[3] 赵艳,于彦春,钱前,等.无载体主干序列的bar和cecropin B基因表达框共转化水稻[J]. 遗传学报,2003,30(2):135-141. [4] 安韩冰,朱祯,李慧芬,等.基因枪法转化水稻(Oryza sativa L.)获得可育的转抗虫基因水稻再生植株[J]. 高技术通讯,2001,2:12-17. [5] CHU Qi-ren, CAO Hua-xin, FAN Hui-qin, et al.. Preliminary report on transienexpression of gus gene in transgene rice protoplast-derived calli via PEG-mediated DNA transformation[J]. shanghai nongye xue bao,1995,11(3):63-68. [6] 赵凌,王才林,宗寿余,等. 花粉管介导的转bar基因水稻植株的获得及其遗传[J]. 中国生物工程杂志,2003,23(8):92-95. [7] LI L C, QU R D, KOCHKO A,et al.. An improved transformation of embryogenic grape cell suspensions[J]. Plant Cell Report,1993,12:250-255. [8] 范钦,许新萍,黄小乐,等. 早籼稻培矮64S愈伤组织形成及植株再生[J]. 西北植物学报,2002,22(6):1 469-1 473. [9] 易自力,曹守云,王力,等. 提高农杆菌转化水稻频率的研究[J]. 遗传学报,2001,28(4):352-358. [10] 郑宏红,何锶洁,戴顺洪,等. 提高水稻基因枪转化效率的研究[J]. 生物工程学报,1996,(增):111-115. [11] 田文忠,IAN RANCE,ELUNIALAI,等. 提高籼稻愈伤组织再生频率的研究[J]. 遗传学报,1994,21(3):215-221. [12] 叶松青,储成才,曹守云,等. 提高水稻转化率几个因素的研究[J]. 遗传学报,2001,28(10):933-938. [13] 刁现民,陈振玲,段胜军,等. 影响谷子愈伤组织基因枪转化的因素[J]. 华北农学报,1999,14(3):31-36. [14] 易自力,王力,曹守云,等. 提高籼稻基因枪转化频率的研究[J]. 高技术通讯,2000,10(11):12-15. [15] 薛锐,曹守云,杨炜,等. 基因枪法转化籼稻有关因素的评价[J]. 中国水稻科学,1998,12(1):21-26. [16] LI L C, TIAN W Z, YANG M, et al.. Establishment of an efficient transformation system for rice(Oryza Sativa L.) [A].农业的未来-转基因技术研究[C]. 长沙,湖南科学技术出版社,2002. [17] 马炳田,朱祯,李平,等. 水稻遗传转化选择系统优化初探[J]. 西南农业学报,2003,16(1):28-31. [18] 唐祚舜,王象坤,李良才,等. 基因枪法转基因水稻中HPT基因稳定遗传[J]. 遗传学报,2000,27(1):26-33. [19] 陶利珍,凌定厚,张世平,等. 基因枪介导的籼稻遗传转化及外源基因在受体中的遗传研究[J]. 武汉植物学研究,1999,17(4):289-296. [20] CHENG Zai-quan,HUANG Xing-qi,RAY Wu,et al..Comparison of biolistic and agrobacterium-mediated transformation methods on transgene copy number and rearrangement frequency in rice[J]. Acta Botanica Sinica, 2001,43(8):826-833.
要的话可以给你PPT第二章 基因工程制药第一节 概述第二节 基因工程药物生产过程第三节 目的基因的获得第四节 基因表达第五节 基因工程菌的生长代谢特点第六节 基因工程菌的稳定性第七节 基因工程菌的中试第八节 基因工程菌的培养第九节 高密度发酵第十节 基因工程药物的分离纯化第十一节 变性蛋白的复性第十二节 基因工程药物的质量控制第十三节 基因工程菌药物的制造实例第一节 概述基因工程在制药中作用基因工程药物的主要类别基因工程生产药物的优点国内外基因工程药物发展简述与国外先进水平的差距基因工程药物的主要类别1.激素:胰岛素,生长激素2.免疫性蛋白:单克隆抗体,疫苗3.细胞因子:干扰素,白细胞介素4.酶类:尿激酶,超氧化歧化酶基因工程生产药物的优点1.收获量大,更有效服务社会。2.生产效率更高3.进一步改良药理活性,例:蛋白质工程4.有利于获得新药:筛选新型化合物5..?基因工程 (genetic engineering):有意识地把一个生物体中有用的目的基因转入另一个生物体中,使后者获得新的遗传性状或表达所需要的产物。稀少珍贵的蛋白质药物1982年,美国食品与药物管理局批准了首例基因工程产品—人胰岛素投放市场——它标志了基因工程产品正式进入到商业化阶段。人生长激素、表皮生长因子、肿瘤坏死因子、a-干扰素、纤维素酶、抗血友病因子、红细胞生成素、尿激酶原、白细胞介素-2、集落刺激因子、乙肝疫苗等等畜牧业中的应用动物疫苗、生长激素等例:从转基因羊的羊奶中提取出治疗心脏病的药物tPA种植业中的应用用携带外源基因的农杆菌Ti质粒转化植物原生质体,使外源DNA与植物染色体DNA整合,通过原生质体的培养分化成愈伤组织,最后发育成具有新性状的完整植株—转基因植物种植业中的应用抗化学除草剂基因转基因西红柿固氮酶基因人类DNA……环境保护等等第二+三节重组DNA技术1 重组DNA技术是基因工程的核心技术2 获得需要的目的基因(外源基因)3 构建重组质粒和基因克隆4 转化受体细胞和转化子的筛选5 转化子的分析——Southern杂交重组DNA技术的重大突破带动了现代生物技术的兴起,并很快产生了许多生命科学的高技术产业。重组DNA技术,又称为基因或分子克隆技术,是基因工程的核心技术。该技术包括了一系列的分子生物学操作步骤。1 重组DNA技术是基因工程的核心技术重组DNA操作一般步骤:(1)获得目的基因;(2)与克隆载体连接,形成新的重组DNA分子;(3)用重组DNA分子转化受体细胞,并能在受体细胞中复制和遗传;(4)对转化子筛选和鉴定;(5)对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。(1)构建基因文库,然后从中调用目的基因;(2)以mRNA为模板,反转录合成互补的DNA片段;(3)聚合酶链式反应(PCR)扩增目的基因片段(4)对旧基因的改造(5)化学合成(短)基因2 获得目的基因基本方法细胞内总DNA的提取分离与基因文库的构建细胞内总DNA的提取分离程序基因文库的构建 将总DNA包含的基因组各片段分别克隆在质粒或噬菌体载体上,便构成了该生物的基因文库。反转录人工合成互补DNA构建基因文库获取目的基因存在的问题— 费时费事 内含子序列反转录人工合成互补DNA方法的优势—— 获取的DNA片段往往是具有特定功能的目的基因聚合酶链式反应(PCR)PCR技术就是在体外中通过酶促反应有选择地大量扩增(包括分离)一段目的基因的技术。加入4种物质: (1)作为模板的DNA序列;(2)与被分离的目的基因两条链 各自5’端序列相互补的 DNA引物(20个左右碱基的短DNA单链);(3)TaqDNA聚合酶;(4)dNTP(dATP, dTTP, dGTP和dCTP)。聚合酶链式反应(PCR)变性、退火、延伸三步曲变性:双链DNA解链成为单链DNA退火:部分引物与模板的单链DNA的特定互补部位相配对和结合延伸:以目的基因为模板,合成互补的新DNA链聚合酶链式反应(PCR)每一轮聚合酶链式反应可使目的基因片段增加一倍30轮循环可获得—— 230(1.07×109)个基因片段获得目的基因基本方法(续)4.改造旧基因——蛋白质工程5.化学合成(短)基因基因重组和克隆操作最重要的工具是限制性内切酶、载体和宿主菌。微量的目的基因必须经过基因克隆获得大量的拷贝后,才能实现进一步的重组、转化和表达等操作。3 构建重组质粒和基因克隆限制性内切酶限制性内切酶是从细菌中分离提纯的核酸内切酶,可以识别并切开核酸序列特定位点——分子手术刀Arber、Smith和Nathans因为在发现限制性内切酶方面开创性工作而共同获得了1978年诺贝尔奖。限制性内切酶已经发现和鉴定了200多种EcoRI特异识别GAATTC及其互补碱基组成的双链片段粘性末端T4连接酶载体载体是运送目的基因片段进入宿主细胞的工具,目前最常用的载体包括细菌质粒、l噬菌体、cosmid质粒等。质粒是细菌细胞中自然存在于染色体外可以自主复制的一段环状DNA分子。进入到宿主细胞中的一个质粒可以大量增加其拷贝数。a.该质粒比较小,可以插入一段较长的DNA片段。b.进入宿主细菌细胞后,pUC18在每个细胞中可复制形成大约500个拷贝。c.在pUC18中有一小段人为设计和插入的具有多种限制性酶切位点的序列,即多克隆位点细菌质粒pUC18pUC118质粒的多克隆位点整合在lacZ基因中,该位点如果没有插入外源目的基因,lacZ基因便可表达出半乳糖苷酶,如果平板培养基中含有IPTG和X-gal,X-gal便会被半乳糖苷酶水解成兰色,大肠杆菌形成蓝色克隆。 在多克隆位点插入外源目的基因,破坏了lacZ基因的结构,大肠杆菌形成白色的克隆d.利用lacZ基因的插入失活筛选重组质粒e.pUC18还携带了氨卞青霉素抗性基因,可筛选重组质粒。lactose(4-D-glucose--galactopyranoside) and allolactose以大肠杆菌为宿主菌进行基因的克隆将目的基因克隆到大肠杆菌细胞中的操作步骤:a.获得目的基因和质粒载体;b.形成重组质粒;c.制备感受态细胞,用重组质粒转化大肠杆菌细胞;d.培养大肠杆菌,让重组质粒及外源目的基因形成大量拷贝;e.筛选含重组质粒的大肠杆菌细胞,进行检查或鉴定。一般克隆基因的检查和鉴定方法琼脂糖凝胶电泳分离鉴定大小不等的酶解片段: 磷酸基团带负电荷 酶解片段向阳极移动 电场驱动力和凝胶阻力 ——不同迁移率 分子量标准参照物酶切和电泳方法32P标记的DNA分子探针杂交放射自显影法DNA杂交直接鉴定基因克隆获得大量目的基因后,就要使其在合适的宿主细胞中表达,产生需要的基因表达产物或使宿主生物具备所需的性状,同时目的基因还能在宿主细胞中稳定遗传。这一过程就是遗传转化。若需要让克隆的基因表达和产生大量编码蛋白,可对转化的大肠杆菌进行培养使目的基因大量表达和积累。对表达产物分离纯化便可获得想要的产品。通过DNA体外重组技术构建的重组质粒还可以直接用以转化蓝藻等原核生物或其他一些原生生物4 转化受体细胞和转化子的筛选遗传转化常用的方法载体法转化——农杆菌介导法基因的直接转移(1)高压电脉冲电激穿孔(2)基因枪法(3)微注射法纪念发明者Edward Southern(1)提取总DNA(2)酶解(3)电泳(4)转移到滤膜(5)变性解链(6)DNA探针及杂交(7)洗脱(8)放射自显影(9)比较分析5 转化子的分析——Southern杂交Southern杂交分析示例A. DNA体外重组实验 B. 抗生素筛选转化子细胞 C. 培养突变株细胞 D. Southern杂交实验结果显示,外源目的基因已经转入突变株细胞中1973年,由美国斯坦福大学教授Cohn和美国加州大学教授Boyer带领各自的研究组几乎同时分别完成了DNA体外重组,一举打开了基因工程学大门。第四节 基因表达宿主细胞的选择大肠杆菌中的基因表达酵母中的基因表达动物细胞中的基因表达一、表达宿主菌宿主细胞的必备条件:7要点基因表达宿主菌可分为2大类别常见的宿主菌 1. 原核细胞:3种 2. 真菌:2种以上各宿主的特点是什么?二、大肠杆菌中的外源基因表达1. 真核基因在大肠杆菌表达载体的6个必备性质2. 2个表达载体——pBV220 & pET system3. 