹挡边以及压带式输送机等),.............目录:第一章 前言……………………………………………………………..1第二章 计算说明………………………………………………………..32.1电动机的选择计算…………………………………………………..32.2各级传动比的分配…………………………………………………..5.....参考文献:[1] 机械设计课程设计 主编韩莉 副主编邓杰 王振甫。重庆:重庆大学出版社,2004[2] 机械设计课程设计 主编 孙宝钧。北京:机械工业出版社,2006[3] 机械设计基础 主编邓昭铭 张莹。北京:高等教育出版社,2000[4] AutoCAD2002工程绘图与训练 莫章金 周跃生编著 北京:高教育出版社,2003[5] 工程力学 主编张定华 北京:高等教育出版社,2000[6] 数控加工编程及操作 主编顾京 北京:高等教育出版社,2003[7] 公差配合与技术测量 主编徐茂功 桂定一。机械工业出版社,2000作者点评:通过老师的细心指导和修正帮助,以及小组同学间的通力合作,早十二周的时间里终于完成了机械传动装置设计及典型加工零件的数控加工这一课题设计的说明书的编写这是我们第一次独立的完成一项机械课程设计任务,既让我们巩固了理论知识,又锻炼了实际操作能力。通过这次的课程设计我们学到了以下几点:(1) 这次课程设计锻炼了我们理论知识与实际相结合的能力,让我们学会了运用机械设计课程和其他选修课程的理论,结合实际设计中遇到的一般工程设计问题,将所知识活学活用,并进一步巩固。(2)掌握了一般机械课程的设计以及常用零部件设计绘制的方法。(3)学会了如何运用参考资料,如何进行计算,如何正确使用参考文献、手册标准和规范等。.............以上内容均摘自 更多详细内容 请登录 刨文网 ”,这里的文章全部是往届高校毕业生发布的原创毕业论文,内容详细,符合自身的专业水平。

现在的论文大多都要钱的,免费的很少啊。我都找了好长时间了,是关于减速器壳的工艺设计。都要钱的,郁闷!

搜索  友图网        10000多份毕业设计,机械的  计算机的  单片机的   土木工程的。你要多少就多少,不要人民币的哦。

电站保护装置设计.rar

调节盘的数控车床编程与模拟仿真.rar

调速器前壳加工工艺与工装设计.rar

渡槽设计.rar

端盖落料拉深冲孔复合模设计.zip

多用信号发生器系统设计.rar

惰轮轴工艺设计和工装设计(论文+DWG图纸).rar

二级直齿轮减速器设计(论文+DWG图纸).rar

二阶压控电压源低通滤波器6.rar

发动机过载模拟实验台.rar

阀销注射模设计(论文+DWG图纸).rar

法兰零件夹具设计 (论文+DWG图纸).rar

法兰盘加工的回转工作台设计.rar

法兰盘夹具设计.rar

法兰盘设计连续模设计.rar

法兰盘钻φ6mm孔夹具设计.rar

方便饭盒上盖设计(论文+DWG图纸).rar

放音机机壳注射模设计(论文+DWG图纸).rar

飞锤支架.rar

飞机起落架机构设计及安全性分析.rar

飞利浦彩色电视机开关电源的维修.rar

飞行模拟转台设计.rar

肥皂盒模具设计(论文+DWG图纸).rar

分离爪工艺规程和工艺装备设计(论文+DWG图纸).rar

风机状态测试系统的总体设计.rar

风力发电的调研报告.rar

风扇叶片注射模具毕业设计论文.rar

复摆腭式破碎机设计.rar

复合形法减速器优化设计.rar

盖”零件的工艺规程及钻孔夹具设计(论文+DWG图纸).rar

盖冒垫片(论文+DWG图纸).rar

钢筋弯曲机设计及其运动过程虚拟.rar

钢丝绳电动葫芦起升用减速器设计.rar

钢丝绳芯胶带输送机故障监测的装置的设计.zip

钢珠式减振器在铣床模型机上的减振实验研究.rar

港件杂货港区总平面布置与码头结构设计.rar

杠杆  零件机械加工工艺规程制订及第  25 工序工艺装备设计.rar

杠杆工艺和工装设计(论文+DWG图纸).rar

杠杆工艺和工装设计.rar

杠杆夹具设计.rar

杠杆零件的机械加工工艺规程与夹具设计.rar

杠杆设计(论文+DWG图纸).rar

高层建筑电气设计.rar

高层建筑外墙清洗机---升降机部分的设计(论文+DWG图纸).rar

高层建筑外墙清洗机---升降机部分的设计.rar

高层建筑消防救生装置总体设计及圆锥齿轮减速器设计.rar

高剪切均质机总体设计.rar

高精度数控旋切机控制系统设计.zip

高速喷水织布机单片机控制系统设计.rar

高速数字多功能土槽试验台车的设计(论文+DWG图纸).rar

高效风能增速机设计.rar

高压均质机传动端的设计及运动仿真.rar

高压开关微机综合保护装置软件设计.rar

隔水管横焊缝自动对中装置(论文+DWG图纸).rar

隔振系统实验台总体方案设计(论文+DWG图纸).rar

隔振系统实验台总体方案设计.rar

工程钻机 的 设 计(论文+DWG图纸).rar

工程钻机的设计(论文+DWG图纸).rar

工艺-WH212减速机壳体加工工艺及夹具设计(论文+DWG图纸).rar

公路铣刨机全套设计.zip

供水管道恒压智能控制系统设计(论文+DWG图纸+开题报告+外文翻译+文献综述).rar

沟槽凸轮机构的设计和运动仿真.rar

骨架模具的设计与制造.zip

刮板输送机设计.rar

管道外圆自动焊接机结构设计.zip

管磨机的总体和结构设计 张攀.zip

管套压装专机(论文+DWG图纸).rar

惯性式汽车制动实验台设计(论文+DWG图纸).rar

光信号示波器接收头研制的设计.rar

滚轮式脚踏式液压升降平台设计.rar

滚筒采煤机截割部的设计.rar

滚筒式抛丸清理机的总体和结构设计.zip

滚筒式输送机.zip

过桥齿轮轴机械加工工艺规程(论文+DWG图纸).rar

过桥齿轮轴机械加工工艺规程.rar

盒形件落料拉深模设计(论文+DWG图纸).rar

后钢板弹簧吊耳的工艺和工装设计(论文+DWG图纸).rar

弧齿锥齿轮盘铣刀刃磨夹具设计(论文+DWG图纸).rar

湖南Y12型拖拉机轮圈落料与首次(论文+DWG图纸).rar

护罩壳侧壁冲孔模设计(论文+DWG图纸).rar

滑道式提升机及其控制电路的设计.rar

环锭设备普通级升装置设计.rar

环面蜗轮蜗杆减速器(论文+DWG图纸).rar

环面蜗轮蜗杆减速器.rar

回旋冲击钻具轴承结构及润滑方式设计.rar

回旋冲击钻钻具星型运动结构设计.rar

回转盘工艺规程设计及镗孔工序夹具设计(论文+DWG图纸).rar

回转盘工艺规程设计及镗孔工序夹具设计(论文+图纸).rar

廻转盘加工工艺和工装规程设计.rar

活塞的机械加工工艺,典型夹具及其CAD设计(论文+DWG图纸).rar

活塞的机械加工工艺典型夹具及其CAD设计.rar

活塞的机械加工工艺设计及夹具设计(论文+DWG图纸).rar

货车底盘布置设计(论文+DWG图纸).rar

机床-S195柴油机机体三面精镗组合机床总体设计及夹具设计(论文+DWG图纸).rar

机床-车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计(论文+DWG图纸).rar

机床刀架座加工工艺工装设计.rar

机床主传动系统设计.rar

机电一体化PLC控制电梯(论文+DWG图纸).rar

机电一体化T6113电气控制系统的设计(论文+DWG图纸).rar

机电一体化连杆平行度测量仪(论文+DWG图纸).rar

机器人自动火焰切割H型钢的设计.rar

机械手的设计(论文+DWG图纸).rar

机械手夹持器毕业设计论文及装配图.rar

机械手控制装置论文和说明书.rar

机械手设计.rar

机械手完整图纸及毕业设计论文.rar

机油冷却器自动装备线压紧工位装备设计(论文+DWG图纸).rar

机油冷却器自动装备线压紧工位装备设计.rar

机座工艺设计与工装设计(论文+DWG图纸).rar

基 于 ProE 的 齿 轮 油 泵 三 维 建 模 设 计.rar

基于 Intel80Cl96 K B 单片机控制的6 k V 爆开关综合保护系统(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