影响目的基因表达的5大因素4. 真核基因在大肠杆菌的3种表达形式E.coli 表达载体的6个必备性质1.独立的复制子2.多克隆位点3.强启动子4.强终止子5.阻遏子6.Shine-Delgarno sequence & AUG影响目的基因在E.coli表达的5大因素1.基因的剂量2.表达效率3.表达产物的稳定性:a 转录的强度,b 翻译效率(核糖体结合,SD序列,condon bias)4.宿主E.coli的代谢负荷5.工程菌的培养条件真核基因在 E.coli 3种表达形式1.融合蛋白2.分泌型表达3.普通表达三、外源基因在酿酒酵母中的表达1.载体:4大类,YEp, YRp, YCp, YIp克隆载体与穿梭载体表达载体:普通表达载体和精确表达载体。2.影响目的基因在酵母表达的因素1.外源基因的剂量2.外源基因的表达效率①启动子的来源②终止子的有效性③分泌信号的效率3.外源蛋白质的糖基化4.宿主菌株的影响第五节 基因工程菌株的生长代谢菌体生长与能量的关系 关键词:供氧/能量/副产物/菌体生长菌体生长与前提供应的关系 关键词:前提物/基因工程菌株的不稳定性菌株的稳定性与质粒的稳定性提高质粒稳定性的6种方法第六节 基因工程菌株的不稳定性第七节 基因工程菌株中试中试的目的中试的流程第八节 基因工程菌株的培养1. 基因工程菌株的培养(发酵)方式基因工程菌株的发酵工艺的七要素基因工程菌株的发酵设备第九节 高密度发酵高密度:概念与作用影响高密度发酵的因素如何达到高密度发酵建立分离纯化工艺的必要性分离纯化的基本步骤分离纯化的技术 1. 如何选择合适的分离纯化工艺 2. 细胞破碎和固液分离 3. 目标产物的分离纯化选择分离纯化工艺的依据 1. 根据产物的表达形式 2. 根据分离单元之间的衔接 3. 根据分离纯化工艺的基本要求第十节 基因工程药物的分离纯化第十一节 变性蛋白的复性包含体及其形成原因包含体的分解和溶解包含体复性的方法原材料的质量控制培养过程中的质量控制纯化工艺过程中的质量控制目标产品的质量控制1.产品的鉴别2.纯度分析3.生物活性测定4.稳定性5.产品的一致性产品的保存第十二节 基因工程药物的质量控制干扰素---人的IFNα2b的制造人粒细胞集落刺激因子人白细胞介素-2第十三节 基因工程药物制造实例
基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达21.1亿美元,2002年达26.8亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文
人类基因组计划明确的内容
题目:人类基因组计///作者///院系:///年级:///学号:摘要:人类基因组计划由美、英、日、中、德、法等国参加进行了人体基因作图,测定人体全部DNA序列创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息。在揭示人类发展历史,基因治疗,农作物绿色革命,DNA鉴定方面具有深远影响。关键字:人类基因组计划正文:人类基因组计划人类基因组计划于20世纪80年代提出,由国际合作组织包括有美、英、日、中、德、法等国参加进行了人体基因作图,测定人体23对染色体由3×109核苷酸组成的全部DNA序列,于2000年完成了人类基因组“工作框架图”。2001年公布了人类基因组图谱及初步分析结果。其研究内容还包括创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。人类基因组计划在二十多年的时间里取得了较大进展。人类基因组计划最早在1985年由诺贝尔奖获得者,美国的杜尔贝克Renato Dulbecoo提出。最初目的是完成人类基因组全长约30亿个核苷酸的碱基序列测定,阐明所有人类基因并确定其在染色体上的位置,从而破译全部的人类遗传基因。1986年3月7日,杜尔贝克在《科学》杂志上发表了一篇题为“癌症研究的转折点——测定人类基因组序列”的文章,指出癌症和其它疾病的发生都与基因有关,并提出测定人类整个基因组序列的途径和重要意义。1988年美国能源部和国家卫生研究院率先在美国开展人类基因组计划,并经国会批准由政府给予资助。此后,成立了一个国际间的合作机构——人类基因组织(Human Genome Organization),由多个国家筹集资金和科研力量,积极参加这一国际性研究计划。1990年10月,国际人类基因组计划正式启动,预计用15年时间,投资30亿美元,完成30亿对碱基的测序,并对所有基因(当时预计为8万~10万个)进行绘图和排序。全球性人类基因组计划有美国、英国、日本、法国、德国和中国六个国家负责,其中美国承担了全部任务的54%,英国33%,日本7%,法国2.8%,德国2.2%,中国于1999年9月获准加入人类基因组计划并承担了1%的测序任务,即3号染色体断臂自D3S3610标志至端粒区段约3000万个碱基的全序列测定。中国1993年启动了相关研究项目,相继在上海和北京成立了国家人类基因组南、北两个中心,并承担人类基因组计划中1%的测序任务。经过多个国家的科学家的共同协作,人类终于在20世纪90年代完成了对自身基因组测序的初步工作。2003年6月,中、美、日、德、法、英等六国科学家宣布首次绘成人类基因组“工作框架图”。2003年4月14日,中、美、日、德、法、英等六国科学家宣布人类基因组序列图绘制成功,人类基因组计划的所有目标全部实现。2004年,人类基因组完成测序;2005年,人类X染色体测序工作基本完成,并公布了该染色体基因草图。HGP的主要任务是人类的DNA测序,包括下图所示的四张谱图,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。1、遗传图谱(genetic map)又称连锁图谱(linkage map),这是根据基因或遗传标记之间的交换重组值来确定它们在染色体上的相对距离、位置的图谱。其图距单位是厘摩(coml),以纪念现代遗传学奠基人摩尔根。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。2、物理图谱(physical map)物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法──标记片段的部分酶解法,来说明图谱制作原理。用部分酶解法测定DNA物理图谱包括二个基本步骤:(1)完全降解 (2)部分降解3、序列图谱(sequence map)随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。4、基因图谱(DNA map)基因图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别出占具2%~5%长度的全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA反追到染色体的位置。原理基因图谱的意义在于它能有效地反应在正常或受控条件中表达的全基因的时空图。通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。人类基因组计划的实施具有重大意义和影响。第一,揭示人类发展历史破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。同时,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。对进化的研究,不再建立在假说的基础上,利用比较基因组学,通过研究古代DNA,可揭示生命进化的奥秘以及古今生物的联系,帮助人们更好地认识人类在自然界中的地位。第二,基因治疗获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。第三,基因工程药物研究基因工程药物,是重组DNA的表达产物。广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。基因技术应用于制药工业,可以生产出高效、高产、廉价、不再苦口的防治疾病的新药物,从而引起制药工业的革命性变革。对于肝炎、心血管疾病、肿瘤、艾滋病等目前尚无良药可治的重大疑难病,人们对生物工程寄予厚望,期待基因工程技术生产出有效地治疗药物。第四,农作物的绿色革命科学家们在利用基因工程技术改良农作物方面已取得重大进展,基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。第五,DNA鉴定DNA鉴定已经给法医科学和犯罪司法系统带来了一场革命。DNA已经成为无数审判中的关键证据,帮助警察和法庭鉴别暴力犯罪中的罪犯,而且可信度非常高。它能够确定犯罪的人,同时也能够证明误判的人无罪。不仅如此,DNA鉴定还可以用于帮助寻找失踪的人、谋杀或事故中的受害者;还可以用于证明或否认父子关系。第六,转基因动物随着基因工程技术的飞速发展及其在动物上的应用,转基因动物的发展呈现出一片“大好形势”。比如基因育种能提供高产优质抗病的“超级动物”;基因工程疫苗为畜牧业节省了大笔开支;通过转基因动物进行器官移植。人类基因组的重要性由以上的事实我们可以看出,要想解开人类自身的秘密,就要从破解基因的密码做起。对人类基因的了解和掌控,也将对人类物种的进化、人类社会的进步产生强大推动作用。通过对人类基因已知和未知领域的探索,可以找到更好的基因更有利人类进步的基因,人类社会将从本质上发生突破性的飞越。因此我们可以说,这项耗资大耗时长的人类基因组计划确实是非常必要而且永世受益的。对于生物学界来说这可能是很小的一步,但对人类社会来说却是非常大的一步。尽管该计划已宣告完成,但该计划尚未得出令人满意的人类基因图谱,因此,科学工作者们对人类基因组的探索研究仍在紧张的进行中。希望在不久的将来,人类能解开基因的面纱,了解它掌控它,给人类社会带来无穷的财富。参考文献:1、章波《人类基因研究报告》重庆出版社 2006年版2、钱俊生、孔伟、卢大振《生命是什么》中共中央党校出版社2000年12月版3、C.丹尼斯、R.加拉格尔、J.D.沃森 序《人类基因组 我们的DNA》科学出版社2003年4月版4、杨业洲、陈廉《人类基因组计划》实用妇产科杂志2001年1月第17期 (Journal of Practical Obstetrics and Gynecology 2001 January Vol.17 No.1)5、参考资料:《科学》(Science)
基因工程技术的现状和前景发展 【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术;前景;现状一、基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。二、基因工程应用于医药方面目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。三、基因工程应用于环保方面工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。四、前景展望由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。【参考文献】[1]楼士林,杨盛昌,龙敏南,等.基因工程[M].北京:科学出版社,2002.[2]李庆军,董艳桐,施冰.植物抗虫基因的研究进展[J].林业科技,2002,27(2):22 26. 这还有一篇
20世纪后期,生物工程迅速发展,给人类生活带来了巨大的变化。有人说,生物工程给人类带来了更大的希望,也有人说,它也会相应给人类带来灾难。学者们众说纷纭,褒贬不一。其中,植物转基因工程更是如此。植物转基因工程就是指通过基因枪等基因工程手段,将一种或几种外源基因转移到原本不具有这些基因的植物体内,并使之有效表达,产生相应性状,这种具有相应性状的植物称之为转基因植物。1983年,第一例转基因植物———转基因烟草问世。从此,转基因植物的研究就以惊人的速度发展,人类看到了更大的希望。1986年,抗虫和抗除草剂的转基因棉花首次进入田间实验,此后转基因植物在全球范围内飞速发展,种植面积不断扩大,给人类带来了非常明显的经济效益。在这同时,人类也注意到了它可能潜在着的一系列危害,即可能对环境产生不利影响,影响到生物多样性的保护和持续利用,并且对人类健康也可能有潜在的危害。1转基因植物的利用植物转基因工程的目的旨在通过导入有用的外源基因,获得转基因植物,用于植物的改良和有效成分的生产。目前在抗除草剂、抗虫、抗病、控制果实成熟以及植物生物反应器等方面已获得了一系列令人鼓舞的成果。1.1抗除草剂的转基因植物化学除草剂在现代农业中起着十分重要的作用,理想的除草剂必须具有高效、广谱的杀草能力,而对作物及人畜无害。但这样的除草剂成本越来越高,通过转基因技术,在作物中导入抗除草剂基因,获得抗除草剂作物,就能有效地解决这些问题,提高经济效益,使除草剂的应用更加方便。据报道,现已成功地获得了转aro A基因的番茄、油菜、大豆、杨树等,在田间试验中表现出对除草剂的良好抗性。1.2抗虫的转基因植物虫害对农业生产的危害非常严重,如能在植物体内转入抗虫基因,使植物获得抗虫性,增加对虫害的抵抗力,将对农业生产具有重要意义。基于这个目的,人们现已成功地将苏云金芽孢杆菌(Bacillusthurigiensis)的B.t毒蛋白基因转入了烟草、番茄、马铃薯、甘蓝、棉花、杨树等植物,使这些植物获得了抗虫性。1.3抗病的转基因植物据报道,将烟草花叶病毒(TMV)、黄瓜花叶病毒(CMV)、马铃薯X和Y病毒(PVX和PVY)、大豆花叶病毒(SMV)、苜蓿花叶病毒(AIMV)等病毒的外壳蛋白基因导入不同的植物体后,这些植物均获得了对相应病毒的抗性,这有望应用于农业生产。1.4抗逆的转基因植物68小分子化合物(如脯氨酸、甜菜碱、葡萄糖等)与植物忍受环境渗透胁迫的能力有关,人们若能将与脯氨酸或甜菜碱等合成有关的酶的基因克隆后转入植物,有望提高植物对干旱和盐碱等逆境的抗性。有报道说,人们现已成功地将相关基因转入了烟草、苜蓿、马铃薯等植物,使它们获得了对不同逆境的抗性。1.5植物生物反应器生产药物蛋白生物反应器(bioreactor)是指利用生物系统大规模生产有重要商业价值的外源蛋白质,用于医疗保健和科学研究。将不同的基因转入植物,可使转基因植物产生植物抗体、口服疫苗、植物药物和人类蛋白质等。据报道,到目前为止,人们已成功地获得了4种具有潜在医疗价值的植物抗体。2转基因植物存在的潜在风险2.1转基因作物对生态环境的潜在风险在耕地上栽种那些实验室里培育出来的转基因植物可能会对生态环境造成许多负面影响,转基因植物对非目标生物可能造成危害,转基因植物通过基因漂变对其它物种也可能产生有害影响。2.2对人类健康的潜在危害转基因食品里的新基因可能对消费者造成健康威胁,因为转基因植物是在传统植物接受了动物、植物、微生物的基因的基础上形成的,所以很可能对人类健康产生影响。人们正在关注这样一些问题:毒性问题、过敏反应问题、对抗生素的抵抗作用问题、营养问题等。3展望20世纪末生物技术取得了突飞猛进的发展,其涉及面之广、进展之快乃前所未有。从1986年美国批准第一个转基因作物进行大田试验,至1999年4月,已有4987个转基因作物被批准进行大田试验。自1994年至1999年五年间转基因农作物的种植面积增加了23倍多。美国的转基因抗虫棉花的种植面积已占其棉花总种植面积的13%。从发展趋势看,转基因植物将向多元化发展,例如品质改良、高产、抗逆(抗旱、抗寒、抗低光照、耐盐碱、耐瘠薄等)的基因工程发展。随着转基因技术的深入发展,人们也将把转基因植物应用到医药化工领域,建立基因工厂,从而利用转基因植物生产各种化工原料和药品,摆脱传统化工厂对日益短缺的化工原料的依赖和生产过程中对环境的严重污染。在21世纪,科学技术更加透明,更加公平,人们需要更多、更大的知情权,所以,国际社会对这个问题给予了极大关注,各国政府也高度重视。争论本身就是推动社会前进的动力。通过争论,弄清是非,避免破坏性后果的发生,这将推动科学技术沿着健康的道路发展前进。任何科学技术都不应该滥用,但也不能扼杀能给人类和社会创造巨大财富的技术成果。在应用植物转基因工程技术中,人类应该像对待其它科学技术一样,扬长避短,全面、理性地看问题,把握尺度,使植物转基因工程更加健康地发展,造福全人类。
Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoateby Escherichia coli transformant cells coexpressingthe carbonyl reductase and glucose dehydrogenase genes由共表达碳酰还原酶和葡萄糖脱氢酶的大肠杆菌转化细胞合成纯光学(S)-4-氯-3-羟基丁酸乙酯Abstract The asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate((S)-CHBE) was investigated. Escherichia coli cells expressing both the carbonyl reductase (S1) gene from Candida magnoliae and the glucose dehydrogenase (GDH) gene from Bacillus megaterium were used as thecatalyst. In an organic-solvent-water two-phase system,(S)-CHBE formed in the organic phase amounted to 2.58 M (430 g/l), the molar yield being 85%. E. coli transformant cells coproducing S1 and GDH accumulated 1.25 M (208 g/l) (S)-CHBE in an aqueous monophase system by continuously feeding on COBE, which is unstable in an aqueous solution. In this case, the calculated turnover of NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) to CHBE was 21,600 mol/mol. The optical purity of the (S)-CHBE formed was 100% enantiomeric excess in both systems. The aqueous system used for the reduction reaction involving E. coli HB101 cells carrying a plasmid containing the S1 and GDH genes as a catalyst is simple. Furthermore, the system does not require the addition of commercially available GDH or an organic solvent. Therefore this system is highly advantageous for the practical synthesis of optically pure (S)-CHBE.本本篇文献研究了利用COBE不对称合成(S)-4-氯-3-羟基丁酸乙酯(CHBE)。大肠杆菌细胞作为催化剂同时表达了来自念珠菌属magnoliae的碳酰还原酶和来自巨大芽孢杆菌的葡萄糖脱氢酶基因。在水/有机溶剂两相体系中,(S)-CHBE在有机相中的浓度可以达到2.58M(430g/l),摩尔产率达到85%。大肠杆菌的副产物S1和GDH也达到了1.25M(208g/l),COBE在水相中不稳定,所以(S)-CHBE可以在水单相中不停的生成。在这种情况下,适当的从NADP+到CHBE的转变达到了21,600 mol/mol。所形成的CHBE的旋光度在这种体系中100%对映体过量。在水相中用携带含有S1和GDH基因质粒的E. coli HB101作为催化剂不对称还原是比较简单的。并且,这种体系并不额外需要商业GDH或者有机溶剂。因此,这种体系对于实际合成纯光学活性的(S)-CHBE是非常方便的。Optically active 4-chloro-3-hydroxybutanoic acid esters are useful chiral building blocks for the synthesis of pharmaceuticals. The (R)-enantiomer is a precursor of L-carnitine (Zhou et al. 1983), and (S)-enantiomer is an important starting material for hydroxymethylglutaryl- CoA (HMG-CoA) reductase inhibitors (Karanewsky et al. 1990). Many studies have described the microbial or enzymatic asymmetric reduction of 4-chloro-3-oxobutanoic acid esters (Aragozzini and Valenti 1992; Bare et al.1991; Hallinan et al. 1995; Patel et al. 1992; Shimizu et al. 1990; Wong et al. 1985) based on the reduction by baker’s yeast (Zhou et al. 1983).We have previously showed that Candida magnoliae AKU4643 cells reduced ethyl 4-chloro-3-oxobutanoate (COBE) to (S)-CHBE with an optical purity of 96% enantiomeric excess (e.e.) (Yasohara et al. 1999). As this yeast has at least three different stereoselective reductases (Wada et al. 1998, 1999a, b), the (S)-CHBE produced by this yeast was not optically pure. From among these three enzymes, an NADPH-dependent carbonyl reductase, designated as S1, was purified and characterized in some detail (Wada et al. 1998). We cloned and sequenced the gene encoding S1 and overexpressed it in Escherichia coli cells. This E. coli transformant reduced COBE to optically pure (S)-CHBE in the presence of glucose, NADP+, and commercially available glucose dehydrogenase (GDH) as a cofactor generator (Yasoharaet al. 2000). Here, we describe the construction of three E. coli transformants coexpressing the S1 from C. magnoliae and GDH from Bacillus megaterium genes and analyze the reduction of COBE catalyzed by these strains. Previous reports on the enzymatic reduction of COBE to (R)-CHBE with an optical purity of 92% e.e. (Kataoka et al. 1999; Shimizu et al. 1990) recommended an organic- solvent two-phase system reaction for an enzymatic or microbial reduction, because the substrate (COBE) is unstable in an aqueous solvent and inactivates enzymes. We examined the reduction of COBE to optically pure (S)-CHBE by E. coli transformants in a water monophase system reaction and discuss the possible use of this type of reaction system in industrial applications。