基于 ProE的液压泵变量活塞Ⅰ零件的工装设计.rar

基于6层建筑用电负荷等级(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

基于840D的曲轴内铣数控系统设计及应用.rar

基于ADAMS的四自由度机械手运动学仿真.rar

基于ANSYS的切削加工过程温度场的分析.rar

基于AT89C51单片机的LED彩灯控制器设计.rar

基于AT98S51单片机板制作(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

基于AWC机架现场扩孔机设计(论文+DWG图纸).rar

基于CA6140法兰盘”零件的机械加工工艺规程及工艺装备(论文+DWG图纸).rar

基于PLC的热水箱恒温控制系统设计.zip

基于PROE的健身器材滑步机的运动仿真.zip

基于可调度性与全局延迟的分布式嵌入系统实时通信中的总线访问优化.zip

加工中心16刀刀库(盘式刀库).zip

加工中心自动换刀系统设计(盘式)—刀库设计.zip

减速箱体工艺设计与工装设计(论文+DWG图纸).rar

健身洗衣机.zip

江水利枢纽坝工设计.rar

绞肉机的设计(论文+DWG图纸).rar

铰链卷圆模具设计与材料失效分析.rar

轿车变速箱设计.rar

轿车双摆臂悬架的设计及产品建模(论文+DWG图纸).rar

教务选课成绩管理系统.rar

教育机械54套.zip

金属粉末成型液压机PLC设计(论文+DWG图纸).rar

金属切削加工车间设备布局与管理(论文+DWG图纸).rar

经济型的数控改造(论文+DWG图纸).rar

精简的ARM-TCPIP接口的开发和研究(开题报告+论文+DWG图纸).rar

精密播种机(论文+DWG图纸).rar

精密播种机设计(论文+DWG图纸).rar

精确高效谷物分离机设计.zip

酒瓶内盖塑料模具设计(论文+DWG图纸).rar

卷板机设计(论文+DWG图纸).rar

开关电源的应用液晶显示器电源的设计(开题报告+论文+外文翻译+文献综述+答辩PPT).rar

开关电源应用POS机的电源设计(开题报告+论文+外文翻译+文献综述).rar

烤箱说明书.rar

颗粒状糖果包装机设计(论文+DWG图纸).rar

壳体的工艺与工装的设计(论文+DWG图纸).rar

壳体的工艺与工装的设计(论文+图纸).rar

可调速钢筋弯曲机的设计(论文+DWG图纸).rar

可调速钢筋弯曲机的设计.rar

课程设计  红外声控报警系统的设计.rar

空气锤的传动机构设计.rar

空气滤清器壳正反拉伸复合模设计(论文+DWG图纸).rar

快速卷积中嵌套算法的设计与实现.rar

立式数控铣床传动系统.zip

连杆夹具设计.rar

连杆孔加工工艺与夹具设计.rar

连杆零件加工工艺(论文+DWG图纸).rar

连杆平行度测量仪(论文+DWG图纸).rar

连杆平行度测量仪设计.rar

林木移栽机液压系统设计.zip

零件图.rar

溜板工艺极其挂架式双引导镗床夹具.rar

楼宇专业智能写字楼综合布线投标方案的设计(论文+图纸).rar

滤油器支架模具设计(论文+DWG图纸).rar

履带式推土机设计.zip

履带式推土机设计2.zip

轮式移动机器人的结构设计.rar

螺母盒零件冲压工艺与冲模设计.rar

螺母盒零件冲压工艺与冲模设计02.rar

螺旋千斤顶设计(论文+DWG图纸).rar

落叶清扫机设计.rar

马铃薯播种机设计.rar

煤矿井下6 k V电网防爆开关设计(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

面向LED封装的XY二自由度的工作台的设计.rar

民液压式双头套皮辊机(论文+DWG图纸).rar

模糊控制系统仿真技术研究.rar

模具-146.6药瓶注塑模设计(论文+DWG图纸).rar

模具-Φ146.6药瓶注塑模设计(论文+DWG图纸).rar

模具-冰箱调温按钮塑模设计(论文+DWG图纸).rar

模具-电机炭刷架冷冲压模具设计(论文+DWG图纸).rar

模具-水泥瓦模具设计与制造工艺分析(论文+DWG图纸).rar

模具把手封条设计.rar

模具电机炭刷架冷冲压模具设计(论文+DWG图纸).rar

模具设计油杯说明书.rar

模具水泥瓦模具设计与制造工艺分析(论文+DWG图纸).rar

膜片式离合器的设计(论文+DWG图纸).rar

摩托车后轮轮毂模具设计.rar

摩托车前减震器的设计.rar

摩托车专用升降平台设计.rar

磨粉机设计(论文+DWG图纸).rar

抹灰机设计(2).zip

抹灰机设计.zip

某大型水压机的驱动系统和控制系统(论文+DWG图纸).rar

某大型水压机的驱动系统和控制系统.rar

某氟制品厂变电所及配电系统设计(论文+DWG图纸).rar

某氟制品厂变电所及配电系统设计(论文+开题报告+外文翻译+文献综述+DWG图纸).rar

某化工厂污水处理过程微机控制系统的设计(论文+DWG图纸+开题报告+外文翻译+文献综述).rar

某化工厂污水处理过程微机控制系统的设计(论文+DWG图纸+外文翻译+文献综述+DWG图纸).rar

某精细化工厂高配所(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

某精细化工厂高压配电所及全厂配电系(论文+DWG图纸+外文翻译).rar

某小区的智能化系统设计(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

某小区的智能化系统设计(论文+DWG图纸+开题报告+文献综述).rar

某型锥口罩冲压工艺及其模具设计.zip

某型自动垂直提升仓储系统方案论证及关键零部件的设计.rar

某中外合资机械厂变电所及配电系统设计(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

某轴盖零件复合模设计.zip

沐浴露瓶盖注射模设计.rar

内循环式烘干机总体及卸料装置设计(论文+DWG图纸).rar

闹钟后盖毕业设计(论文+DWG图纸).rar

闹钟后盖的注塑模具设计.rar

农作物清洗机的设计.rar

盘工艺规程设计及镗孔工序夹具设计(论文+DWG图纸).rar

配合件毕业设计.rar

平板定轮闸门设计.rar

平动转子式汽车空调压缩机设计.rar

平面关节型机械手设计(论文+DWG图纸).rar

平面连杆机构的动态仿真.rar

平面六杆机构的运动仿真 .zip

瓶盖理盖系统设计.zip

瓶装牛肉酱自动生产线- PLC控制系统和测试系统的设计.rar

普通-式双柱汽车举升机设计.rar

普通车床的数控化改造设计.rar

普通车床改造 修改.zip

普通车床主传动系统(附设计图).rar

普通钻床改造为多轴钻床(论文+DWG图纸).rar

齐云百货商场设计.rar

气动机械手升降臂结构设计.rar

气流输送系统设计.rar

气流雾化喷枪的设计.zip

气门摇臂轴支座(论文+DWG图纸).rar

气门摇臂轴支座的机械加工工艺及夹具设计078105301吕途.rar

气门摇臂轴支座加工工艺设计.rar

气体涡轮流量计的设计与制造.rar

汽车半轴(论文+DWG图纸).rar

汽车变速箱加工工艺及夹具设计.rar

汽车差速器设计+锥齿轮设计.rar

汽车大梁生产线全液压铆接机液压系统设计.rar

汽车顶盖模具设计.zip

汽车发动机油路测量设备的机构设计.rar

汽车废气余能回收利用装置设计.rar

汽车回转盘的盘面和驱动的设计.rar

汽车驾驶座椅滑槽的计算机建模及分析.rar

汽车离合器(EQ153)的设计.rar

汽车离合器设计.rar

汽车轮毂盘的反求造型研究.rar

汽车螺旋弹簧离合器的设计.rar

汽车碰撞模拟实验台设计.rar

汽车前灯罩的冲压模具设计.zip

汽车设计.rar

汽车锁座零件冲压工艺分析及模具设计.zip

汽车维修企业服务与管理模式探讨(论文+DWG图纸).rar

汽车行驶状态记录仪的研究与实现.rar

汽车转向液压油箱模具设计.rar

汽车自动变速器三行星排传动系统设计(含全套CAD图纸).zip

千斤顶设计方案.rar

桥梁工程课程式设计.rar

桥式起重机小车运行机构设计(论文+DWG图纸).rar

桥式起重机小车运行机构设计.rar

青饲料切割机(论文+DWG图纸).rar

轻型汽车底盘鼓式液压制动器设计.rar

曲轴工艺及夹具设计.rar

全数字化双闭环可逆直流PWM调速系统的研究(论文+DWG图纸+开题报告+外文翻译+文献综述).rar

全数字化双闭环可逆直流PWM调速系统的研究(论文+DWG图纸+外文翻译+文献综述+开题报告).rar

全数字化双闭环可逆直流PWM调速系统的研究(论文+DWG图纸+外文翻译+任务书+文献综述).rar

全液压升降机设计.rar

绕丝筛管缠绕机 (论文+DWG图纸).rar

绕丝筛管缠绕机(论文+DWG图纸).rar

绕丝筛管缠绕机.rar

热泵干燥装置电控系统设计(完成品).zip

乳化液泵的设计(论文+DWG图纸).rar

软管接头模具设计(论文+DWG图纸).rar

三面翻广告牌传动系统设计.rar

三自由度圆柱坐标型工业机器人设计(论文+DWG图纸).rar

三坐标测量(接触法)典型测量零件的设计三坐标典型测量零件.zip

三坐标测量机的机械结构设计及应用.rar

三坐标典型测量零件.rar

扫雪机.rar

商住楼施工组织设计(九层).rar

设计-AWC机架现场扩孔机设计(论文+DWG图纸).rar

设计-CG2-150型仿型切割机(论文+DWG图纸).rar

设计-CG2-150型仿型切割机.rar

设计AWC机架现场扩孔机设计(论文+DWG图纸).rar

设计CA10B解放汽车中间轴轴承支架.rar

设计工程钻机 的 设 计(论文+DWG图纸).rar

冲压齿轮毕业论文

机械专业工程 教育 应加强对学生的工程实践训练,以提高机械专业的工程教育水平。下面是我为大家推荐的机械专业 毕业 论文,供大家参考。机械专业毕业论文篇一:《机械加工质量技术》 摘要:机械加工产品的质量与零件的加工质量、产品的装配质量密切相关,而零件的加工质量是保证产品质量的基础,它包括零件的加工精度和表面质量两方面。 关键词:机械加工;精度;几何形状;工艺系统;误差 一、机械加工精度 1、机械加工精度的含义及内容 加工精度是指零件经过加工后的尺寸、几何形状以及各表 面相 互位置等参数的实际值与理想值相符合的程度,而它们之间的偏离程度则称为加工误差。加工精度在数值上通过加工误差的大小来表示。零件的几何参数包括几何形状、尺寸和相互位置三个方面,故加工精度包括:(1)尺寸精度。尺寸精度用来限制加工表面与其基准间尺寸误差不超过一定的范围。(2)几何形状精度。几何形状精度用来限制加工表面宏观几何形状误差,如圆度、圆柱度、平面度、直线度等。(3)相互位置精度。相互位置精度用来限制加工表面与其基准间的相互位置误差,如平行度、垂直度、同轴度、位置度零件各差来表示的要求和允许用专门的符明。 在相同中的各种因对准确和完足产品的工加工 方法 ,的生产条件下所加工出来的一批零件,由于加工素的影响,其尺寸、形状和表面相互位置不会绝全一致,总是存在一定的加工误差。同时,从满作要求的公差范围的前提下,要采取合理的经济以提高机械加工的生产率和经济性。 2、影响加工精度的原始误差 机械加工中,多方面的因素都对工艺系统产生影响,从而造成各种各样的原始误差。这些原始误差,一部分与工艺系统本身的结构状态有关,一部分与切削过程有关。按照这些误差的性质可归纳为以下四个方面:(1)工艺系统的几何误差。工艺系统的几何误差包括加工方法的原理误差,机床的几何误差、调整误差,刀具和夹具的制造误差,工件的装夹误差以及工艺系统磨损所引起的误差。(2)工艺系统受力变形所引起的误差。(3)工艺系统热变形所引起的误差。(4)工件的残余应力引起的误差。 3、机械加工误差的分类 (1)系统误差与随机误差。从误差是否被人们掌握来分,误差可分为系统误差和随机误差(又称偶然误差)。凡是误差的大小和方向均已被掌握的,则为系统误差。系统误差又分为常值系统误差和变值系统误差。常值系统误差的数值是不变的。如机床、夹具、刀具和量具的制造误差都是常值误差。变值系统误差是误差的大小和方向按一定规律变化,可按线性变化,也可按非线性变化。如刀具在正常磨损时,其磨损值与时间成线性正比关系,它是线性变值系统误差;而刀具受热伸长,其伸长量和时间就是非线性变值系统误差。凡是没有被掌握误差规律的,则为随机误差。 (2)静态误差、切削状态误差与动态误差。从误差是否与切削状态有关来分,可分为静态误差与切削状态误差。工艺系统在不切削状态下所出现的误差,通常称为静态误差,如机床的几何精度和传动精度等。工艺系统在切削状态下所出现的误差,通常称为切削状态误差,如机房;在切削时的受力变形和受热变形等。工艺系统在有振动的状态下所出现的误差,称为动态误差。 二、工艺系统的几何误差 1、加工原理误差 加工原理误差是由于采用了近似的成形运动或近似的刀刃轮廓进行加工所产生的误差。通常,为了获得规定的加工表面,刀具和工件之间必须实现准确的成形运动,机械加工中称为加工原理。理论上应采用理想的加工原理和完全准确的成形运动以获得精确的零件表面。