具有旋光性的(S)-4-氯-3-羟基丁酸乙酯在药物制剂的合成中是重要的手性化合物。其右旋体是L-卡尼汀的前体,其左旋体是羟甲基戊二酰辅酶A还原酶抑制剂的起始材料。许多研究描述了以面包酵母为基础微生物或者酶的COBE的不对称还原。我们先前已经知道利用来自念珠菌属magnoliae AKU4643 细胞催化COBE生成光学纯度96%的CHBE。这种酵母至少有三种立体选择性的还原酶,这种酵母产生的CHBE并非纯光学的,在这三种酶之中,NADPH-依赖碳酰还原酶,我们克隆并测序编码S1的基因,并在大肠杆菌中过表达。大肠杆菌转化细胞在葡萄糖,NADP+和商业化的葡萄糖脱氢酶作为辅酶因子的启动子催化COBE生成纯光学的CHBE。我们构建这三种大肠杆菌转化细胞共表达来自的S1和来自巨大芽孢杆菌的GDH,并分析COBE被这几种菌株催化还原的反应机理。先前的报道表明,利用酶催化还原COBE生成CHBE光学纯度可达92%,也提到了因为底物(COBE)在水相中不稳定,并且酶容易钝化,所以利用酶或者微生物在有机溶剂/水两相体系中催化反应。我们研究了在水单相体系中由COBE还原生成纯光学的CHBE,还讨论了这种反应体系在工业应用中可能的用途。Materials and methodsBacterial strain and plasmids The E. coli strains used in this study were JM109 and HB101.Plasmid pGDA2, in which the GDH gene from B. megaterium is inserted into pKK223-3, was kindly provided by Professor I. Urabe, Osaka University (Makino et al. 1989). Plasmids pSL301 and pTrc99A were purchased from Invitrogen (USA), and Amersham Pharmacia Biotech (UK), respectively. Plasmids pUC19 and pSTV28 (Homma et al. 1995; Takahashi et al. 1995) were purchased from Takara Shuzo (Japan).材料和方法菌株和质粒本次实验中使用的大肠杆菌是JM109 and HB101。来自B. megaterium的GDH基因插入到Pkk233-3质粒中,而带有GDH基因片段的pGDA2质粒由到由大阪大学的urabe教授提供。质粒pSL301和 pTrc99A是由美国的Invitrogen公司和英国的公司分别购买的。质粒pUC19和pST28是由日本takara公司购买的。The recombinant plasmid used in this study was constructed as follows (Fig. 1): Plasmid pGDA2 was double-digested with EcoRI and PstI to isolate a DNA fragment of about 0.9 kilobase pairs (kb) including the GDH gene. This fragment was inserted into the EcoRI-PstI site of plasmid pSL301 to construct plasmid pSLG. Plasmid pSLG was double-digested with EcoRI and XhoI to isolate a DNA fragment of about 0.9 kb including the GDH gene.这次实验使用的重组质粒构建如下:质粒pGDA2 被EcoRI 和 PstI双酶切从而分离出一个大小约为0.9kb的包含有GDH基因的DNA片段。这个片段被插入到质粒Psl301的EcoRI-PstI酶切位点从而构建出质粒pSLG。质粒pSLG被EcoRI和XhoI To construct plasmid pNTS1G, this 0.9-kb fragment was inserted into the EcoRI-SalI site of pNTS1, which was constructed to overproduce S1 as described previously (Yasohara et al. 2000). To construct plasmid pNTGS1, plasmid pNTG was first generated. Two synthetic primers (primer 1, TAGTCCATATGTATAAAGATTTAG,and primer 2 TCTGAGAATTCTTATCCGCGTCCT) were prepared for polymerase chain reaction (PCR) using pGDA2 as the template. The PCR-generated fragment was double- digested with NdeI and EcoRI and then inserted into the NdeI EcoRI site of plasmid pUCNT, which was constructed from pUC19 and pTrc99A, as reported (Nanba et al. 1999), to obtain pNTG. To construct plasmid pNTGS1, two synthetic primers (primer 3, GCCGAATTCTAAGGAGGTTAATAATGGCTAAGAACTTCTCCAACG, and primer 4, GCGGTCGACTTAGGGAAGCGTGTAGCCACCGTC) were prepared using pUCHE, which contains the S1 gene as the template. The PCR-generated fragment was double-digested with EcoRI and SalI and then inserted into the EcoRI-SalI site of pNTG to obtain pNTGS1. Plasmid pNTS1G, pNTGS1 or pNTG was transformed into E. coli HB101.构建pNTS1是为了过表达前文所提到的S1,这个0.9kb大小的片段被插入到pNTS1的EcoRI-SalI酶切位点从而构建pNTS1G。为了构建质粒pNTGS1,首先需要构建pNTG。两个合成引物(引物1,TAGTCCATATGTATAAAGATTTAG和引物2,TCTGAGAATTCTTATCCGCGTCCT)和作为模板的pGDA2是PCR反应需要的。PCR得到的片段是由NdeI 和EcoRI双酶切和并插入到质粒pUCNT的NdeI EcoRI酶切位点来得到pNTG。根据报道,pUCNT是由pUC19和 pTrc99A构建而来。为了构建质粒pNTGS1,两个合成引物(引物 3, GCCGAATTCTAAGGAGGTTAATAATGGCTAAGAACTTCTCCAACG, and 引物 4, GCGGTCGACTTAGGGAAGCGTGTAGCCACCGTC),包括了S1基因作为模板。Pcr产物片段被EcoRI和SalI双酶切然后被插入到pntg的EcoRI-SalI酶切位点得到pntg1.质粒pNTS1G, pNTGS1或者 pNTG都是导入大肠杆菌HB101.Plasmid pGDA2 was double-digested with EcoRI and PstI to isolate a DNA fragment of about 0.9 kb including the GDH gene. To construct plasmid pSTVG, this fragment was inserted into the EcoRI-PstI site of plasmid pSTV28. Plasmid pSTVG was transformed into E. coli HB101. 质粒pGDA2被EcoRI 和 PstI双酶切得到包含GDH基因的0.9kb大小的DNA片段。为了构建pSTVG质粒,这个片段被插入到pSTV28质粒的EcoRI-PstI的酶切位点。pSTVG质粒被导入到E. coli HB101。Medium and cultivationThe 2×YT medium comprised 1.6% Bacto-tryptone, 1.0% yeastextract, and 0.5% NaCl, pH 7.0. E. coli HB 101 carrying pNTS1,pNTG, pNTS1G, or pNTGS1 was inoculated into a test tube containing2 ml 2×YT medium supplemented with 0.1 mg/ml ampicillin,followed by incubation at 37 °C for 15 h with reciprocal shaking.This preculture (0.5 ml) was transferred to a 500-ml shakingflask containing 100 ml 2×YT medium. The cells were cultivatedat 37 °C for 13 h with reciprocal shaking. E. coli HB101 carryingpNTS1 and pSTVG was similarly cultivated in 2×YT mediumsupplemented with 0.1 mg/ml ampicillin and 0.1 mg/ml chloramphenicol.培养基和培菌2*YT培养基 包含有1.6%细菌用胰蛋白胨,1.0%酵母提取物,0.5% NaCl,pH7.0.携带有pNTS1,pNTG, pNTS1G, 或 pNTGS1的大肠杆菌HB101被接种到有0.1mg/ml氨苄青霉素的2ml的2*YT培养基,37°C摇床15小时。将0.5ml菌液接种到100ml2*YT培养基的500ml烧瓶中。在37°C摇床培养13小时。携带有pNTS1 和 pSTVG质粒的大肠杆菌HB101在2*YT培养基中培养方法相似,只是培养基中要加入0.1 mg/ml的氨苄青霉素和 0.1 mg/ml的氯霉素。Preparation of cell-free extracts and the enzyme assay Cells were harvested from 100 ml of culture broth by centrifugation, suspended in 50 ml of 100 mM potassium phosphate buffer (pH 6.5), and then disrupted by ultrasonication. The cell debris was removed by centrifugation; the supernatant was recovered as the cell-free extract. Carbonyl reductase S1 activity (COBE-reducing activity) was determined spectrophotometically as follows: The assay mixture consisted of 100 mM potassium phosphate buffer (pH 6.5), 0.1 mM NADPH, and 1 mM COBE. The reactions were incubated at 30 °C and monitored for the decrease in absorbance at 340 nm. The assay mixture for GDH activity consisted of 1 M Tris-HCl buffer (pH 8.0), 100 mM glucose, and 2 mM NADP+. The reactions were incubated at 25 °C and monitored for the increase in absorbance at 340 nm. One unit of S1 or GDH was defined as the amount catalyzing the reduction of 1 μmol NADP+ or oxidation of 1 μmol NADPH per minute, respectively. Protein concentrations were measured with a proteinassay kit containing Coomassie brilliant blue (Nacalai Tesque, Japan),using bovine serum albumin as the standard (Bradford 1976).无细胞抽提液和酶鉴定将100ml培养液离心收获菌体,用50ml0.1mol/LpH为6.5的磷酸缓冲液悬浮,然后超声粉碎。细胞碎片通过离心可以去除,收集上层清液就是无细胞抽提物。碳酰还原酶S1的活性由分光光度计测量如下:测定的混合物包括:0.1mol/LpH6.5的磷酸二氢钾缓冲液,0.1mMNADPH和1mMCOBE。反应在30°C条件下反应,并且随时监测其在340nm处的吸光值。测GDH混合物包括:1M pH 8.0的Tris-HCl的缓冲液,100mM的葡萄糖,2mM的NADP+。反应在25°C下进行,监测其在340nm处的吸光值。一个单位S1或GDH被定义为每分钟催化还原1μmol NADP+或氧化1 μmol NADPH的量。蛋白质的测定通过含有考马斯亮蓝的蛋白质测定试剂利用牛血清白蛋白作为标准进行测定。Study of enzyme stabilityOne milliliter of 100 mM potassium phosphate buffer (pH 6.5) containing the cell-free extracts of E. coli HB101 carrying pNTS1 (S1: 20 U/ml) was mixed with an equal volume of each test organic solvent in a closed vessel. After the mixture was shaken at 30 °C for 48 h, the remaining enzyme activities in an aqueous phase were assayed as described above. The mixture, containing 100 mM potassium phosphate buffer (pH 6.5), S1 (20 U/ml), and various concentrations of CHBE, was incubated at 30 °C for 24 h in order to study the enzyme’s stability in the presence of CHBE.The remaining enzyme activities were assayed as described above.酶稳定性的研究一毫升含有含有pNTS1质粒的E. coli HB101的无细胞抽提液的100mM磷酸氢二钾缓冲液(pH6.5)与等体积的有机溶剂混合。混合物在30 °C震摇48小时后,水相中残留的酶活力即是上述的酶活力。COBE reduction with E. coli cells expressing the S1 gene and E. coli cells expressing GDH genes in a two-phase system reaction The reaction mixture comprised 15 ml culture broth of E. coli HB101 carrying pNTG, 17 ml culture broth of E. coli HB101 carrying pNTS1, 1.6 mg NADP+, 4 g glucose, 2.5 g COBE, 25 ml n-butyl acetate, and about 25 mg Triton X-100. The pH of the reaction mixture was controlled at 6.5 with 5 M sodium hydroxide. At 2 h, 1.25 g COBE and 2.5 g glucose were added to the reaction mixture. To compare the reaction by E. coli transformant coexpressing the GDH and S1 genes, 30 ml culture broth of E. coliHB101 carrying pNTS1G was used instead of culture broth of E. coli HB101 carrying pNTG and E. coli HB101 carrying pNTS1. Other components and the procedure were the same as described above.表达S1基因和GDH基因的大肠杆菌细胞在两相反应体系中的还原反应混合物包含有带有pNTG质粒的大肠杆菌HB101的菌液15ml,pNTS1质粒的大肠杆菌HB101的菌液17ml,1.6 mg NADP+,4 g葡萄糖,2.5g的COBE,25ml的n-butyl acetate丁酰醋酸盐和大约25mg的聚乙二醇辛基苯基醚Triton X-100。用5M的NaOH溶液将pH控制在6.5。在反应两小时后,加入1.25gCOBE和2.5g葡萄糖到该混合物中。比较大肠杆菌转化细胞共表达GDH和S1基因,携带有pNTS1G质粒的大肠杆菌HB10130ml菌液取代了携带有pNTG和pNTS1质粒的大肠杆菌HB101菌液。其他的成分和步骤和上述的方法相似。 COBE reduction to (S)-CHBE in a two-phase system reaction The reaction mixture contained 50 ml of culture broth of an E. coli HB101 transformant, 3.2 mg NADP+, 11 g glucose, 10 g COBE, 50 ml n-butyl acetate, and about 50 mg Triton X-100. The reaction mixture was stirred at 30 °C, and the pH was controlled at 6.5 with 5 M sodium hydroxide. Five grams of COBE/5.5 g glucose and 10 g COBE/11 g glucose were added to the reaction mixture at 3 h and 7 h, respectively; 3.2 mg NADP+ was added at 26 h.COBE在两相系统中还原生成(S)-CHBE反应混合物包含50ml E. coli HB101转化细胞的培养液,3.2mgNADP+,11g葡萄糖,10gCOBE,50ml丁酰醋酸,和大概50mg聚乙二醇辛基苯基醚Triton X-100.在30°C温度下将其混合均匀,并用5M的NaOH溶液将pH控制在6.5。在第3小时加入5gCOBE和5.5g葡萄糖或者在第7小时加入10gCOBE和11g葡萄糖,分别在第26小时加入3.2gNADP+。 COBE reduction to (S)-CHBE in an aqueous system reaction The reaction mixture was made up of 50 ml of culture broth of an E. coli HB101 transformant, 3.1 mg NADP+, 11 g glucose, and about 50 mg Triton X-100. The reaction mixture was stirred at 30 °C. Fifteen grams of COBE was fed continuously by means of a micro-feeding machine at a rate of about 0.02 g/min for about 12 h. The pH of the reaction mixture was controlled at 6.5 with 5 M sodium hydroxide. The reaction mixture was extracted with 100 ml ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and then evaporated in vacuo. COBE在水相中还原成(S)-CHBE的反应反应的体系是由50ml大肠杆菌HB101转化细胞的菌液,3.1mgNADP+,11g葡萄糖和大约50mg聚乙二醇辛基苯基醚Triton X-100。反应混合物在30°C15mg的COBE通过微量添加机器以0.02 g/min的速率连续12小时恒定的加入到体系中。用5M的NaOH溶液将pH控制在6.5。反应混合物用100ml乙酸乙酯萃取。有机层用无水硫酸钠吸干,并在真空中脱水。