但在实践中,完全精确的加工原理常常很难实现,有时加工效率很低;有时会使机床或刀具的结构极为复杂,制造困难;有时由于结构环节多,造成机床传动中的误差增加,或使机床刚度和制造精度很难保证。因此,采用近似的加工原理以获得较高的加工精度是保证加工质量和提高生产率以及经济性的有效工艺 措施 。 例如,齿轮滚齿加工用的滚刀有两种原理误差,一是近似造型原理误差,即由于制造上的困难,采用阿基米德基本蜗杆或法向直廓基本蜗杆代替渐开线基本蜗杆;二是由于滚刀刀刃数有限,所切出的齿形实际上是一条折线而不是光滑的渐开线,但由此造成的齿形误差远比由滚刀制造和刃磨误差引起的齿形误差小得多,故忽略不计。又如模数铣刀成形铣削齿轮,模数相同而齿数不同的齿轮,齿形参数是不同的。理论上,同一模数,不同齿数的齿轮就要用相应的一把齿形刀具加工。实际上,为精简刀具数量,常用一把模数铣刀加工某一齿数范围的齿轮,也采用了近似刀刃轮廓。 2、机床的几何误差 (1)主轴回转运动误差的概念。机床主轴的回转精度,对工件的加工精度有直接影响。所谓主轴的回转精度是指主轴的实际回转轴线相对其平均回转轴线的漂移。 瞬时速度为零。实际上,由于主轴部件在加工、装配过程中的各种误差和回转时的受力、受热等因素,使主轴在每一瞬时回转轴心线的空间位置处于变动状态,造成轴线漂移,也就是存在着回转误差。超级秘书网 主轴的回转误差可分为三种基本情况:轴向窜动——瞬时回转轴线沿平均回转轴线方向的轴向运动,如图l(a)所示。径向跳动——瞬时回转轴线始终平行于平均回转轴线方向的径向运动,如图l(b)所示。角度摆动——瞬时回转轴线与平均回转轴线成一倾斜角度,交点位置固定不变的。 (a)轴向窜动;(b)径向跳动;(c)角度摆动动,如图1(c)所示。角度摆动主要影响工件的形状精度,车外圆时,会产生锥形;镗孔时,将使孔呈椭圆形。实际上,主轴工作时,其回转运动误差常常是以上三种基本形式的合成运动造成的。 (2)主轴回转运动误差的影响因素。影响主轴回转精度的主要因素是主轴轴颈的误差、轴承的误差、轴承的间隙、与轴承配合零件的误差及主轴系统的径向不等刚度和热变形等。主轴采用滑动轴承时,主轴轴颈和轴承孔的圆度误差和波度对主轴回转精度有直接影响,但对不同类型的机床其影响的因素也各不相同。 参考文献: [1]郑渝.机械结构损伤检测方法研究[D];太原理工大学;2004年 [2]杨春雷,尹国会.浅谈机械加工影响配合表面的原因及对策[N].中华建筑报;2005年 [3]高原.不锈钢表面复合处理提高耐磨性的研究 机械专业毕业论文篇二:《企业工程机械设备管理》 摘要:由于工程机械现代化的实现,为现代企业的发展带来了新的发展机遇和高效的工作效率。但是,企业机械设备的管理仍然存在着很多问题,制约着企业的高速发展。本文作者就现代企业机械设备管理存在的问题和提高管理的方法进行了简单的论述。 关键词:工程;机械设备;管理;问题;对策 科学技术进步、生产建设的需求,为工程机械的应用提供了广阔的空间,也对设备管理的提出了更高的要求。做好机械设备的合理配置、科学使用、及时保养、适时维修,降低设备故障发生,提高机械设备的有效利用率,是对工程设备管理工作的主要要求,下面我就当前矿山企业在工程机械设备管理方面存在的问题和提高工程机械管理的方法谈谈自己的看法。 一、当前工程机械设备管理中存在的问题及原因 1、管理机构不健全,管理制度不完善 相当一部分施工企业仍缺乏完整、严格的工程机械设备管理制度,对工程机械设备的台账、技术资料档案的建立等工作尚未完善,管理工作无章可循、管理无序,有的企业甚至在购买了新设备后,没有及时或根本不入账,造成管理工作相当被动,设备糊涂使用,不能明确工程机械管理和使用的责任主体。 2、舍不得智力投资 (1)虽然目前大部分施工企业都根据自己企业的实际情况,设立了机务管理部门,但由于机构、人员更迭较为频繁,设备管理及维修人员接受专业教育时间短,管理人员对设备管理的整体认识尚较模糊,技术管理水平参差不齐。 (2)而有些企业只是片面注重眼前利益,宁愿花耗大量资金用于购买先进设备,但在管理人才培训等智力投资方面却显得过分吝惜,舍不得花钱。这样,就算有再先进的设备,但管理跟不上、人员素质低劣,是很难适应机械自动化、机电一体化程度高的设备管理的需要。 3、工程机械设备的使用与保养相互脱节 (1)目前大多数施工企业虽然都实行定人定机制度,即每个操作人员固定使用一台机械设备,但却忽略了定人保养制度,没有把机械设备维修保养的各项 规章制度 明确落实到个人。正因为如此,操作人员往往只是“包用不包修”,维修人员也是马虎应付了事,每当机械设备出现故障,操作人员与维修人员往往互相推卸责任。这样,不但影响了产量、质量,也增加了维修费用、运转费用以及降低了设备的使用寿命。 (2)此外,不少项目负责人只考虑眼前利益,没有从长远打算,短期行为严重,只注意产值与效益挂钩,在设备管理使用上表现为“重用轻管”,为了赶工期、抢进度,而不惜拼设备,造成机械设备常常处于超负荷状况工作,或带“病”作业,甚至违章操作,其结果是该工程项目完工后,机械设备严重磨损老化,而调运到新工程又需花费大量的精力与费用进行整修,造成施工工期贻误,项目部之间在维修费用上互相推诿,固定资产无形流失。 4、工程机械设备维修“滞后”,浪费严重 (1)由于目前大部分施工企业还未能有效地实行点检制度等保养措施,设备维修管理往往局限于“事后维修”,“预防维修”意识不够重视,对设备的故障及劣化现象也就未能早期发觉、早期预防、早期 修理 ,以致造成人力、物力、财力不必要的浪费。 (2)施工企业机械设备“浪费维修”的现象也十分严重,个别维修人员为了贪图方便,对一些仍有很大修复价值的旧件不加以修复利用,任凭其主观随意地报废,更有甚者,不考虑 其它 设备的整体性能,采取“拆东墙补西墙”的做法,得过且过,只要机械能动就交差了事,结果也只会是事倍功半。 二、提高机械设备管理工作的方法 1、在使用方面,设备的价值主要体现在使用。任何设备都有规定的使用范围、条件及操作程序,只有正确的使用设备,才能保证 安全生产 。而设备使用的好坏很大程度上取决于操作人员水平的高低。 所以在使用中,一是教育操作人员正确的使用和操作各种工程机械,不能在超过机械所能承受的最大负荷下进行工作,尽量保证机械负荷的均匀加减,使机械处于较为平缓的负荷变动,具体地说,就是要较为均匀地加减油门,防止发动机、工作装置动作的大起大落。二是加强技术培训,提高操作人员素质,使操作人员做到懂构造、懂原理、懂性能,会使用、会保养、会检查、会排除故障,从源头上减少和防止人为失误引起的机械故障。三是坚持实行包机责任制,责任到人,将个人经济利益与责任机械的维修费、燃油费相结合进行考核,奖罚并举,加强管理设备的责任心,调动爱护设备的积极性。超级秘书网 2、在保养方面,对设备实行定期保养是保持机械良好技术状况的基础。对于工程机械,保养工作中的重中之中就是保证对机械的合理润滑。零件工作面的磨损、零件表面的腐蚀和材料的老化是正常使用条件下的机械零部件的3种主要失效形式,而零件工作面的磨损所引起的失效所占的比例最大。也就是说,机械的磨损是使其各种零部件走向极限技术状态的主要原因之一。那么,解决机械零部件的磨损问题,除了采用优良的材料、选择先进的制造工艺、设计合理的机械结构外,在使用过程中要做的一项重要工作就是保证对机械的合理润滑。 据统计,工程机械的故障有一半以上是由润滑不良引起的。由于工程机械各零部件配合的精密性,良好的润滑可以使其保持正常的工作间隙和合适的工作温度,从而降低零件的磨损程度,减少机械故障。正常合理的润滑是减少机械故障的有效措施之一。为此,一是要合理选用润滑剂,要根据机械的种类和应用结构的不同选用正常的润滑剂类别,根据机械的要求选用合适的质量等级,根据机械的工作环境和不同的季节选择合适的润滑剂牌号。二是经常检查润滑剂的数量和质量。数量不足要及时补充,质量不佳要及时更换。三是根据保养周期、设备技术状况、工作环境等因素,制定强制保养计划,到时间必须停机保养润滑。 3、维修方面 机械在使用过程中必然会出现各种各样的故障。在这些故障中,有些故障对机械设备的影响可能是很微小的,有些是比较严重的,甚至会造成机毁人亡的大事故。 经验 表明,严重机械故障往往是由一些较小的故障引发的。究其原因,就在于忽视了对小故障的及时处置。因此,在维修方面,一是重视小故障的及时处理,做到防患于未然。切不可小故障不影响使用,为了赶任务让设备带故障作业,最后小毛病拖成了大故障,不但延误工期,影响正常使用,还有可能造成设备突然报废。从某种意义上来说,对出现的故障及时进行处理,就是减少和防止故障的一种有效措施。二是采取“计划维修”与“预防性维修”两种制度的相结合的维修制度,科学合理的安排设备维修工作。计划维修坚持“养修并重,预防为主”的指导思想,在使用中,根据机械损坏和零件磨损规律,按照工作时间,定期对设备实施强制保修项目;预防性维修坚持“定期检查,按需修理”,它是按照维修对象的实际计划状况,而不是按照实际使用时间来控制的维修方式,避免了强制维修造成的浪费,同时通过定期检查,避免了漏拆漏检导致的失保失修。 总之,任何设备投入使用后都会不可避免的出现故障,但在工作中,只要我们加强设备管理,合理科学的使用、及时到位的保养、适时准确的维修,就能抓住设备寿命期内各种故障的发生规律,有效的降低故障发生,提高有效利用率,保持设备的良好技术状态,最大限度的发挥设备的使用价值。 机械专业毕业论文篇三:《浅析纺织机械的绿色制造技术》 一、绿色制造的发展必要性 纺织行业一直是一个高污染的产业,由于传统技术的落后,纺织生产过程中会产生大量的生产污染物,包括废气、污水等,同时还存在着资源浪费的问题,而这些都对人类生存的环境造成了严重的危机。中国作为世界上最大的纺织品生产出口大国,现代纺织制造业的发展十分迅速,因此纺织行业的污染问题一直是关注重点。在如今大力提倡生态文明的时代,纺织机械关于绿色制造技术的发展已经刻不容缓。 环境意识制造,也就是绿色制造,简单来说就是制造产品的绿色环保可持续发展,是一个兼顾环境发展和经济效益的现代化制造模式。关于绿色制造的实施,具体策略表现为减少浪费,减少污染以及资源利用最大化。现如今,考虑到生态环境的保护,国际上已经开始对贸易产品的绿色工艺有了要求,虽然这样的绿色壁垒还不是很多,但是作为纺织产品的出口大国,为了保持纺织行业的优势,纺织机械的绿色制造需要及早提上发展日程。 二、绿色制造技术的体现 (一)绿色材料。绿色材料的选择要在保证纺织机械制造的要求的基础上考虑材料的环保性。以化纤生产为例,其生产过程中使用了大量的酸碱,导致硫酸盐一类有毒物质的产生,所以绿色材料的首要条件是无毒,无污染。此外,化纤产品的不可降解性使得其在废弃之后对土壤环境造成负担,因此,绿色材料还需具备可降解,可回收的特点。最后,由于化纤产品加工困难,因此造成了能源的浪费,这就要求绿色材料是易加工的。 (二)绿色设计。绿色设计是绿色制造的核心,因为绿色设计需要贯穿了产品的整个生命周期,在产品设计的阶段就要将产品从生产到包装到最后的废弃和回收的环保性都要列入考虑,生产资源的选择,能源的最大化利用,产品的回收利用都是绿色设计要进行的工作,不仅要满足工艺技术的经济要求,更要保证绿色环保的环境需求。 (三)绿色工艺。首先要选择正确适合的工艺方法,然后优化工艺操作,设计最高效的工艺方案,如此便能提高工作效率,减少资源的消耗,降低能源的消耗,将废气,污水一类的有害物质和污染物对生态环境的危害降至最低程度。 (四)绿色包装。绿色包装的设计要从以下三方面入手,首先是包装材料的选择,关于包装材料要求就是绿色环保,无害可降解,易回收,易加工;其次是包装结构的优化,包装结构应该尽量简化,不要铺张浪费;最后是使用后的包装和工艺废弃物的回收利用,以往包装材料在丢弃后,因为不可降解或者污染有毒,对生态环境造成了不小的破坏,而包装本身的丢弃也是对资源的极大浪费,所以采用可回收的材料,既不会造成环境负担,又减少了资源的浪费,一举两得。 三、绿色制造技术的应用 (一)包装材料。绿色包装的设计要求包装材料的绿色环 保,可回收利用,包装避繁就简。常见的纺织产品的包装材料有瓦楞纸,木材和塑料等。瓦楞纸纸板的特点是易回收,但是不够坚固耐用,并且需要前期加工,既浪费资源也不环保;木板的坚固程度足够,可是作为不可再生资源,过度的木材使用会导致生态发展不平衡,也不利于环境保护;塑料包装有着木材与纸板不可替代的特点,轻便耐用又方便生产,但是也有不可降解的缺点,也不是最佳的绿色包装材料。目前最好的绿色包装材料是纸浆模塑和蜂窝纸板,两者的组合成为蜂窝纸芯复合板,这种包装材料无污染易回收,是绿色包装的最好选择。 (二)计算机辅助设计。纺织机械的绿色设计可利用现代计算机技术,设计无纸化减少了木材资源的浪费,节约了资源的同时,高科技技术还可以减少设计周期,强化设计蓝图,大大提高了工作效率,以及纺织产品的质量。现如今结合了计算机技术的三维软件可以模拟纺织机械的各个零部件的受力情况并对其进行相关性能的校对检测。 (三)工艺规划。 纺织机械制造的工艺规划的目标体系为 TQCSRE体系,关键在于分析资源消耗R与环境影响E的关系。例如,通过分析生产资源的消耗与废物产生量间的关系,经过分析纺织机械工艺在这之中的作用,研发出优化的绿色工艺。 结语 随着环境问题成为如今的 热点 话题,环保的浪潮也渐渐影响到了制造业。传统的制造模式已经不再适用于当今社会的发展潮流,纺织机械的绿色制造发展迫在眉睫。绿色资源与绿色技术的推进是不仅有利于环境负担的减少,更能实现资源利用的最大化。绿色制造兼顾了环保与经济的双向发展,更揭示了人与自然和谐发展才是社会发展的正确道路。 猜你喜欢: 1. 浅谈机械制造专业毕业论文范文 2. 机械毕业论文范例 3. 机械毕业论文范文大全 4. 大学毕业论文机械范文 5. 机械毕业论文范文参考 6. 3000字机械类论文