Analysis The organic layer was obtained on centrifugation of the reaction mixture and was assayed for CHBE and COBE by gas chromatography. Optical purity of CHBE was analyzed by high-performance liquid chromatography (HPLC), as described previously (Yasohara et al. 1999).Enzymes and chemicals Restriction enzymes and DNA polymerase were purchased fromTakara Shuzo (Japan). COBE (molecular weight: 164.59) was purchasedfrom Tokyo Kasei Kogyo (Japan). Racemic CHBE (molecularweight: 166.60) was synthesized by reduction of COBE withNaBH4. All other chemicals used were of analytical grade andcommercially available.分析离心反应混合物得到的有机层通过气相色谱法测定其CHBE和COBE。COBE的光学纯度如前所述通过高效液相色谱法进行分析。酶和化学试剂限制性内切酶和DNA聚合酶由takara公司购得,COBE(分子量:164.59)由东京Tokyo Kasei Kogyo公司购得,消旋体CHBE(分子量166.6)通过COBE及NaBH4合成。所有其他化学试剂都是分析等级和商业化的试剂。Construction of E. coli transformants overproducing S1 and GDHTo express the carbonyl reductase S1 and GDH genes in the same E. coli cells, four expression vectors were constructed (Fig. 1). Plasmids pNTS1G and pNTGS1 contain the S1 gene from C. magnoliae, the GDH gene from B. megaterium, the lac promoter derived from pUC19, and the terminator derived from pTrc99A. Plasmid pNTS1 contains the S1 gene, the lac promoter derived from pUC19, and the terminator derived from pTrc99A. The enzyme activities in cell-free extracts of the E. coli transformants are shown in Table 1. E. coli HB101 cells carrying the vector plasmid pUCNT had no detectable S1 or GDH activity. E. coli HB101 carrying either pNTS1G or pNTGS1 showed S1 and GDH activity without isopropyl-β-D-thiogalactopyranoside (IPTG) induction. The S1 activities of these two transformants were lower than the GDH activities. To obtain a transformant whose S1 activity was equal to or greater than the level of GDH activity, we used a lower copy vector, pSTV28 (Homma et al. 1995; Takahashi et al. 1995), to express the GDH gene. It may be possible to raise the S1 activity by lowering the GDH activity. Plasmid pSTVG contains the GDH gene, the lac promoter, the chloramphenicol resistance gene, and the replicative origin derived from pACYC184 for compatibility with the plasmid pNTS1. In E. coli HB101 carrying pNTS1 and pSTVG, the S1 activity was higher than the GDH activity, but this GDHlevel may be too low to regenerate in a COBE reduction reaction as described below.过产生S1和GDH的大肠杆菌转化细胞的构建为了在同一大肠杆菌细胞中表达碳酰还原酶S1和GDH基因,要构建四个表达型载体。质粒pNTS1G 和 pNTGS1包含有来自C. magnoliae的S1基因,来自B. megaterium的GDH基因,来自pUC19的LAC启动子,从pTrc99A的来的终止子,质粒pNTS1包含有S1基因,来自pUC19的LAC启动子,从pTrc99A的来的终止子。在大肠杆菌转化细胞的无细胞抽提物的酶活力如表一所示。携带有运输质粒pUCNT的大肠杆菌细胞无法检测到其S1和GDH活性。携带有pNTS1G 或 pNTGS1质粒在没有IPTG的诱导下有S1和GDH的活性。在这两个转化菌种中,S1的活力小于GDH的活力。为了得到S1活性等于或者大于GDH的大肠杆菌转化菌株,我们使用低拷贝的载体pSTV28,来表达GDH基因。它可能可以通过降低GDH的活性从而提高S1的活性。质粒pSTVG包含有GDH基因,lac启动子,和氯霉素抗性基因,以及与pNTS1具有相容性的从pACYC184得来的复制起始位点。在携带有pNTS1和pSTVG的大肠杆菌转化细胞中,S1的活性要高于GDH的活性,但是GDH的活性可能会太低而在COBE还原反应中不能再生。 太长了,字数有限制,所以不能发完。分数我无所谓啦,我很少登录的。这应该算是基因工程的吧,是我以前自己翻的,不是很好。如果你要的话可以联系我的邮箱。
基因工程技术的现状和前景发展 【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术;前景;现状一、基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。二、基因工程应用于医药方面目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。三、基因工程应用于环保方面工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。四、前景展望由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。【参考文献】[1]楼士林,杨盛昌,龙敏南,等.基因工程[M].北京:科学出版社,2002.[2]李庆军,董艳桐,施冰.植物抗虫基因的研究进展[J].林业科技,2002,27(2):22 26. 这还有一篇
生物基因工程论文参考文献汇总 生物基因工程论文参考文献怎么写?有哪些格式要求,下面我就为大家推荐一些优秀的范例,希望大家喜欢![1] Brackett B G, Baranska W, Sawicki W,et al. Uptake of heterologous genome by mammalianspermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA,1971,68(2):353-357. [2] Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived frompreimp antation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 1974,71 (4): 1250-1254. [3] Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggsmicroinjected with metallothionein-growth hormone fusion genes. Nature, 1982,300(5893):611-615. [4] 李宁.动物克隆与基因组编辑.中国农业大学出版社,2012. [5] Hammer R E, Pursel V G, Rexroad C J, et al. Production of transgenic rabbits, sheep and pigs bymicroinjection. Nature, 1985,315(6021):680-683 [6] 杜伟,崔海信,王 琰 ,等.精子载体法制备转基因动物的'研究进展.生物技术通报,2012(12):13-18. [7] Maione B,Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice. Mol ReprodDev, 1998,50(4):406-409. [8] Lavitrano M, Bacci M L, Forni M, et al. Efficient production by sperm-mediated gene transfer ofhuman decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Matl Acad SciUSA, 2002,99(22):14230-14235. [9] Sperandio S, Lulli V,Bacci M L, et al. Sperm - mediated DNA transfer in bovine and swinespecies. Animal biotechnology, 1996,7(1):59-77. [10] 武坚,刘明军,李文蓉,等.精子载体介导法生产转基因绵羊的研究.草食家畜,2001(S2):186-190. [11] Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis inliving animals by fluorescence imaging. Mol Ther,2001,3(3):319-322. [12] Lois C, Hong E J, Pease S, et al. Germline transmission and tissue-specific expression oftransgenes delivered by lentiviral vectors. Science, 2002,295(5556):868-872. [13] Hofmann A, Kessler B, Ewerling S,et al. Efficient transgenesis in farm animals by lentiviralvectors. EMBO Rep, 2003,4( 11): 1054-1060. [14] Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgenic cattle by lentiviral genetransfer into oocytes’ Biol Reprod, 2004,71 (2):405-409 [15] Lillico S G, Sherman A, McGrew M J,et al. Oviduct-specific expression of two therapeuticproteins in transgenic hens. Proc Natl Acad Sci USA,2007,104(6): 1771-1776. [16] Lyall J,Irvine R M, Sherman A, et al. Suppression of avian influenza transmission in geneticallymodified chickens. Science,2011,331(6014):223-226. [17] Golding M C, Long C R,Carmell M A, et al. Suppression of prion protein in livestock by RNAinterference. Proc Natl Acad Sci USA, 2006,103(14):5285-5290. [18] 杨春荣,窦忠英.利用干细胞生产转基因动物研究进展.西北农林科技大学学报(自然科学版),2006(07):37-40. [19] Hai T, Teng F,Guo R, et al. One-step generation of knockout pigs by zygote injection ofCRISPR/Cas system. Cell Res, 2014,24(3):372-375. [20] Hongbing H, Yonghe M A, Tao W, et al. One-step generation of myostatin gene knockout sheepvia the CRISPR/Cas9 system. Frontiers of Agricultural Science and Engineering, 2014,1(1):2-5. [21] Swanson M E,Martin M J, O'Donnell J K, et al. Production of functional human hemoglobin intransgenic swine. Biotechnology (N Y),1992,10(5):557-559. [22] Zbikowska H M,Soukhareva N, Behnam R, et al. Uromodulin promoter directs high-levelexpression of biologically active human alpha 1-antitrypsin into mouse urine. Biochem J, 2002,365(Pt1):7-11. [23] Golovan S P,Hayes M A, Phillips J P,et al. Transgenic mice expressing bacterial phytase as amodel for phosphorus pollution control. Nat Biotechnol, 2001,19(5):429-433. [24] Rapp J C, Harvey A J, Speksnijder G L, et al. Biologically active human interferon alpha-2bproduced in the egg white of transgenic hens. Transgenic Res, 2003,12(5):569-575. [25] Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1 -antitrypsin inthe milk of transgenic sheep. Biotechnology (N Y), 1991,9(9):830-834. [26] Li S, Ip D T, Lin H Q, et al. High-level expression of functional recombinant humanbutyrylcholinesterase in silkworm larvae by Bac-to-Bac system. Chem Biol Interact,2010,187(1-3):101-105. [27] 刘英,张瑞君,伍志伟,等.转基因疾病动物模型的研究进展.动物医学进展,2006(12):44-49. [28] Kragh P M, Nielsen A L, Li J, et al. Hemizygous minipigs produced by random gene insertion andhandmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res,2009,18(4):545-558. [29] Lee M K, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson'sdisease-linked Ala-53 Thr mutation causes neurodegenerative disease with alpha-synucleinaggregation in transgenic mice. Proc Natl Acad Sci USA, 2002,99(13):8968-8973. ;
[3] 赵艳,于彦春,钱前,等.无载体主干序列的bar和cecropin B基因表达框共转化水稻[J]. 遗传学报,2003,30(2):135-141. [4] 安韩冰,朱祯,李慧芬,等.基因枪法转化水稻(Oryza sativa L.)获得可育的转抗虫基因水稻再生植株[J]. 高技术通讯,2001,2:12-17. [5] CHU Qi-ren, CAO Hua-xin, FAN Hui-qin, et al.. Preliminary report on transienexpression of gus gene in transgene rice protoplast-derived calli via PEG-mediated DNA transformation[J]. shanghai nongye xue bao,1995,11(3):63-68. [6] 赵凌,王才林,宗寿余,等. 花粉管介导的转bar基因水稻植株的获得及其遗传[J]. 中国生物工程杂志,2003,23(8):92-95. [7] LI L C, QU R D, KOCHKO A,et al.. An improved transformation of embryogenic grape cell suspensions[J]. Plant Cell Report,1993,12:250-255. [8] 范钦,许新萍,黄小乐,等. 早籼稻培矮64S愈伤组织形成及植株再生[J]. 西北植物学报,2002,22(6):1 469-1 473. [9] 易自力,曹守云,王力,等. 提高农杆菌转化水稻频率的研究[J]. 遗传学报,2001,28(4):352-358. [10] 郑宏红,何锶洁,戴顺洪,等. 提高水稻基因枪转化效率的研究[J]. 生物工程学报,1996,(增):111-115. [11] 田文忠,IAN RANCE,ELUNIALAI,等. 提高籼稻愈伤组织再生频率的研究[J]. 遗传学报,1994,21(3):215-221. [12] 叶松青,储成才,曹守云,等. 提高水稻转化率几个因素的研究[J]. 遗传学报,2001,28(10):933-938. [13] 刁现民,陈振玲,段胜军,等. 影响谷子愈伤组织基因枪转化的因素[J]. 华北农学报,1999,14(3):31-36. [14] 易自力,王力,曹守云,等. 提高籼稻基因枪转化频率的研究[J]. 高技术通讯,2000,10(11):12-15. [15] 薛锐,曹守云,杨炜,等. 基因枪法转化籼稻有关因素的评价[J]. 中国水稻科学,1998,12(1):21-26. [16] LI L C, TIAN W Z, YANG M, et al.. Establishment of an efficient transformation system for rice(Oryza Sativa L.) [A].农业的未来-转基因技术研究[C]. 长沙,湖南科学技术出版社,2002. [17] 马炳田,朱祯,李平,等. 水稻遗传转化选择系统优化初探[J]. 西南农业学报,2003,16(1):28-31. [18] 唐祚舜,王象坤,李良才,等. 基因枪法转基因水稻中HPT基因稳定遗传[J]. 遗传学报,2000,27(1):26-33. [19] 陶利珍,凌定厚,张世平,等. 基因枪介导的籼稻遗传转化及外源基因在受体中的遗传研究[J]. 武汉植物学研究,1999,17(4):289-296. [20] CHENG Zai-quan,HUANG Xing-qi,RAY Wu,et al..Comparison of biolistic and agrobacterium-mediated transformation methods on transgene copy number and rearrangement frequency in rice[J]. Acta Botanica Sinica, 2001,43(8):826-833.
、我国每年的“禁毒宣传月”从6月3日开始,这是因为历史上的这一天一位著名的民族英雄开始领导人民销毁收缴的鸦片,取得了禁烟斗争的伟大胜利,这位民族英雄是
药品生物测定的发展趋势〔摘要〕 生物测定是经典的药品检测专业之一,现代仪器分析的广泛应用,给其带来了极大的挑战和机遇,面对目前的基本状况,阐明了生物测定专业在中药开发、新药研制、药物安全性评价及微生物限度检查方面的应用和发展趋势。 〔关键词〕 生物测定;药理;药品 药品是特殊商品,药品质量直接关系到用药者的安全和疗效。药品检测方法和检测水平随着制药工业的发展不断改进提高。由于现代科学技术的发展,相邻学科之间的相互渗透,分析化学的发展经历了三次巨大的变革,使分析化学发展成为以仪器分析为主的现代分析化学。面对生命科学中复杂的分离分析任务,发展了色谱分析方法。结构分析、价态分析、晶体分析等方面的研究又促进了光谱分析的发展。以计算机应用为主要标志的信息时代的来临,仪器分析迅速发展,为药物检测提供各种非常灵敏、准确而快速的分析方法〔1〕。生物测定受到了极大的挑战,其发展前景令我们从事药品生物测定工作者所关注。 1 药品生物的特点与业务范围 1.1 药品生物测定的定义与特点 药品生物测定(简称生测)是利用药品(或药品中的有害杂质)对生物(或离体器官及组织)所引起的反应来测定药品的含量或安全性的一种方法。 生测法的优点是测定的结果与医疗要求基本一致,能直接反映药品的效果或毒副作用,这是其他物理学方法或化学方法所不能达到的。因此,目前各国药典仍大都采用这一方法。 生测法的缺点是检验周期长,微生物有生长繁殖过程,动物有生理代谢过程,观察分析时间一般在2~7天,有些试验会更长。影响因素多,有生物差异性,也有系统操作误差和环境条件等造成的影响。用品用具、动物质量、仪器设备都会对结果产生影响〔2〕。所以,以生测主检的品种在中国药典中逐版减少。 1.2 药品生物测定的业务范围 中国药典是法定的药品标准,它将药品质量控制项目归为四类:性状、鉴别、检查和含量。生测的业务主要涉及到中西药品的检查类和含量类。 其中作为药品安全性检查项目最多,包括:无菌、热原、细菌内毒素、异常毒性、安全试验、急性全身毒性、过敏物质、刺激性、溶血、降压物质、微生物限度等。含量(或效价)测定包括:抗生素微生物检定法,胰岛素、硫酸鱼精蛋白、缩宫素、卵泡刺激素、黄体生成素、升压素等生物检定法。 2 药品生物测定的现状 由于现代化检测仪器的广泛应用,药品生物测定的品种和范围,方法和要求,也发生了很大变化。 2.1 品种和范围的变化 抗生素的含量测定,最初大部分抗生素用微生物法测定含量。