齿轮传动毕业论文

减速器概述 1.1、减速器的主要型式及其特性减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动或齿轮—蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机措中应用很广。 减速器类型很多,按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。 1.1.1 圆柱齿轮减速器当传动比在8以下时,可采用单级圆柱齿轮减速器。大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。单级减速器的传动比如果过大,则其外廓尺寸将很大。二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。为此,在设计这种减速器时应注意:1)轴的刚度宜取大些;2)转矩应从离齿轮远的轴端输入,以减轻载荷沿齿宽分布的不均匀;3)采用斜齿轮布置,而且受载大的低速级又正好位于两轴承中间,所以载荷沿齿宽的分布情况显然比展开好。这种减速器的高速级齿轮常采用斜齿,一侧为左旋,另一侧为右旋,轴向力能互相抵消。为了使左右两对斜齿轮能自动调整以便传递相等的载荷,其中较轻的龆轮轴在轴向应能作小量游动。同轴式减速器输入轴和输出轴位于同一轴线上,故箱体长度较短。但这种减速器的轴向尺寸较大。圆柱齿轮减速器在所有减速器中应用最广。它传递功率的范围可从很小至40 000kW,圆周速度也可从很低至60m/s一70m/s,甚至高达150m/s。传动功率很大的减速器最好采用双驱动式或中心驱动式。这两种布置方式可由两对齿轮副分担载荷,有利于改善受力状况和降低传动尺寸设计。关键词:减速器 刚性 零部件 方案

仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;滚筒直径D=220mm。运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.99×0.95=0.86(2)电机所需的工作功率:Pd=FV/1000η总=1700×1.4/1000×0.86=2.76KW3、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×1.4/π×220=121.5r/min根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比KW 同转 满转 总传动比 带 齿轮1 Y132s-6 3 1000 960 7.9 3 2.632 Y100l2-4 3 1500 1420 11.68 3 3.89综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/121.5=11.682、分配各级传动比(1) 取i带=3(2) ∵i总=i齿×i 带π∴i齿=i总/i带=11.68/3=3.89四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=473.33(r/min)nII=nI/i齿=473.33/3.89=121.67(r/min)滚筒nw=nII=473.33/3.89=121.67(r/min)2、 计算各轴的功率(KW)PI=Pd×η带=2.76×0.96=2.64KWPII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW3、 计算各轴转矩Td=9.55Pd/nm=9550×2.76/1420=18.56N?mTI=9.55p2入/n1 =9550x2.64/473.33=53.26N?mTII =9.55p2入/n2=9550x2.53/121.67=198.58N?m五、传动零件的设计计算1、 皮带轮传动的设计计算(1) 选择普通V带截型由课本[1]P189表10-8得:kA=1.2 P=2.76KWPC=KAP=1.2×2.76=3.3KW据PC=3.3KW和n1=473.33r/min由课本[1]P189图10-12得:选用A型V带(2) 确定带轮基准直径,并验算带速由[1]课本P190表10-9,取dd1=95mm>dmin=75dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm由课本[1]P190表10-9,取dd2=280带速V:V=πdd1n1/60×1000=π×95×1420/60×1000=7.06m/s在5~25m/s范围内,带速合适。(3) 确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×500+3.14(95+280)+(280-95)2/4×450=1605.8mm根据课本[1]表(10-6)选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2=497mm(4) 验算小带轮包角α1=1800-57.30 ×(dd2-dd1)/a=1800-57.30×(280-95)/497=158.670>1200(适用)(5) 确定带的根数单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KWi≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99Z= PC/[(P1+△P1)KαKL]=3.3/[(1.4+0.17) ×0.94×0.99]=2.26 (取3根)(6) 计算轴上压力由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)=791.9N2、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=3.89取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78由课本表6-12取φd=1.1(3)转矩T1T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm(4)载荷系数k : 取k=1.2(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×473.33×10×300×18=1.36x109N2=N/i=1.36x109 /3.89=3.4×108查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05按一般可靠度要求选取安全系数SHmin=1.0[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=49.04mm模数:m=d1/Z1=49.04/20=2.45mm取课本[1]P79标准模数第一数列上的值,m=2.5(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=2.5×20mm=50mmd2=mZ2=2.5×78mm=195mm齿宽:b=φdd1=1.1×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=122.5mm(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×(2.53/121.67)1/3mm=32.44mm考虑键槽的影响以及联轴器孔径系列标准,取d=35mm3、齿轮上作用力的计算齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N齿轮作用力:圆周力:Ft=2T/d=2×198582/195N=2036N径向力:Fr=Fttan200=2036×tan200=741N4、轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。(1)、联轴器的选择可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85(2)、确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位(3)、确定各段轴的直径将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.(5)确定轴各段直径和长度Ⅰ段:d1=35mm 长度取L1=50mmII段:d2=40mm初选用6209深沟球轴承,其内径为45mm,宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+19+55)=96mmIII段直径d3=45mmL3=L1-L=50-2=48mmⅣ段直径d4=50mm长度与右面的套筒相同,即L4=20mmⅤ段直径d5=52mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=96mm(6)按弯矩复合强度计算①求分度圆直径:已知d1=195mm②求转矩:已知T2=198.58N?m③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=2×198.58/195=2.03N④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=2.03×tan200=0.741N⑤因为该轴两轴承对称,所以:LA=LB=48mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:FAY=FBY=Fr/2=0.74/2=0.37NFAZ=FBZ=Ft/2=2.03/2=1.01N由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为MC1=FAyL/2=0.37×96÷2=17.76N?m截面C在水平面上弯矩为:MC2=FAZL/2=1.01×96÷2=48.48N?m(4)绘制合弯矩图(如图d)MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m(5)绘制扭矩图(如图e)转矩:T=9.55×(P2/n2)×106=198.58N?m(6)绘制当量弯矩图(如图f)转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[51.632+(0.2×198.58)2]1/2=65.13N?m(7)校核危险截面C的强度由式(6-3)σe=65.13/0.1d33=65.13x1000/0.1×453=7.14MPa< [σ-1]b=60MPa∴该轴强度足够。主动轴的设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×(2.64/473.33)1/3mm=20.92mm考虑键槽的影响以系列标准,取d=22mm3、齿轮上作用力的计算齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N齿轮作用力:圆周力:Ft=2T/d=2×53265/50N=2130N径向力:Fr=Fttan200=2130×tan200=775N确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,4 确定轴的各段直径和长度初选用6206深沟球轴承,其内径为30mm,宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。(2)按弯扭复合强度计算①求分度圆直径:已知d2=50mm②求转矩:已知T=53.26N?m③求圆周力Ft:根据课本P127(6-34)式得Ft=2T3/d2=2×53.26/50=2.13N④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=2.13×0.36379=0.76N⑤∵两轴承对称∴LA=LB=50mm(1)求支反力FAX、FBY、FAZ、FBZFAX=FBY=Fr/2=0.76/2=0.38NFAZ=FBZ=Ft/2=2.13/2=1.065N(2) 截面C在垂直面弯矩为MC1=FAxL/2=0.38×100/2=19N?m(3)截面C在水平面弯矩为MC2=FAZL/2=1.065×100/2=52.5N?m(4)计算合成弯矩MC=(MC12+MC22)1/2=(192+52.52)1/2=55.83N?m(5)计算当量弯矩:根据课本P235得α=0.4Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2=59.74N?m(6)校核危险截面C的强度由式(10-3)σe=Mec/(0.1d3)=59.74x1000/(0.1×303)=22.12Mpa<[σ-1]b=60Mpa∴此轴强度足够(7) 滚动轴承的选择及校核计算一从动轴上的轴承根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)由初选的轴承的型号为: 6209,查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,查[2]表10.1可知极限转速9000r/min(1)已知nII=121.67(r/min)两轴承径向反力:FR1=FR2=1083N根据课本P265(11-12)得轴承内部轴向力FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=682N FA2=FS2=682N(3)求系数x、yFA1/FR1=682N/1038N =0.63FA2/FR2=682N/1038N =0.63根据课本P265表(14-14)得e=0.68FA1/FR148000h∴预期寿命足够二.主动轴上的轴承:(1)由初选的轴承的型号为:6206查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,查[2]表10.1可知极限转速13000r/min根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)已知nI=473.33(r/min)两轴承径向反力:FR1=FR2=1129N根据课本P265(11-12)得轴承内部轴向力FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=711.8N FA2=FS2=711.8N(3)求系数x、yFA1/FR1=711.8N/711.8N =0.63FA2/FR2=711.8N/711.8N =0.63根据课本P265表(14-14)得e=0.68FA1/FR148000h∴预期寿命足够七、键联接的选择及校核计算1.根据轴径的尺寸,由[1]中表12-6高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79大齿轮与轴连接的键为:键 14×45 GB1096-79轴与联轴器的键为:键10×40 GB1096-792.键的强度校核大齿轮与轴上的键 :键14×45 GB1096-79b×h=14×9,L=45,则Ls=L-b=31mm圆周力:Fr=2TII/d=2×198580/50=7943.2N挤压强度: =56.93<125~150MPa=[σp]因此挤压强度足够剪切强度: =36.60<120MPa=[ ]因此剪切强度足够键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。八、减速器箱体、箱盖及附件的设计计算~1、减速器附件的选择通气器由于在室内使用,选通气器(一次过滤),采用M18×1.5油面指示器选用游标尺M12起吊装置采用箱盖吊耳、箱座吊耳.放油螺塞选用外六角油塞及垫片M18×1.5根据《机械设计基础课程设计》表5.3选择适当型号:起盖螺钉型号:GB/T5780 M18×30,材料Q235高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235螺栓:GB5782~86 M14×100,材料Q235箱体的主要尺寸::(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45取z1=8(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12(4)箱座凸缘厚度b=1.5z=1.5×8=12(5)箱座底凸缘厚度b2=2.5z=2.5×8=20(6)地脚螺钉直径df =0.036a+12=0.036×122.5+12=16.41(取18)(7)地脚螺钉数目n=4 (因为a<250)(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)(10)连接螺栓d2的间距L=150-200(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)(13)定位销直径d=(0.7-0.8)d2=0.8×10=8(14)df.d1.d2至外箱壁距离C1(15) Df.d2(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。(17)外箱壁至轴承座端面的距离C1+C2+(5~10)(18)齿轮顶圆与内箱壁间的距离:>9.6 mm(19)齿轮端面与内箱壁间的距离:=12 mm(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm(21)轴承端盖外径∶D+(5~5.5)d3D~轴承外径(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.九、润滑与密封1.齿轮的润滑采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。2.滚动轴承的润滑由于轴承周向速度为,所以宜开设油沟、飞溅润滑。3.润滑油的选择齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。4.密封方法的选取选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。十、设计小结课程设计体会课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。十一、参考资料目录[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

行星齿轮毕业论文

在附近找大学生或者研究生给你做吧,这个都需要花RMB的。

39XX轻工职业技术学院毕业设计 管座及其加工模具的设计 40机械工程系模具专业2006届毕业设计说明书:横排地漏封水筒注塑模 机械,机电类毕业设计1毕业设计 可伸缩带式输送机结构设计 2毕业设计 AWC机架现场扩孔机设计3毕业论文复合化肥混合比例装置及PLC控制系统设计 4机械设计课程设计 带式输送机说明书和总装图4毕业设计 冲压废料自动输送装置 5专用机床PLC控制系统的设计 6课程设计 带式输送机传动装置 7毕业论文 桥式起重机副起升机构设计 8毕业论文 两齿辊破碎机设计 9 63CY14-1B轴向柱塞泵改进设计(共32页,19000字) 10毕业设计 连杆孔研磨装置设计 11毕业设计 旁承上平面与下心盘上平面垂直距离检测装置的设计 12.. 机械设计课程设计 带式运输机传动装置设计 13皮带式输送机传动装置的一级圆柱齿轮减速器 14毕业设计(论文) 立轴式破碎机设计 15毕业设计(论文) C6136型经济型数控改造(横向) 16高空作业车工作臂结构设计及有限元分析 17 2007届毕业生毕业设计 机用虎钳设计 18毕业设计无轴承电机的结构设计 19毕业设计 平面关节型机械手设计 20毕业设计 三自由度圆柱坐标型工业机器人 21毕业设计XKA5032A/C数控立式升降台铣床自动换刀设计 22毕业设计 四通管接头的设计 23课程设计:带式运输机上的传动及减速装置 24毕业设计(论文) 行星减速器设计三维造型虚拟设计分析 25毕业设计论文 关节型机器人腕部结构设计 26本科生毕业设计全套资料 Z32K型摇臂钻床变速箱的改进设计/ 27毕业设计 EQY-112-90 汽车变速箱后面孔系钻削组合机床设计 28毕业设计 D180柴油机12孔攻丝机床及夹具设计 29毕业设计 C616型普通车床改造为经济型数控车床 30毕业设计(论文)说明书 中单链型刮板输送机设计 液压类毕业设计1毕业设计 ZFS1600/12/26型液压支架掩护梁设计2毕业设计 液压拉力器 3毕业设计 液压台虎钳设计 4毕业设计论文 双活塞液压浆体泵液力缸设计 5毕业设计 GKZ高空作业车液压和电气控制系统设计 数控加工类毕业设计1课程设计 设计低速级斜齿轮零件的机械加工工艺规程 2毕业设计 普通车床经济型数控改造 3毕业论文 钩尾框夹具设计(镗φ92孔的两道工序的专用夹具) ...4 机械制造工艺学课程设计 设计“拨叉”零件的机械加工工艺规程及工艺装备(年产量5000件)5课程设计 四工位专用机床传动机构设计 6课程设计说明书 设计“推动架”零件的机械加工工艺及工艺设备 7机械制造技术基础课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具 8械制造技术基础课程设计 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 9毕业设计 轴类零件设计 10毕业设计 壳体零件机械加工工艺规程制订及第工序工艺装备设计 11毕业设计 单拐曲轴零件机械加工规程设计说明书 12机械制造课程设计 机床传动齿轮的工艺规程设计(大批量) 13课程设计 轴零件的机械加工工艺规程制定 14毕业论文 开放式CNC(Computer Numerical Control)系统设计15毕业设计 单拐曲轴工艺流程 16毕业设计 壳体机械加工工艺规程 17毕业设计 连杆机械加工工艺规程 18毕业设计(论文) 子程序在冲孔模生产中的运用——编制数控加工(1#-6#)标模点孔的程序 19毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计 20机械制造技术基础课程设计 设计“减速器传动轴”零件的机械加工工艺规程(年产量为5000件) 21课程设计 杠杆的加工 22毕业设计 2SA3.1多回转电动执行机构箱体加工工艺规程及工艺装备设计 23毕业论文 数控铣高级工零件工艺设计及程序编制 24毕业论文 数控铣高级工心型零件工艺设计及程序编制25毕业设计 连杆的加工工艺及其断面铣夹具设计 26机械制造工艺学课程设计说明书:设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 杂合XKA5032AC数控立式升降台铣床自动换刀装置设计机用虎钳课程设计.rar行星齿轮减速器减速器的虚拟设计(王少华).rar物流液压升降台的设计自动加料机控制系统.rar全向轮机构及其控制设计.rar齿轮齿条转向器.rar出租车计价系统.rar(毕业设计)油封骨架冲压模具连杆孔研磨装置设计 .rar蜗轮蜗杆传动.rar用单片机实现温度远程显示.doc基于Alter的EP1C6Q240C8的红外遥器(毕业论文).doc变频器 调试设计及应用镍氢电池充电器的设计.doc铣断夹具设计J45-6.3型双动拉伸压力机的设计WY型滚动轴承压装机设计Z32K型摇臂钻床变速箱的改进设计基于PLC高速全自动包装机的控制系统应用基于单片机控制的步进电机调速系统的设计普通-式双柱汽车举升机设计无模压力成形机设计(word+CAD)手机恒流充电器的设计3 摘要.doc智能型充电器的电源和显示的设计气动通用上下料机械手的设计同轴2级减速器设计行星齿轮减速器减速器的虚拟设计(王少华)运送铝活塞铸造毛坯机械手设计_王强CA6140车床后托架加工工艺及夹具设计SSCK20A数控车床主轴和箱体加工编程织机导板零件数控加工工艺与工装设计密封垫片冲裁模设计瓶盖拉深模的设计手机塑料外壳注塑模毕业设计五金模具毕业设计织机导板零件数控加工工艺与工装设计.rar_CA6140车床开环纵向系统设计C616型普通车床改造CA6150数控车床主轴箱及传动系统系统的设计XK100数控主轴箱设计XK5040铣床垂直进给机构XY数控工作台1毕业论文 经济型数控车床纵向进给系统设计及进给系统的润滑设计.doc毕业设计 环境专业 某盐化公司生产废水治理工程技术方案板料毕业设计成形CAE可行性分析==模具.doc毕业设计数控类 汽车车灯同步转向装置.doc毕业设计 设计加工客车上 “车门垫板”零件的冲裁模 hao毛EX1000高效二次风选粉机(传动及壳体部件)设计.rar OO:348414338

4 : 四个前进档 T : 横置变速箱 65: 扭矩代号 E : 电子液压控制

前言 随着科学技术的不断进步,汽车工业相应得到了迅速发展。如何快速而平稳地把发动机的动力传递到驱动车轮上,是影响汽车操纵方便性与平顺性的关键之所在,要想解决好这些问题,首先要了解自动变速器技术特别是液力变矩器等相关技术的发展。1.自动变速器技术的发展目前汽车所使用的自动变速器大致可分为三类[1]:一类是由液力变矩器、行星齿轮机构及电液控制系统组成的液力自动变速器[2];一类是由传统固定轴式变速箱和干式离合器以及相应的电-液控制系统组成的电控机械式自动变速器;另一类是无级自动变速器。1.1 液力自动变速器液力自动变速器其基本形式是液力变矩器与动力换挡的旋转轴式机械变速器串联。这种自动变速器的主要优点有[1]:液力变矩器的自动适应性使其具有无级连续变速及变矩能力,对外部负载有自动调节和适应性能,从根本上简化了操纵;液体传动本身特有一定的减振性能,能够有效地降低传动系的尖峰载荷和扭转振动,延长了传动系的寿命;汽车起步平稳,加速迅速、均匀、柔和;提高了乘坐舒适性与行驶安全性;车辆的通过性好。1.2 电控机械式自动变速器这是一种由普通齿轮式机械变速器组成的有级式机械自动变速器。机械式自动变速器是在普通固定轴式齿轮变速器的基础上,把选挡、换挡、离合器操纵及发动机油门操纵由控制器完成,代写毕业论文实现自动变速。基本控制思想是:根据汽车运行状况、路面情况和驾驶员的意图,依据事先制定的换挡规律、离合器接合规律及发动机油门变化规律,对变速器进行最佳挡位判断、离合器动作控制及发动机油门动作控制,实现发动机、离合器及变速器的联合操纵。由于机械式自动变速器是非动力换挡,变速器输出扭矩与转速变化比较大,易造成冲击比较大,以及换挡期间动力中断等缺点,必须对其进行改进,因此提出了扭矩辅助型机械自动变速器和双离合器式机械自动变速器。前者通过辅助齿轮机构来实现,后者使变速器相邻挡位的扭矩传递,分别受控于两个独立的离合器,这样可以实现动力不中断换挡。1.3 机械无级变速器前面提到的两种自动变速器都是有级或分段无级自动变速、无级变速器、带式无级变速器利用由许多薄钢片穿成的钢环,使其与两个锥轮的槽在不同的半径上“咬和”来改变速比,以达到无级变速的性能。它克服了前面两种自动变速器固有的齿轮传动比不连续和零件数量过多的缺点,具有传动比连续、传递动力平稳、操纵方便等特点,实现了无级变速。由于CVT 是摩擦传动,导致效率低,所使用的传动链制造技术难、加工精度要求较高,使用的材质要求更高,维修更是困难,对这些难点仍在继续攻关中。1.4 液力变矩器+AMT 的自动变速器将液力变矩器(TC)与固定轴机械式齿轮变速器(AMT)组合[2],得到一种新型的自动变速系统,即:TC+AMT。TC 与AMT 共同工作,不但具有AT 的优点,大大提高了军车的通过性、越野性操纵方便性,而且具有成本低与易制造的特点。在保证汽车动力性、燃油经济性、操纵方便性等特性外,还可以实现发动机、液力变矩器和机械式自动变速器合理匹配,找到最佳工作点,达到总体效果最佳,不仅越野性、通过性好、操纵方便,而且使影响乘坐舒适性的冲击度最小,具有良好的乘坐舒适性。是一种具有良好发展前途的自动变速器,世界各国正致力于此项技术的研究和开发。1.5 带闭锁与滑差的TC+AMT 的自动变速器液力变矩器具有的起步平稳、减振、通过性和乘坐舒适性好等优越性能,但最大的缺陷是效率低,为了提高液力变矩器的传动效率,而采用了闭锁与滑差技术。它是指在液力变矩器的泵轮与涡轮之间,安装一个可控制的离合器,当汽车的行驶工况达到设定目标时,控制离合器将泵轮与涡轮按设定的目标转速差传动(即滑差控制)或锁成一体(即闭锁控制),液力变矩器随之变为半刚性或刚性传动,这样做一方面提高传动效率[4]。闭锁后消除了液力变矩器高速比时效率的下降,理论上闭锁工况效率为1,从而使高速比工况效率大大提高;另一方面,在液力传动向机械传动转换过程中,由于采用滑差控制,不但扩大了液力变矩器的高效率范围,而且可以使传动系从液力传动平稳地过渡到闭锁后的刚性传动,特别是在闭锁开始和闭锁低速阶段,可以吸收由于闭锁产生的部分振动和冲击,按照滑差和闭锁的控制规律,使得涡轮转速逐步接近泵轮,大大减少了冲击和振动,使得乘坐舒适性得以提高。2.带有闭锁与滑差控制的液力变矩器结构特点2.1 液力变矩器结构的方案分析图1 液力变矩器方案一 图2 液力变矩器方案二 以某公司开发的带有闭锁与滑差控制的某大型汽车液力变矩器结构简图如图1和图2所示,二者是原理相同而结构形式相异的两种液力变矩器。对于图1所示结构[5]:在液力传动时,在分离离合器后,AMT 自动变速器输入轴的转动惯量由涡轮、闭锁离合器、涡轮法兰、涡轮轴等部件的惯量组成。而原车此时的转动惯量仅为原干式离合器的从动盘和变速器一轴的惯量,新系统的转动惯量为原车的4倍。这将延长换挡时同步器接合时间,大大地影响了换挡品质的提高。图中:1 为闭锁离合器,2 为换挡离合器;对于图2所示结构[6]:在液力传动时,AMT 自动变速器输入轴的转动惯量由换挡离合器的从动片、涡轮轴、花键轴等组成。这种布置使转动惯量想比与手动装置大大的减少,而且减少了同步器的接合惯量,这不仅有利于AMT 换挡,具有工作平稳、寿命长等特点,有利于提高换挡品质,而且更加巧妙地将闭锁离合器1布置于涡轮同一侧,使得方案二的结构紧凑。2.2 闭锁与滑差的控制(1)闭锁与滑差控制系统的液压原理图4 电控系统示意图 实现闭锁与滑差控制的动力源是液压控制系统所提供的系统压力,根据闭锁与滑差控制系统的工作原理和要求。在何时采取液力传动、滑差控制的半刚性传动还是闭锁控制的刚性传动,完全由各电磁阀综合控制的系统油压P1和P2的压差(P1-P2)来决定。(2)闭锁与滑差电控系统根据动态三参数控制理论,在保证TC+AMT 自动变速器的换挡品质的前提下,根据在线所采集的数据,监控车辆的行驶状态,按照特定控制程序和规定的换挡规律,代写毕业论文实现闭锁与滑差的精确控制。具体电控系统方块图如图4所示。有了良好的带有闭锁与滑差控制的TC+AMT 自动变速器硬件,先进的控制技术来怎是确保它的优越性能实现的根本保证。总之,开展液力变矩器的研究是提高自动变速器技术的重要环节。参考文献:1.葛安林 车辆自动变速理论与设计 北京:机械工业出版社19912. 葛安林 自动变速器(二)—液力变矩器 汽车技术 2001(6)3.马文星 液力传动在汽车上的应用与展望 汽车技术 1991(2)4.过学迅 汽车自动变速器 北京:机械工业出版社出版1999(1)5.朱经昌等 车辆液力传动 北京:国防工业出版社1983(1)6.朱经昌等 液力变矩器的设计与计算 北京:国防工业出版社1991(1)

齿轮电大毕业论文

确定选题是撰写论文的首要工作,好比冲锋陷阵的先头部队,俗话说“题好一半文”,就是把选题看作论文写作成功的一半。下面我给大家带来电子机械专业 毕业 论文题目参考2021,希望能帮助到大家!

机械论文题目

1、自主导航农业机械避障路径规划

2、煤矿机械电气设备自动化调试技术研究

3、机械加工中加工精度的影响因素与控制

4、三自由度机械臂式升降平台运动学建模及仿真

5、基于并联交错的起重机械节能装置设计研究

6、CNN和RNN融合法在旋转机械故障诊断中的应用

7、机械剪切剥离法制备石墨烯研究进展

8、机械压力机滚滑复合导轨结构设计研究

9、机械压力机曲轴、轴瓦温升自动控制设计技术

10、基于无线传感的机械冲压机振动监测分析

11、基于GNSS的农业机械定位与姿态获取系统

12、一种冗余机械臂多目标轨迹优化 方法

13、基于湍流模型的高速螺旋槽机械密封稳态性能研究

14、基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计

15、牵引变电站直流断路器机械状态监测与故障诊断研究

16、方钢管混凝土柱卡扣机械连接试验及有限元分析

17、机械电子工程与人工智能的关系

18、机械法与机械-酶消化法制备大鼠膈肌组织单细胞悬液的比较

19、机械制造工艺及精密加工技术研究

20、腐蚀减薄对X80钢管机械损伤凹陷过程中应力应变的影响

21、基于驻极体材料的机械天线式低频通信系统仿真研究

22、基于"J型锁芯"的机械锁芯结构创新分析

23、浅析我国烟草机械技术的发展现状和趋势

24、液滴分析仪的机械结构设计

25、化工机械密封件损伤数值模拟及维修对策探讨

26、一种镍基单晶高温合金的反相热机械疲劳行为

27、浅谈机械数控技术的应用现状和发展趋势

28、数控机械加工进刀工艺优化 措施 分析

29、基于STM32六自由度机械臂发展前景

30、机械工程自动化技术存在的问题及对策探析

31、机械设计制造的智能化发展趋势综述

32、RFID在机械加工中的应用探究

33、试论船舶机械设备维修保养中的常见故障及排除方法

34、探讨港口流动机械预防性维护保养

35、关于端盖零件机械加工工艺的设计要点分析

36、关于机械加工工艺对零件加工精度的影响研究

37、现代机械制造及加工技术分析

38、论机械设计加工中需要注意的问题

39、基于机械设计制造中零件毛坯选择的研究与应用

40、机械零件加工精度影响因素探析

机械电子工程毕业论文题目

1、全纤维曲轴锻造液压机同步控制研究

2、电脑缝编机送经与断经检测系统研究

3、MEMS传感器三维引线键合系统研制

4、单作用双定子叶片马达的排量及排量比研究

5、基于流场分析的双喷嘴挡板电液伺服阀特性研究

6、齿轮型多泵多马达传动规律研究

7、液压泵的振动机理及评价研究

8、基于声发射的轴承滚动接触疲劳量化诊断技术研究

9、KDQ1300墙体砖压机液压控制系统的节能研究

10、保偏光通信中ATP系统及姿态获取技术研究

11、模具生产协同管理系统的设计与实现

12、机床进给系统的多源误差模型分析与研究

13、高性能电液伺服转台的控制问题及故障诊断研究

14、正交并联六自由度加载试验系统力控制及解耦研究

15、地方本科院校转型中的专业调整研究

16、典型粘弹性阻尼结构的振动特性分析与优化设计

17、杆状碳纤维零件缠绕成型技术研究

18、飞行模拟器运动平台洗出算法的优化研究

19、MKD-Delphi装备技术预测方法研究

20、中职学校第二课堂实践研究

21、气动软体机械手设计及实验研究

22、职教师资本科培养机械电子工程专业课程整合研究

23、中等职业学校教师课堂教学评价素养研究

24、JD公司内部控制体系优化研究

25、关于交流变频异步电力测功机系统的仿真研究

26、一种新型的非圆轴数控加工系统的研究与开发

27、DY制冷发生器热源模拟试验装置自动控制系统的研究

28、U型砌块成型机设计及其自动控制系统的研究

29、基于神经网络的工时定额技术研究

30、机电产品计算机辅助设计平台的研究及应用

31、电容式微机械静电伺服加速度计系统分析

32、玻璃微细加工工艺的研究与磁流体推进式微型泵样机的研制

33、射流助推式ROV型开沟机喷射臂及其冲刷过程研究

34、基于动态特性分析的机床主轴箱装配故障诊断研究

35、基于外驱动内置臂的航天服上肢寿命试验系统

36、管路支撑参数对液压管路系统振动特性影响研究

37、基于声发射技术的轮轴疲劳裂纹扩展规律研究

38、基于STM32的车辆智能安全行车控制系统

39、超声功率和键合压力对金丝热超声键合质量的影响研究

40、外骨骼机器人下肢增力机构设计和仿真研究

自动化毕业论文题目

1、配网自动化相关技术的研究

2、数字化变电站自动化技术的应用

3、现场总线与工厂底层自动化及信息集成技术

4、电力自动化技术的新发展

5、冶金自动化发展的策略与思考

6、简述电力系统及其自动化发展趋势研究

7、变电所综合自动化系统应用分析与探讨

8、浅谈数字变电站自动化系统

9、自动化专业人才培养方案和课程体系的改革与实践

10、配电网自动化技术问题初探

11、配电自动化系统中配电终端配置数量规划

12、基于组态软件的综合自动化平台的设计与实现

13、生产线自动化及远程监控

14、地铁自动化控制相关系统的对比及应用

15、配电自动化试点工程技术特点及应用成效分析

16、大型自动化控制系统故障报警技术应用研究

17、变电站综合自动化通信系统运行维护分析

18、浅谈变电站综合自动化系统的结构形式

19、如何提高综合自动化变电站的抗电磁干扰能力

20、动力部一降压变电站综合自动化系统改造及应用

21、智能变电站是变电站综合自动化的发展目标

22、中心城市大型配电自动化设计方案与应用

23、浅析电气自动化控制系统的设计思想

24、建筑电气自动化系统安装的施工技术探讨

25、水电厂电气自动化控制设备的可靠性探讨

26、铝工业电气自动化的现状与发展趋势

27、配网自动化建设对供电可靠性的影响研究

28、浅谈电力自动化管理系统

29、铁路变电站自动化监控系统的研制

30、浅析集控站综合自动化系统运行中存在的问题

31、基于IEC 61850的变电站自动化 系统安全 风险评估

32、新型智能配电自动化终端自描述功能的实现

33、天津城市核心区配电自动化技术实施与进展

34、配电自动化若干问题的探讨

35、矿井主扇风机自动化与信息化改造

36、馈线自动化自适应快速保护控制方案

37、自动化系统运行中出现的操作失误、服务失败及补救措施

38、应用于拣选操作的自动化立体仓库作业优化调度

39、地质环境自动化远程监测项目社会评估--以山东省为例

40、矿井自动化项目技术管理模式浅论

41、自动化仓储系统优化方法的研究

42、电气自动化工程控制系统的现状及其发展趋势

43、自动化专业卓越工程师课程体系的改革与实践

44、国外配网自动化建设模式对我国配网建设的启示

45、煤矿自动化与信息化技术回顾与展望

46、基于调度策略的自动化仓库系统优化问题研究

47、配网自动化建设抵御呼伦贝尔寒冬

48、藁城新区水厂的自动化建设

49、综合自动化变电站电压量传输新方式

50、以先进自动化技术确保中线调水畅通

电子机械专业毕业论文题目参考相关 文章 :

★ 机械电子论文题目

★ 最新机械电子工程论文题目

★ 机械制造毕业论文范文参考

★ 机械类专业论文选题题目

★ 大专机械专业毕业论文免费参考(2)

★ 机械电子论文参考范文

★ 大专机械专业毕业论文免费参考

★ 机械类学术论文题目

★ 机械方面毕业论文参考范文

浅谈齿轮强度设计几个问题的探讨论文

0 引言

齿轮传动是机械传动中最重要的传动之一。公元前300 多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。17 世纪末到18 世纪初,人们开始对齿轮的强度问题进行研究。欧洲工业革命以后,齿轮技术得到高速发展,齿轮传动在机械传动及整个机械领域中的应用极其广泛。齿轮设计成为机械设计中重要的设计内容之一。目前国际上比较常见的有关齿轮强度设计公式,除了我国的国家标准( GB) 有关齿轮强度的计算方法以外主要有: 国际标准化组织( ISO) 计算方法; 美国齿轮制造商协会( AGMA) 标准计算方法;德国工业标准( DIN) 计算方法; 日本齿轮工业会( JGMA)计算方法; 英国BS 计算方法等。作者在从事机械设计特别对齿轮设计的教学中,发现不少地方的知识点描述比较简单,不容易理解,为此,在文中对齿轮设计的几个问题如齿轮的失效方式、齿轮强度设计的历史、现状进行了深入分析,探讨我国齿轮强度设计的历史来源以及在齿轮设计中的一些困惑。通过深入的分析,有助于大家更好地理解齿轮设计公式的意义和来龙去脉。

1 齿轮失效方式的探讨

齿轮在传动过程中会出现各种形式的失效,甚至丧失传动能力。齿轮传动的失效方式与齿轮的材料、热处理方式、润滑条件、载荷大小、载荷变化规律以及转动速度等有关。人们对齿轮失效的认识是一个发展的过程。18 世纪中叶人们就开始对齿轮的失效进行研究。对齿轮摩擦磨损、点蚀形成和齿面胶合有了初步的认识。1928 年,白金汉发表了有关齿轮磨损的论文,并将齿面失效分为点蚀、磨粒磨损、胶合、剥落、擦伤和咬死等6 种失效形式。1939 年,Rideout 将齿轮损伤分为正常磨损、点蚀、剥落、胶合、擦伤、切伤、滚轧和锤击等8 种形式。1953 年Borsoff 和Sorem 将齿轮损伤分为6 类。1967 年尼曼根据大量试验,对渐开线齿轮的4 种失效形式画出了承载能力的限制关系图,并指出当齿轮转速较低时,影响软齿面齿轮承载能力的主要因素是点蚀,影响硬齿面齿轮承载能力的是断齿; 而对于高速重载传动齿轮,影响因素往往是胶合。自上世纪50 年代以来,一些国家以标准的形式对齿轮损伤形式进行分类,对名词术语、表现特征、引发原因等都有规定。如1951 年美国将齿轮损伤分为两大类,一类是齿面损坏,包括磨损、塑性变形、胶合、表面疲劳等,另一类是轮齿的折断。前一大类齿面损坏是齿轮作为高副由于摩擦学原因而引起的表面损伤; 后一大类轮齿的折断是轮齿作为受力构件由于体积强度不够而发生的破坏。1968 年奥地利国家标准规定了齿轮损伤的名词术语。

1983 年,我国颁布了齿轮轮齿损伤的术语、特征和原因国家标准( GB /T3481 - 83) ,将齿轮损伤形式分为5 大类,即磨损、齿面疲劳( 包括点蚀和剥落) 、塑性变形、轮齿折断和其他损伤,共26 种失效形式。1997 年,我国颁布了对GB/T3481 - 1983 修订的GB/T3481 -1997 国家标准。目前我国在大多数的机械设计教材和机械设计手册中齿轮失效方式都进行了简化,一般分为5 大类,即轮齿折断、齿面疲劳点蚀、齿面胶合、齿面磨损和塑性变形。

2 齿轮强度设计的探讨

2. 1 轮齿弯曲强度计算

1785 年,英国瓦特提出了齿根弯曲强度的计算方法,把轮齿看成为矩形截面的板状悬臂梁,随后出现多种弯曲强度计算公式。1893年,路易斯发表了轮齿弯曲强度计算式,而且用内切抛物线法找齿轮的危险截面,这一方法称为“抛物线法”[12],如图1 所示。路易斯以载荷作用于齿顶推导出齿根弯曲应力公式,但是对于重合度大于1 小于2 的齿轮传动,理论上只有当单对齿啮合时,载荷才全部由一个齿承受。对于重合度大于2 小于3 的足够精密的齿轮,因为同时有2 对以上的齿轮在啮合,其最大弯曲应力的作用点要低。

在此之后,又出现30°切线法、尼曼法、白金汉法等。1980 年, ISO 提出“渐开线圆柱齿轮承载能力的基本原理”( ISO 6336 - 1980) ,公布了轮齿弯曲强度、齿面接触强度的计算方法。

过去,我国的齿轮强度计算方法一直比较混乱,没有统一的标准,对生产、科研以及教学带来诸多问题。于是, 1981 年我国成立了“渐开线圆柱齿轮承载能力计算方法”国家标准课题组,以ISO6336—1980为根据,开展全面的研究工作。1983 年颁布了渐开线圆柱齿轮承载能力计算方法的国家标准( GB /T3480—1983) 。

目前,我国有关齿轮弯曲强度的设计公式基本上采用30° 切线法,即作与轮齿对称中心线成30°夹角并与齿根圆角相切的斜线,两切点的连线是齿根危险截面位置。而且以单对齿啮合区的最高点作为最不利载荷作用点,这时产生的弯曲应力最大,如图2 所示。另外,弯曲疲劳强度计算公式中,齿形系数在许多机械设计中只是说明与齿数有关,与模数无关,并未做详细说明,不容易理解。下面对相关问题进行详细分析。如图2 所示,齿根弯曲应力为σF =MW= FnhFcosαFbS2F /6 = 6KFthFcosαFbS2Fcosα= KFtbm6( hFm) cosαF( SFm)2cosα( 1)式中,αF为齿顶圆压力角。令式( 1) 中的YF =6( hFm) cos αF( SFm)2cos α式中,YF称为齿形系数,由路易斯在其轮齿弯曲强度计算式中首次引用。可以看出,YF是与齿轮形状的几何参数有关的一个系数。因为,根据齿轮形成原理,齿数的变化将引起轮齿上hF、SF、aF等参数的变化,由于hF、SF、aF均与齿轮模数成正比,致使齿形系数中的模数可以约去。因此,齿形系数不受模数的影响,而只与齿数有关,齿数越多YF越小,反之YF越大。这就是在机械设计的教材中经常会看到“标准齿轮的齿形系数只与齿数有关而与模数无关”的原因。

2. 2 齿轮压应力对弯曲应力的影响

根据30°切线法及齿轮受力分析。将法向力Fn移至轮齿中线并分解成相互垂直的两个分力,即圆周力Ft和径向力Fr。根据力学理论,Ft使齿根产生弯曲应力为σF,Fr则产生压应力σy。因此齿根危险截面上受到的应力为弯曲和压缩组成的组合应力,并导致齿根两边的应力大小不相等。然而,在相关的机械设计资料中都没有将由于径向力产生的压应力计算在齿轮的弯曲强度计算公式中,而且在大多数的相关教材中都认为: 压应力相对于齿根最大弯曲应力比较小,可以忽略不计。但是压应力到底多少,为什么可以忽略不计,很少有人进行计算,下面对压应力与弯曲应力进行探讨。如图2 中,Ft产生其弯曲应力σF如式( 1) 所示。由Fr产生压应力σy为σy = Fnsin αFbSF( 2)由式( 1) 及式( 2) 可得σyσF= SF6hFtan αF设OD = h',则SF = 2h' tan30°,因此σyσF= tan 30tan αF3h'hF假设标准齿轮模数为m,齿数z。则齿顶圆压力角为cos αF = rbra= zz + 2cos α,由于h'hF< 1,因此,当不考虑h'hF的影响时,σyσF的大小取决于齿轮的齿数。为了便于讨论,取ξ = σyσF称为压应力对弯曲应力的影响系数。则根据计算可以得到ξ 与齿数的对应关系,如图3 所示。可见,压应力对弯曲应力的影响与齿数有关,而模数无关,而且随着齿数的变化而变化,齿数越少其影响越大,反之影响就越小,最终趋于一水平线。最小约为最大弯曲应力的8%,特别当h'hF< 1 时,压应力更小,可以忽略不计。这就是为了简化计算,在计算轮齿弯曲强度时一般只考虑弯曲应力的原因。从图2 可知,弯曲应力分为拉伸侧的拉应力和压缩侧的压应力。实际证明,拉伸侧是危险侧,因拉伸侧的`裂纹扩展速度较大。压缩侧有时虽裂纹出现较早,但发展速度较慢。所以大多数的公式以拉伸侧的应力作为设计时的计算应力。而且根据齿轮弯曲疲劳实验分析证明,考虑弯曲应力、压应力与只考虑弯曲应力的结果,实际上没有多大差别。因此,在齿轮弯曲疲劳强度计算中只考虑弯曲应力。

2. 3 齿面接触疲劳强度计算

图4 赫兹接触应力模型齿面接触疲劳强度计算是针对齿轮齿面疲劳点蚀失效进行计算的强度计算。1881 年,赫兹提出两个圆柱体接触时接触面上载荷分布公式,该式作为齿面强度计算的理论基础,如图4 所示。根据赫兹接触应力理论,在载荷作用下接触区产生的最大接触应力为σH = Fnπb·1ρ1± 1ρ21 - μ21E1+ 1 - μ22槡 E2( 3)式中,Fn为作用在圆柱体上的载荷; b 为接触长度;μ1、μ2分别为两圆柱体材料的泊松比; E1、E2为两圆柱体材料的弹性模量。ρ1、ρ2为两圆柱体接触处的半径,式中“+”号用于外接触,“-”号用于内接触。1898 年,拉塞根据法向力应用“压强”原理研究齿面的接触疲劳强度问题。1908 年,奥地利的维德基将赫兹的两个圆柱体的接触应力理论应用于计算轮齿齿面应力,并绘出了沿啮合线最大接触应力变化图。1932 年,英国BS 根据实验数据提出基础表面应力作为齿面强度计算方法。1940 年,美国AGMA 采用齿面强度最重负荷点的接触应力最大值计算方法。

1949 年,白金汉提出节圆上齿面接触应力不超过许用值的计算方法,后来该方法被许多计算方法所采用。1954 年,尼曼采用最大负荷点上滚动压力。至今,我国皆以赫兹公式作为计算齿面接触疲劳强度的理论基础,即以赫兹应力作为点蚀的判断指标。通常令1ρΣ= 1ρ1± 1ρ2,ρΣ称为综合曲率,对于标准齿轮,1ρΣ= 2d1 sin αi ± 1i 。并令式( 3 ) 中的ZE =1π 1 - μ21E1+ 1 - μ22E 槡为弹性影响系数。从而,获得渐开线直齿圆柱齿轮接触疲劳强度的基本公式为σH = ZEZH2KT1bd21i ± 1槡 i #[ σ ] H( 4) 式中,ZH = 2槡sin αcos α,称为区域系数,对于压力角α= 20°的标准齿轮,ZH≈2. 5。在机械设计手册或机械设计教材中,有关齿轮接触疲劳强度公式有很多版本,其中最常见的是将一对钢制标准齿轮齿面接触强度校核公式进行简化,取钢制齿轮的E1 = E2 =2. 06 ×105MPa,μ1 =μ2 =0. 3,便获得机械设计中常用的校核公式。σH = 671 KT1bd21i ± 1槡 i ≤[ σ ] H( 5)

2. 4 齿面胶合强度计算

齿轮另外一个常见的失效是齿面胶合。有关齿轮胶合比较统一的说法是: 相互啮合的两金属齿面,在一定的压力下直接接触发生黏着,同时又随着齿面运动而使金属从齿面上撕落而引起的黏着磨损现象。胶合分为冷胶合和热胶合。对于高速重载的齿轮传动,齿面瞬时温度较高,相对滑动速度较大,则容易发生热胶合。对于低速重载的重型齿轮传动,由于齿面间压力过大,导致齿面油膜被破坏,尽管齿面温度不高,但也容易产生胶合,称为冷胶合。

对于齿轮齿面胶合强度计算的研究,目前主要基于两种理论,一是基于Pv 值( 压力与速度的乘积) 或PTv ( T 为啮合点到节点的距离) 值作为计算胶合的指标。另一种是以齿面温度作为判定胶合的准则的布洛克算法。1975 年,温特提出积分温度法。现在ISO 的标准中主要以这两种方法为主。2003年,我国颁布“圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法”国家标准( GB - Z 6413. 1 - 2003和GB - Z 6413. 2 - 2003)。该标准等同采用了ISO/TR 13989 - 2000“圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法”。曾经有人试图以按弹性流体动力润滑理论计算齿面间的油膜厚度作为胶合的评判依据。

我国多数的机械设计教材中齿轮强度设计一般只提供齿面接触疲劳强度和齿根弯曲疲劳强度两种计算方法,并未提供有关齿面胶合的强度计算公式。

3 结束语

文中分别对机械设计教学中有关齿轮的强度设计问题进行了分析和探讨,详细解读我国齿轮强度设计的历史沿革及现状,以及齿轮强度设计计算过程中让人困惑的问题及解决方法。研究指出,在齿轮弯曲疲劳强度的计算中,压应力对弯曲应力的影响是有限的,一般可忽略不计,只有当需要精确计算时,应当考虑其影响。论文的研究可以帮助齿轮设计人员和学生更好地理解齿轮设计中的相关内容,为将来从事机械设计工作打下良好的基础。

  • 索引序列
  • 齿轮轴毕业论文
  • 冲压齿轮毕业论文
  • 齿轮传动毕业论文
  • 行星齿轮毕业论文
  • 齿轮电大毕业论文
  • 返回顶部