随着制药工业发展,提纯方法不断改进,有效组分更加明确,许多品种检测方法不断改为仪器测定和化学测定。例如:2000年版中国药典收载约219个抗生素品种,其中有15个原料药及其制剂从1995年版的化学法和微生物法改为高效液相色谱法(简称HPLC),使该法达到97种,微生物法仅有24个,其中9个品种是新增加的。有人预计本世纪初,HPLC法会发展成为中国药典使用频率最高的一种仪器分析法〔3〕。规定取消抗生素过期检验,抗生素微生物效价测定的业务工作量更是明显减少。 药品注射剂的热源检查。1942年美国首先将家兔法收入药典,相继世界各国药典均规定用该法。中国药典从1953年开始收载。自1973年以来,鲎试剂被证明是一种检测细菌内毒素(热原)存在的灵敏试剂。用鲎试剂要比家兔试验迅速、经济,所需样品量少,操作过程工作量小,每天可进行许多样品检测。1980年美国药典20版首载“细菌内毒素检查法”,1985年USP21版收载5种注射用水及40种放射性药品。1991年11月执行的USP22版第五增补版公布了185种药品删除家兔法,用细菌内毒素检查法代替。1995年USP23版注射剂的热源项几乎都被细菌内毒素检查法代替〔4〕。 我国从20世纪70年代开始研究制备鲎试剂,1988年卫生部颁布细菌内毒素检查法,1993年中国药典第二增补本收载该法,但未涉及任何品种,1995年中国药典二部正式收载,并规定了注射用水、氯化钠注射液和二十多种放射性药品并删除热源检查,以内毒素代替。2000年版中国药典进一步扩大到68种。预计2005年版中国药典还要继续增加品种,热源项都将被内毒素代替。动物试验改为生化试验。 2.2 实验动物 生测离不开实验动物,在实验中,为了减少生物差异,提高动物反应敏感性,以最少的动物达到最满意的结果。国家非常重视实验动物,1988年国务院颁布了《实验动物管理条件》,对实验动物的饲管、管理、使用等做出了明确规定,实行达标认证制度,严格管理。按微生物控制程度把实验动物分为四级:普通动物、清洁动物、无特殊病原体动物和无菌动物〔5〕。一般动物实验必须达到清洁动物标准,种系清楚,不杂乱,无规定指出的疾病。动物级别越高,饲养管理条件越严,设施投资越大。实验动物是实验研究的活试剂,既要有纯度,也要有数量,背景明确,来源清楚,符合要求才能使用。(随着药品纯度的提高,凡是有准确的化学和物理方法或细胞学方法能取代动物实验,进行药品和生物制品质量检测,应尽量采用,以减少动物的使用。) 2.3 药品生物测定在方法上的改进与变化 为了缩短操作时间,减少实验误差,近年来生测方面也研制并投入使用了部分仪器设备,如:抗生素抑菌圈测定仪、微机热原测温仪、集菌仪、细菌数测定仪等,减轻了工作强度,提高了工作效率,检测结果更加准确可靠。 3 药品生物测定的发展趋势 生测作为经典方法沿用至今,表明它有其他方法不能替代的特点,在药品检验中发挥了重要作用。不少老产品改为其他方法控制质量,也会不断有新产品离不开生测法,我们应当充分发挥它的优点,尽量克服它的不足,开拓新的业务范围。3.1 微生物限度检查工作量大 为了控制药品染菌限度,1975年美国药典19版首载微生物限度检查,1980年英国药典收载,我国在1990年由卫生部颁布了药品卫生标准及检验方法,1995年版中国药典正式收载〔6〕。2000年版中国药典按剂型规定了微生物限度标准,执行范围除注射剂和中药饮片外几乎包括中西药的所有制剂和原料。该项检查成为药典品种适用最多的检查项目,占当前地市级药品检验所生测室业务工作量的80%以上。在这项检查中,有大量的业务技术需要我们进一步研究,改进试验条件,使数据准确,探讨快速检测的新方法。药包材的检查,国家药监局已经发布试行标准,业务范围将更加扩大,这是我们进一步做好工作,努力探讨研究的新领域。 3.2 药品生物测定在中药开发中的作用 我国是中药王国,2000年版中国药典一部共收载920种,其中中成药398种。有含量测定的157种,仅占总数的17%,中药成分多,杂质和干扰物质很多。复方制剂,尤其大复方制剂专属性的检出处方中所含药材很困难,有大量的研究工作需要做。中成药中的杂质如重金属、残留农药等达到一定水平会产生毒副作用,影响药物安全性〔7〕。要让中药制剂打进国际市场,我们在检查类的控制项目和含量类的方法探讨方面有大量工作要做,生物测定可以在毒理、药理方面进行研究、探讨,逐步完善质量控制标准,提高制剂质量发挥更大的作用。 3.3 新药研制开发与安全性评价 新药研制开发是多学科合作的系统工程。在获得一个具有生物活性的化合物后,研究开发组织者要在生物医学领域进行药物评价研究,首先必须组织药理学、毒理学、病理学、兽医学、遗传学、生物化学、药代动力学方面的专家进行合作研究,按药物非临床研究管理规范GLP进行管理。组织药理、毒理(包括一般毒理和特殊毒理)、病理、药代动力学和毒代动力学、药物分析、临床化学、实验动物、生物统计、质量保证等部门有关人员进行讨论,分阶段做出评价〔8〕。生测在这方面可以参加开发研究或进行技术指导。 药物动力学研究,通常需要从动物体液或组织器官匀浆中分离、鉴定和检测代谢后的原粉及其他代谢产物。但是,将服药动物按指定时间间隔处死,测定随时间变化的血药浓度,不仅动物用量大,而且常因动物个体差异无法得到可靠结果,也无法在同一动物重复实验确证。处死动物的代谢产物也只能反映被处死时的结果,无法了解药物代谢的全过程。有学者报道,采用微透析取样技术,可在活的动物不同部位重复取样,用微柱液相色谱〔9〕或毛细管电泳〔10〕进行分析,测定药物的吸收、分布、代谢和排泄情况〔11〕。 自动进取样装置和计算机工作站应用于药理实验的探讨,使药品生物测定趋向微量、灵敏、专属、简便、快速和自动化的方向发展。 综上所述,药品生物测定是药物分析的重要组成部分,是不可缺的检测专业,现代仪器的大量使用,不仅不会影响其发展,而是如虎添翼,让药品生物测定展示出新的前景。 〔参考文献〕 1 倪坤义,田颂九,丁丽霞.21世纪药物分析学的发展趋势.中国药学杂志,2000,35(12):798. 2 张治锬.抗生素药品检验.北京:人民卫生出版社,1991,12-20. 3 田颂九,丁丽霞,田洁.国内外药典中质量标准的发展趋势简述.中国药学杂志,1999,34(11):781. 4 吴伟洪.鲎与鲎试验法论文汇编(三).厦门鲎试剂厂,1996,18. 5 施新猷.医学实验动物学.西安:陕西科学技术出版社,1989,32. 6 马绪荣,苏德模.药品微生物学检验手册.北京:科学出版社,2000,59. 7 李真,龚培力,曾繁典.药物杂质及其对安全性的影响.中国临床药学杂志,2001,17(6):452. 8 刘昌孝.美国新药研究开展与药物安全性评价研究概况.中国药学杂志,1999,34(11):785. 9 Chen AQ,Lunte CE.Microdialysis sampling coupled on-line to fast microbore liquid chromatography.J Chromatogr,1995,691(1-2):29. 10 Qanson LA.Capillary electrophoresis and microdialysis:current technology and applications.J Chromatogr B,1997,697:89. 11 Yang H,Wang Q,Elmquist WF,et al.The desin and validation of a novel intravenous microdialysis probe:application to fluconazole pharmacokinetics in the freelymoving rat model.Pharm Res,1997,14
生物制药参考文献黑海参多糖对β-淀粉样蛋白诱导的皮 刺参凝集素的分离纯化及其性质 玉足海参酸性粘多糖(抗栓胶囊)抗血 梅花参化学成分研究(I) 二色桌片参的化学成分研究I.二色桌 糙海参中三萜皂苷活性成分的研究 海洋生物制药 什么是生物开发 鱼类三倍体培育方法及现状 钝顶螺旋藻中蛋白质结合硒的研究 海胆生物习性 美味河豚鱼 海湾扇贝及其生活习性,生殖习性 黑乳海参中两个新的三萜皂苷 四种药物对刺参幼参毒性的初步研究 常用抗菌药物和消毒剂对刺参幼体的!
1.[期刊论文]刍议生物工程技术在制药业中的应用
期刊:《化工中间体》 | 2020 年第 006 期
关键词:生物工程技术;制药业;改善路径
链接:
---------------------------------------------------------------------------------------------------
2.[期刊论文]上海应用技术大学举行上海绿色氟代制药工程技术研究中心建设启动仪式
期刊:《应用技术学报》 | 2020 年第 002 期
摘要:6月10日,上海应用技术大学举行上海绿色氟代制药工程技术研究中心建设启动仪式。中科院上海有机所林国强院士、复旦大学陈芬儿院士、浙江大学任其龙院士、上海市科委研发基地建设与管理处处长仲东亭出席仪式,校党委书记郭庆松出席并讲话,校长柯勤飞致辞,校党委副书记、副校长王瑛主持。相关高校及科研院所的氟化学专家学者、上海绿色氟代制药工程技术研究中心相关合作企业的代表参加仪式。
关键词:应用技术大学;工程技术研究中心;校党委副书记;氟化学;校党委书记;上海市科委;副校长;氟代
链接:
---------------------------------------------------------------------------------------------------
3.[期刊论文]关于西药制药工程技术及设备的探讨
期刊:《科学与财富》 | 2020 年第 014 期
摘要:西药是医疗用药中常见的成分分类药物,相比较传统的中药成分来说,西药的治疗效果更快,而且用药方式更为简单,正是因为具有这样的优势,西药很快被广泛应用到国家医疗用药中.随着国家医药事业的不断进步以及西药的普及应用,西药制药工程取得了很大的进展,制药技术以及设备也在不断更新,极大促进了西药领域的发展.然而近年来西药使用失误和病毒进化产生一定抗药性等情况的产生,使西药的效果降低不少.为此,西药制药技术以及设备等问题的探讨成为西药制药研发人员的主要研究目标.
关键词:西药;制药工程;技术;设备
链接:
---------------------------------------------------------------------------------------------------
4.[期刊论文]生物工程技术在制药业中的应用研究
期刊:《中国科技投资》 | 2020 年第 036 期
摘要:生物工程技术简称生物技术,具体指将现代科学技术与先进科学理念进行结合,对生物原料进行加工或者对生物体进行改造,从而生产出人们需要的产品.生物工程技术包含很多种类,如基因工程、细胞工程、发酵工程及酶工程等,这些生物技术在制药行业的研究领域中有着十分广阔的发展前景,可以帮助制药行业研发和改造更多对人们健康有利的新产品.
关键词:生物工程技术;制药行业;应用;发展
链接:
---------------------------------------------------------------------------------------------------
5.[期刊论文]简述中药制药工程技术在儿科中成药新药研究中的应用
期刊:《中国科技投资》 | 2019 年第 009 期
摘要:现如今,我国中药制药工程技术仍然处于发展中阶段,中药制药工程技术性仍然存在着很多需要解决的问题,这些都是制药行业发展过程中必须要考虑的重点内容.一定要做到及时找到问题,若不进行及时的纠正,会对药品生产质量以及药品生产率造成一定的影响.中药制药的发展速度是特别快的,小儿应用的中成药现状却令人堪,小儿用药多以中药为辅,可见中成药的应用是一个薄弱的环节.本次研究的过程中,我们对制药工程技术在儿科中成药新药研究中的应用主要课题展开详细的研究探讨,分析出有针对性的建议.
关键词:中药制药;工程技术;儿科;中药制药
链接: