工学论文开题报告
工学是理工科内的一大分支,工学的课程带有很强的可操作性和专业性,下面就是我为您收集整理的工学论文开题报告的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!
毕业设计题目:年产4200吨环氧氯丙烷车间氯丙烯合成工段工艺设计
指导教师 :
院 系: 科亚学院
专业班级 : 科化工0401班
学 号:
姓 名:
日 期: XX年 3月 7日
1、环氧氯丙烷的物理、化学性质
环氧氯丙烷(ec)英文名:3—chloro—1,2—epoxypropane;epichlorohydrin。 分子式:c3h5clo ,分子量:92。52 , 熔点—25。6℃,沸点117。9℃,相对密度(水=1):1。18(20℃),相对密度(空气=1): 3。29 ,饱和蒸汽压 (kpa):1。8(20℃) ,自燃点415 ℃,折射率(nd20)1。438。 微溶于水,可混溶于醇、醚、4氯化碳、苯。无色油状液体,有氯仿样刺激气味。用于制环氧树脂,也是1种含氧物质的稳定剂和化学中间体 易燃其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。
2、环氧氯丙烷的生产原料及主要产品
环氧氯丙烷是1种重要的有机化工原料和精细化工产品,用途10分广泛。以它为原料制得的环氧树脂具有粘结性强,耐化学介质腐蚀、收缩率低、化学稳定性好、抗冲击强度高以及介电性能优异等特点,在涂料、胶粘剂、增强材料、浇铸材料和电子层压制品等行业具有广泛的应用。此外,环氧氯丙烷还可用于合成甘油、玻璃钢、电绝缘品、表面活性剂、医药、农药、涂料、胶料、离子交换树脂、增塑剂、(缩)水甘油衍生物、氯醇橡胶等多种产品,用作纤维素酯、树脂、纤维素醚的溶剂,用于生产化学稳定剂、化工染料和水处理剂等。
1原料:丙烯
丙烯的化学结构式:ch2=chch2oh 。物理性质::无色透明液体,熔点:—129,沸点:97。1,闪点:28,密度(20):0。854,折光率:1。4135。。
用途::丙烯醇是医药,农药和香料的中间体。主要的衍生物及其用途为:用于合成环氧氯丙烷、甘油、1,4—丁2醇以及烯丙基酮,生产增塑剂和工程塑料等重要有机合成原料。此外,其碳酸盐可以做光学树脂、安全玻璃和显示屏,其醚可以做聚合物的增黏剂等。
2主要产品:环氧树脂
目前我国的环氧氯丙烷主要用于生产环氧树脂,其消费比例为环氧树脂占85%,合成甘油占7%,氯醇橡胶占2%,其他如溶剂、稳定剂、表面活性剂、阻燃剂、油田化学品、水处理剂等占6%
3、环氧氯丙烷工艺生产方法及选择
目前,工业上环氧氯丙烷的生产方法主要有丙烯高温氯化法和乙酸丙烯酯法两种。
丙烯高温氯化法是工业上生产环氧氯丙烷的经典方法,由美国shell公司于1948年首次开发成功并应用于工业化生产。目前,世界上90%以上的环氧氯丙烷采用此法进行生产。其工艺过程主要包括丙烯高温氯化制氯丙烯,氯丙烯与次氯酸化合成2氯丙醇,2氯丙醇皂化合成环氧氯丙烷3个反应单元。
4、 工艺流程叙述
(1)丙烯高温氯化法:
(1)丙烯高温氯化制氯丙烯
丙烯与氯气经干燥、预热后以摩尔比4~5:1混合进入高温氯化反应器,短时间(约3 s)内进行反应,生成氯丙烯和氯化氢气体。精制后得氯丙烯产品,同时副产d—d混剂(1,2—2氯丙烷和1,3—2氯丙烯),氯化氢气体经水吸收后得到工业盐酸。
ch2=chch2 + cl2 →ch2=chch2cl +hcl
(2)氯丙烯次氯酸化合成2氯丙醇
氯气在水中生成次氯酸(或采用介质叔丁醇和氯气在naoh溶液中反应生成叔丁基次氯酸盐,该盐水解生成次氯酸,叔丁醇循环使用),次氯酸与氯丙烯反应生成2氯丙醇(过程中2氯丙醇浓度1般控制在4%左右)。
2ch2=chch2cl +2hocl→ clch2chclch2oh + clch2chohch2cl
2,3—2氯丙醇,70%) (1,3—2氯丙醇,30%)
(3)2氯丙醇皂化合成环氧氯丙烷
2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。
(3)2氯丙醇皂化合成环氧氯丙烷
2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。
clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→
clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→
丙烯高温氯化法的特点是生产过程灵活,工艺成熟,操作稳定,除了生产环氧氯丙烷外,还可生产甘油、氯丙烯等重要的有机合成中间体,副产d—d混剂(1,3—2氯丙烯和1,2—2氯丙烷)也是合成农药的重要中间体。缺点是原料氯气引起的设备腐蚀严重,对丙烯纯度和反应器的材质要求高,能耗大,氯耗量高,副产物多,产品收率低。生产过程产生的含氯化钙和有机氯化物污水量大,处理费用高,清焦周期短。
(2)乙酸丙烯酯法
前苏联科学院与日本昭和电工均开发了利用乙酸丙烯酯为原料生产环氧氯丙烷的生产工艺。前苏联是采用先氯化后水解工艺,昭和电工则采用先水解后氯化工艺。其工艺过程主要包括合成乙酸丙烯酯,乙酸丙烯酯水解制烯丙醇,合成2氯丙醇以及2氯丙醇皂化生成环氧氯丙烷4个反应单元。
(1)在钯和助催化剂作用下,丙烯与氧在温度160~180 ℃、压力0。5~1。0 mpa,乙酸存在下反应生成乙酸丙烯酯。
ch2=chch2+ 1/2o2 + ch3cooh→ ch2=chch2ococh3 +h2o
(2)在温度60~80 ℃、压力0。1~1。0 mpa下,以强酸性阳离子交换树脂为催化剂,乙酸丙烯酯经水解反应生成烯丙醇。
ch2=chch2ococh3 +h2o→ ch2=chch2oh +ch3cooh
(3)在温度0~10 ℃,压力0。1~0。3 mpa条件下,烯丙醇与氯通过加成反应生成2氯丙醇。
ch2=chch2oh + cl2→ ch2clchclch2oh
(4)2氯丙醇与氢氧化钙发生皂化反应生成环氧氯丙烷。
ch2clchclch2oh+ 1/2ca(oh)2→ ch2— chch2cl + 1/2cacl2 +h2o
与传统的丙烯高温氯化法相比较,乙酸丙烯酯法具有以下优点:(1)避免了高温氯化反应,反应条件温和,易于控制,不结焦、操作稳定,丙烯、氢氧化钙和氯气的用量大大减少,反应副产物和含氯化钙废水的排放量也大大减少。(2)开发了丙烯醇的氯化加成反应系统,成功地将氧引入环氧化物中,首次实现了由氧氧化代替氯氧化的技术,减少了醚化副反应,提高了系统的收率。(3)工艺过程无副产盐酸产生。(4)可以较容易获得目前技术还不能得到的高纯度烯丙醇。主要缺点是工艺流程长,催化剂寿命短,投资费用相对较高。
5、安全环保措施
(1)燃烧爆炸危险性:
危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。易燃性(红色):3 反应活性(黄色):2
灭火方法:泡沫、2氧化碳、干粉、砂土。消防器具(包括scba)不能提供足够有效的防护。若不小心接触,立即撤离现场,隔离器具,对人员彻底清污。高温下能发生自反应,阻塞安全阀,导致罐体爆炸。蒸气能扩散到远处,遇点火源着火,并引起回燃。封闭区域内的蒸气遇火能爆炸。如果该物质或被污染的流体进入水路,通知有潜在水体污染的下游用户。
(2)包装与储运
储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过 30℃。防止阳光直射。包装要求密封,不可与空气接触。应与氧化剂、酸类、碱类分开存放。储存间内的照明、通风等设施应采用防爆型。罐储时要有防火防爆技术措施。禁止使用易产生火花的机械设备和工具。搬运时要轻装轻卸,防止包装及容器损坏。 erg指南:131 erg指南分类:易燃液体—有毒的
(3)毒性危害
接触限值:中国mac:1mg/m3[皮] 前苏联mac:1mg/m3 美国tlv—twa:acgih 2ppm,7。6mg/m3 美国tlv—stel:未制订标准。
蒸气对呼吸道有强烈刺激性。反复和长时间吸入能引起肺、肝和肾损害。高浓度吸入致中枢神经系统抑制可致死。蒸气对眼有强烈刺激性,液体可致眼灼伤。皮肤直接接触液体可致灼伤。口服引起肝、肾损害,可致死。慢性中毒:长期少量吸入可出现神经衰弱综合征和周围神经病变。 iarc评价:2a组,可疑人类致癌物;动物证据充分 ntp:可疑人类致癌物 idlh:75ppm,潜在致癌物嗅阈:0。934ppm osha:表z—1空气污染物 niosh标准文件:niosh 76—206 健康危害(蓝色):
(4)防护措施
密闭操作,全面排风。空气中浓度超标时,戴面具式呼吸器。紧急事态抢救或撤离时,建议佩戴自给式呼吸器。戴化学安全防护眼镜。穿紧袖工作服,长筒胶鞋。戴防化学品手套。工作后,淋浴更衣。保持良好的卫生习惯。防止皮肤和粘膜的损害。
(5)泄漏处置:
疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。应急处理人员戴自给式呼吸器,穿防护服。不要直接接触泄漏物,在确保安全情况下堵漏。喷水雾可减少蒸发。用砂土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。
6、当前生产中存在的问题及建议
(1) 积极发展环氧氯丙烷下游产品,带动环氧氯丙烷的生产与发展今后几年,世界主要国家和地区的环氧氯丙烷下游各消费领域依然会发展较快,各地区的环氧氯丙烷的生产主要是自用,估计会有少量出口。今后几年我国的汽车工业,住宅建设,电子工业等领域将有1个高速发展的阶段,随着我国西部大开发,将有大规模的基础设施投入建设,因此,今后几年,我国的环氧氯丙烷的下游产品,如:环氧树脂、合成甘油等的市场需求量将会很大,美国、西欧及日本主要
一、课题的依据和意义:
1、依据:时尚是有艺术品位的生活,时知务也,尚在品质!时尚一族的生活是艺术化的,所追求的生活随着时间的变化也会不断的提高的,但不变的是一直在追求高品质的生活。为了满足这一人群的需要,时尚产品也在不断的更新,向更高的品质发展。
概念车可以理解为未来汽车,汽车设计师利用概念车向人们展示新颖、独特、超前的构思,反映着人类对先进汽车的梦想与追求。概念车往往只是处在创意、试验阶段,也许永不投产。与大批量生产的'商品车不同,每一辆概念车都可以摆脱生产制造工艺的束缚,尽情地夸张地展示自己的独特魅力。时尚一族这个人群在未来的社会中,随着生活水平和精神追求的提高将会愈来愈庞大。为了满足这一人群的旅游出行进行交通设计是又必要性的。
概念车的最大功能就是发现与引导这些变化的方向。肯·奥库亚马说过世界在变,汽车在变,在今后的10年到20年内会变得很剧烈。交通工具也要随着这种变化不管更新、改变。未来概念车的设计可以推动我们的交通发展,解决很多我们生活中现有的一些问题,使我们未来的出行、旅游更加方便。
天马行空、随心所欲在设计中不再是不切实际,对于概念车的设计天马行空的创意和随心所欲的想象已经成为一种珍贵财富。舞动的概念、迸发的理念塑造了经典概念车的楷模。概念车体现了汽车设计师的灵感和风
格,概念车甚至不受量产车的条件限制,可任意采用未经充分验证的新工艺、新材料和新设计,充分发挥想象力和创造力。
针对时尚一族的概念车设计需要打造出时尚、艺术、高品位的产品,因为品质与美是要艺术的手法去塑造,艺术提高品位,艺术是脱俗的,出类拔萃的;时尚是高尚的,时尚离不开艺术,艺术可以创造时尚。
2、意义:时尚赋予人们不同的内涵和神韵,带给人的是一种愉悦的心情和优雅、纯粹与不凡感受,能体现不凡的生活品味,精致、展露个性。人类对时尚的追求,在精神上的或是物质上的追求都促进了人类生活。概念车是汽车中内容最丰富、最深刻、最前卫、最能代表世界汽车科技发展和设计水平的汽车。概念车是时代的最新汽车科技成果,代表着未来汽车的发展方向,因此它展示的作用和意义很大,能够给人以启发并促进相互借鉴学习。因为概念车有超前的构思,体现了独特的创意,并应用了最新科技成果,所以它的鉴赏价值极高。概念车也是艺术性最强、最具吸引力的汽车。
针对时尚一族未来型概念车的设计,将会改变未来生活的方式,改变时尚潮流的走向,引领未来生活中交通方式的发展方向。
二、国内外研究概况及发展趋势:
1、国内概况:中国概念车设计的起步较晚,1999年在上海国际车展,中国以吉祥动物麒麟为名的第一款概念车吸引了世人的目光,这是第一辆由中国人设计,在中国制造并面向中国市场的经济型汽车。稚嫩的车型,俗气的颜色,平平的参数是人不得不感慨中国汽车设计的落后。但是他最
大的意义就是唤起了中国概念车的设计。
2003年的“鲲鹏”是中国感念车的一个亮点。终于有了对外形和颜色的思考,但是不得不说造型依然很丑。虽然不足还有很多,但是“鲲鹏”对所在微型车细分领域的全新探索,演练了低成本构造,泛亚以每两年一辆概念车的速度成长,这使得中国汽车厂商在目睹这一个又一个的中国概念车之后开始醒悟,中国需要概念车的设计。
2、国外概况:国外概念车的设计尤其是欧美国家的概念车设计较为成熟,不论技术上、造型上、色彩搭配上、还是使用方式等创新都处在世界的前端。
发展趋势:
趋势一:传统车型分类被打破交叉车型成趋势。如今越来越多的车型打出了交叉车型的概念。如大众概念车ConceptA亮点:运动轿车与SUV的结合;斯柯达概念车Yeti亮点:SUV、轿车、旅行车等集于一身。趋势二:传统能源殆尽新能源汽车代替。能源问题是目前汽车技术的最大课题,其也直接影响到节能、环保等一系列技术。如雪佛兰Sequel氢燃料电池车亮点:最先进的氢燃料电池车型;福特Reflex柴电混合动力概念车亮点:利用太阳能的柴油电力混合动力。
趋势三:打破汽车结构的未来智能行走机器。设计师们不满足于这些传统汽车概念,他们需要打破常规的、面向未来的智能行走机器。如丰田全新未来概念车Fine—T亮点:智能交通下的未来车。
趋势四:个性化的突破设计。外形设计的突破性,是一款概念车的基
本要求。如雷诺Zoe概念车亮点:不对称的车门设计;福特iosis概念车亮点:奠定福特未来风格的雕塑感设计
三、研究内容及基本思路:
1、研究内容:
造型上,整车为流线型设计,考虑空气力学,要有效地减小风阻,车体设计时尚前卫,动感活力,遵循简约主义的同时又要凸显个性。整车将采用仿生学进行形态设计,将会运用一些中国传统元素穿插在设计之中。把中国风贯彻在在设计中,要体现原创性。
结构上,整车为两厢设计,发动机中置,车门为双开门上旋打开方式。车型初步定为跑车类汽车。
材料上,材料主要以环保型材料取代钢铁和塑料,可能采用碳纤维,不过更多的将会使用采用铝或者钢这样的常见材料。
色彩上,定位人群为时尚一族,因此选用较亮丽的彩色,多种配色方案。
人机上,考虑人与机器的关系,遵循人机工程学。
2、基本思路:
打造一款时尚的未来型概念跑车,形态上拥有张力,在年轻的90后上寻找灵感,根据时尚的90后们的喜好来进行设计。收集一些相关的资料,研究90后时尚人群中的习惯和遇到的问题,这些研究在设计中得以体现。结构设计会在现有的一些汽车结构基础上进行改进,尽量保持楔形车型。
四、进度安排:
1、前期阶段(2011.09.01—10.13):
1)09.01—10.12制定工作计划,指导教师资格审定;
2)10月13日下午召开毕业设计(论文)动员大会(全院);
3)10.13—10.16指导老师制定毕业设计题目,学生进行选题;指导老师与学生双向选择,题目
上要求做到一人一题。下达具体任务书;
2、中期阶段(2011.10.13—寒假前)
1)10.17—10.30开题报告,毕业设计调研分析及材料整理;前期发散草图;
2)11.01—11.31课题研究报告,毕业设计前期方案、方案初选及深入;
3)12.01—12.17方案定稿,深入草图,毕业论文前三章初稿。
4)2011年12月18日学院毕业设计(论文)中期检查;
5)12.18—寒假放假毕业设计建模、渲染、版面,寒假放假前集中检查;
一种四官能度环氧树脂的合成 高效过滤材料性能的研究 浅谈渗碳,氮化技术的发展与 高强高耐蚀性钎焊铝合金材料 碳锡复合多孔材料的制备及储 炭石墨复合材料的制备及性能 预制件的制备及其性能的研究 高氮微合金钢轧制组织与性能 等等 参考地址:
摘 要:新酚树脂是通过苯酚和芳烷基醚的缩合反应而产生的一种高分子化合物。其具有高强度、粘结性强、耐高温,高绝缘等最理想的新酚树脂结构材料,而新酚树脂一般用于金刚石制品和砂轮片制造等行业,且它的样品能在250℃以下长期使用,所以新酚树脂才具有较好的力学性能及耐热性能。同时新酚树脂还具有化学稳定性强、制品尺寸稳定、硬化时收缩小、耐高温等特点。 关键词:新酚树脂 环氧化新酚树脂 xylok 中图分类号:TQ323 文献标识码:A 文章编号:1672-3791(2012)05(b)-0120-011 实验 1.1?原料 (1)对苯二甲醇(AR);(2)苯酚(AR);(3)对甲苯磺酸(AR)。 1.2?实验装置及仪器 实验时使用的仪器与装置一般有温度计、球形冷凝管、N2、电加热套、1000mL三颈烧瓶以及真空系统。 1.3?新酚树脂的制备方法(如图1) 在一个带有搅拌器,带水(出水)装置,球形冷凝器,温度计的500mL三颈烧瓶中,加入一定量的苯酚和对苯二甲醇,加热熔融直至二者成一均相溶液为止。然后调节反应物温度,在不超过70℃~75℃的范围内,加入0.2%~0.5%(以对苯二甲醇加入量的重量百分数来计算)的催化剂,继续缓慢升温,当内温度达92℃以上时,逐步开始有水逸出,再经60min~120min,此时反应物温度已达140℃~160℃,水已基本出完,继续恒温一段时间后停止反应,水洗至中性。 将冷凝系统改换真空系统,进行减压蒸馏,并在温度为160℃~180℃,水银压差为20mmHg~40mmHg下,保持40min~50min,直到没有气泡为止,然后趁热将物料倾于铝盒内中,得到浅色透明固体。 2 新酚树脂 以苯酚,对苯二甲醇为单体,在对甲苯磺酸的催化作用下,于70℃~170℃反应,甲苯带水3个小时使反应完全,减压蒸馏后即可得到结构相似于英国xylok225的,可长期贮存的新酚预聚体。 3 新酚环氧树脂的合成 3.1?原料 (1)试剂:四丁基溴化铵(AR)、环氧氯丙烷(AR)、氢氧化钠(AR)、甲苯(AR)、锌(AR);(2)试验仪器:电加热套,电动搅拌器,1000mL三颈烧瓶,温度计,球形冷凝管回流装置,125mL滴液漏斗,分水器,氮气真空系统,蒸馏装置 3.2?新酚环氧树脂的制备方法[3] (1)在装有搅拌器,温度计,球形冷凝管的内有上述制备的新酚树脂的1000mL三口烧瓶中加入一定量环氧氯丙烷、锌粉、四丁基溴化铵,搅拌,加热,通氮气,升温至90℃后反应6个小时,并且要控温在90℃~100℃之间。 (2)加入50%NaOH恒温缓慢滴加1个小时,加入大于40mL甲苯带水,带水2个小时,继续反应1个小时后停止,而后吸滤除去锌粉。 (3)在80℃~90℃滴加20%NaOH继续精制2个小时,然后水洗三次至中性。 (4)减压蒸馏,完全出去馏分,而后趁热将产物倒出至铝盒内。冷却后得到浅黄色的硬脆的环氧树脂。 4 性能测试及表征 4.1?表征仪器及测试方法 (1)红外色谱(FTIR)。 红外测试使用德国Bruker公司Vector-22型红外光谱仪,扫描范围4000cm-1~400cm-1。扫描次数128次,分辨率4cm-1。粉末样品,利用KBr压片来表征。 (2)热重分析(TGA)如下。 利用Pyris 1 TGA(Perkin Elmer)热分析仪,温度范围80℃~700℃,升温速度10℃min-1,氮气气氛下进行热性能测试。在测试前需要将样品在150℃下充分干燥20min,以除去样品中残留的水份和溶剂。 新酚环氧树脂环氧值或环氧当量的测定盐酸-丙酮法实验试剂如下。 丙酮(AR)、邻苯二甲酸氢钾(AR)、氢氧化钠(AR)、无水乙醇(AR)、盐酸(AR)、甲基红(AR)。 (1)溶液。 ①0.1mol/L氢氧化钠乙醇溶液用干燥完全的邻苯二甲酸氢钾标定。 ②盐酸——?丙酮溶液1mL浓盐酸溶于50mL丙酮中混匀,现用现配。 ③0.1%甲基红指示剂,称取1g甲基红溶于60mL95%乙醇中,以蒸馏水稀释至1000mL。 (2)测定(标定)。 ①称取0.5g新酚环氧树脂,要求精确,到20mL盐酸—丙酮溶液中,加盖摇匀。完全溶解后,在室温下放置30min,加入15mL丙酮溶解后,再加20mL盐酸—丙酮溶液摇匀放置。 ②加甲基红指示剂3滴,用0.1mol/L氢氧化钠-乙醇溶液滴定到红色退去成为黄色时为终点。 ③同样操作,不加树脂做两组空白试验。 5 结果与讨论 新酚环氧树脂的环氧值测定; 邻苯二甲酸氢钾——?1.1008g;氢氧化钠用量35.91mL。 因而:氢氧化钠浓度1.1008/204.23/0.03591=0.1501mol/L。 空白:29.91mL。 第一次:树脂质量:0.5504g,耗16.41mL,环氧值——?0.368。 第二次:树脂质量:0.5397g,耗16.59mL,环氧值——0.370。 则:新酚环氧树脂的环氧值是0.369。 6 结语 (1)新酚树脂以对苯二甲醇与苯酚为原料,在75℃时加入对甲苯磺酸作催化剂,反应3个小时可得到新酚预聚体。 (2)制备新酚环氧树脂条件:以四丁基溴化胺为催化剂,在温度是80℃,环氧氯丙烷:对苯二甲醇=10∶1,反应7个小时,再经过粗制,精制,合成出高品质的环氧氯树脂。 (3)粗制时碱的用量的最佳比例是n(NaOH)∶n(树脂)=1.1∶1,浓度选择46%,而精制时碱的用量是树脂中有机氯含量当量的1~10倍,浓度最好是10%~16%。控制温度同为80℃~90℃。 (4)粗制滴碱所需时间一般以4h为宜,精制加碱时间一般约为1h。 (5)水洗4次,减压蒸馏的时,尽量的蒸净馏分。 参考文献 [1] 于萌,王涛,含双环戊二烯结构的环氧树脂的制备及性能的研究[D].北京化工大学硕士毕业论文,4,5,6,15. [2] Albright & Wilson ltd.,商品介绍“xylok” a)xylok231 b)xlok235C. xylok235 c)xylok236. [3] Q/SH019-06-005(2)-92,CYD型环氧树脂环氧当量的测定.
环氧树脂是一种无定形黏稠液体,加热呈塑性,没有明显的熔点,受热变软,逐渐熔化而发黏,不溶于水,本身不会硬化,因此它几乎没有单独的使用价值,只有和固化剂反应生成三维网状结构的不溶不熔聚合物才有应用价值。当加入一定量固化剂后,就逐渐固化,形成性能各异的化学物质,因此,必须加入固化剂,组成配方树脂,并且在一定条件下进行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正使用价值的环氧材料。工程中常用胺类固化剂:乙二胺、二乙烯多胺、多乙烯多胺等。
硅烷交联剂的危害
中国知网也好!万方数据也好都有例子!甚至百度文库都有!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章通读一些相关资料,对这方面的内容有个大概的了解!参照你们学校的论文的格式,列出提纲,补充内容!实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了!最后,到万方等地进行检测,将扫红部分进行再次修改!祝你顺利完成论文!
环氧树脂有多种类别,以双酚A型为例:双酚A型环氧树脂的固化原理在环氧树脂的结构中有羟基(〉CH—OH)、醚基(—O—)和极为活泼的环氧基存在,羟基和醚基有高度的极性,使环氧分子与相邻界面产生了较强的分子间作用力,而环氧基团则与介质表面(特别是金属表面)的游离键起反应,形成化学键。因而,环氧树脂具有很高的黏合力,用途很广,商业上被称作“万能胶“。此外,环氧树脂还可做涂料、浇铸、浸渍及模具等用途。但是,环氧树脂在未固化前是呈热塑性的线型结构,使用时必须加入固化剂,固化剂与环氧树脂的环氧基等反应,变成网状结构的大分子 ,成为不溶且不熔的热固性成品。环氧树脂在固化前相对分子质量都不高,只有通过固化才能形成体形高分子。环氧树脂的固化要借助固化剂,固化剂的种类很多,主要有多元胺和多元酸,他们的分子中都含有活波氢原子,其中用得最多的是液态多元胺类,如二亚乙基三胺和三乙胺等。环氧树脂在室温下固化时,还常常需要加些促进剂(如多元硫醇),已达到快速固化的效果。 固化剂的选择与环氧树脂的固化温度有关,在通常温度下固化一般用多元胺和多元硫胺等,而在较高温度下固化一般选用酸酐和多元酸为固化剂。不同的固化剂,其交联反应也不同。合成原理双酚A型环氧树脂是由双酚A和环氧氯丙烷在碱性催化剂(通常用NaOH)作用下缩聚而成。 合成方法 (1)液态双酚A型环氧树脂的合成方法归纳起来大致有两种:一步法和二步法。一步法又可分为一次加碱法和二次加碱法。二步法又可分为间歇法和连续法。 (2)固态双酚A型环氧树脂的合成方法大体上也可分为两种:一步法和二步法。一步法又可分为水洗法、溶剂萃取法和溶剂法。二步法又可分为本体聚合法和催化聚合法。
环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物。 (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联。 不同种类的硬化剂,在硬化过程中其作用也不同。有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物。具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂。多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物。1、胺类硬化剂胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华。胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等。胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺。即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N)。 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用。使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物。(2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子。2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物。 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好。但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外。绝大多数是易升华的固体,而且一般要加热固化。 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下:酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构。 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯。但这不是主要的反应。3、树脂类硬化剂含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂。如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等。它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用。常用的是低分子聚酰胺和酚醛树脂。 (1)低分子聚酰胺不同于尼龙型的聚酰胺。它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂。由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大。它们的分子量在500~9000之间,有熔点很高,胺值很低的固态树脂,也有胺值为300的液态树脂。其中胺值是低分子聚酰胺活性的描述,胺值高的活性大,与环氧树脂反应速度快,但可使用期短,胺值低的活性小,与环氧树脂反应速度慢,但可使用期长,表1列举了几种低分子聚酰胺的牌号及性能。表1 低分子聚酰胺牌号及性能举例牌 号200300400650651原 料亚油酸二聚体与三乙烯四胺亚油酸二聚体与三乙烯四胺桐油酸二聚体与二乙烯三胺——色 泽棕红色黏流体棕红色黏流体棕 色黏流体棕 色黏流体浅黄色液 体密度g/cm30.96~0.980.96~0.980.970~0.9900.7~0.99胺 值215±15305±15200±20200±20300黏度(40℃)mPa·s20000~80000600~200015000~50000——低分子聚酰胺分子中有各种极性基团,如仲胺基。伯胺基以及酰胺基,硬化后的环氧树脂对各种金属、木材、玻璃和塑料有良好的粘附力。聚酰胺分子中有较长的脂肪碳链,起到内部增塑作用,因此硬化后的环氧树脂有一定的韧性。低分子聚酰胺与环氧树脂的配合比例一般从40/60到60/40。在此范围内,可获得较好的胶接强度,热稳定性和耐化学试剂作用。一般聚酰胺用量多,体系柔性及抗冲击性能好;环氧树脂比例高,高温下粘结强度比较高,耐化学试剂作用好。 低分子聚酰胺作硬化剂特点是:无毒或低毒,挥发性小,易与环氧树脂混合,反应缓慢,一般多用作常温固化剂。 (2)酚醛树脂 酚醛树脂与环氧树脂的相互作用比较复杂, 热固性酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基起反应及酚醛树脂中的酚羟基与环氧基起开环醚化反应所以酚醛树脂能把环氧树脂从线型变成体型,环氧树脂也能把酚醛树脂从线型变成体型,彼此相辅相成,最后形成相互交联的不溶不熔的体型大分子。4、咪唑类固化剂 咪唑类化合物是一种新型固化剂,可在较低温度下固化而得到耐热性优良的固化物,并且具有优异的力学性能。 咪唑类化合物的反应活性根据其结构不同而有所不同。一般碱性愈强,固化温度愈低,在结构上受l位取代基影响较大。 咪唑(1midaxole)是具有两个氮原子的五元环,一个氮原子构成仲胺,一个氮原子构成叔胺。所以咪唑类固化剂既有叔胺的催化作用,又有仲胺的作用。如2-乙基-4-甲基咪唑。
1、合成原理:
双酚A型环氧树脂是由双酚A和环氧氯丙烷在碱性催化剂(通常用NaOH)作用下缩聚而成。
2、固化原理:
在环氧树脂的结构中有羟基(〉CH—OH)、醚基(—O—)和极为活泼的环氧基存在,羟基和醚基有高度的极性,使环氧分子与相邻界面产生了较强的分子间作用力,而环氧基团则与介质表面(特别是金属表面)的游离键起反应,形成化学键。
因而,环氧树脂具有很高的黏合力,用途很广,商业上被称作“万能胶“。此外,环氧树脂还可做涂料、浇铸、浸渍及模具等用途。
但是,环氧树脂在未固化前是呈热塑性的线型结构,使用时必须加入固化剂,固化剂与环氧树脂的环氧基等反应,变成网状结构的大分子 ,成为不溶且不熔的热固性成品。环氧树脂在固化前相对分子质量都不高,只有通过固化才能形成体形高分子。
环氧树脂的固化要借助固化剂,固化剂的种类很多,主要有多元胺和多元酸,他们的分子中都含有活波氢原子,其中用得最多的是液态多元胺类,如二亚乙基三胺和三乙胺等。环氧树脂在室温下固化时,还常常需要加些促进剂(如多元硫醇),已达到快速固化的效果。
固化剂的选择与环氧树脂的固化温度有关,在通常温度下固化一般用多元胺和多元硫胺等,而在较高温度下固化一般选用酸酐和多元酸为固化剂。不同的固化剂,其交联反应也不同。
扩展资料:
一、固化种类
常用环氧树脂固化剂有脂肪胺、脂环胺、芳香胺、聚酰胺、酸酐、树脂类、叔胺,另外在光引发剂的作用下紫外线或光也能使环氧树脂固化。常温或低温固化一般选用胺类固化剂,加温固化则常用酸酐、芳香类固化剂。
二、固化阶段
1、操作时间
操作时间(也是工作时间或使用期)是固化时间的一部份,混合之后,树脂/固化剂混合物仍然是液体和可以工作及适合应用。为了保证可靠的粘接,全部施工和定位工作应该在固化操作时间内做好。
2、进入固化
混合物开始进入固化相(也称作熟化阶段),这时它开始凝胶或“突变”。这时的环氧没有长时间的工作,可能也将失去粘性。在这个阶段不能对其进行任何干扰。它将变成硬橡胶似的软凝胶物,你用大拇指将能压得动它。
因为这时混合物只是局部固化,新使用的环氧树脂仍然能与它化学链接,因此该未处理的表面仍然可以进行粘接或反应。无论如何,接近固化的混合物这些能力在减小
3、最终固化
环氧混合物达到固化变成固体阶段,这时能砂磨及整型。这时你用大拇指已压不动它,在这时环氧树脂约有90%的最终反应强度,因此可以除去固定夹件,将它放在室温下维持若干天使它继续固化。
参考资料来源:百度百科-环氧树脂
可以直接联系上海飘铃啊
水解氯也称活性氯,是生产工艺中未闭环完全的不纯物,易被微量的水水解。
可水解氯也称活性氯,是生产工艺中未闭环完全的不纯物,易被微量的水水解。它水解产生HCl,并生成羟基(-OH)。HCl的存在对环氧树脂固化物的耐腐蚀性,电气绝缘性和高温电性能产生负效应;羟基的存在影响固化物的耐水性,受潮后固化物机械强度下降。可水解氯的存在还会影响树脂的固化速度。
环氧树脂因具有优异的加工性能,高耐热性能,优良的电气性能及高性价比在电子电器领域有着广泛的应用。尤其在电子封装材料中,环氧树脂以其性能优势成为多种电子封装产品的首选原材料。环氧树脂作为覆铜板和PCB板,环氧塑封料,环氧包封料,导电胶,贴片胶,填充胶等产品的基础原材料,为保证终端产品的性能,通常都会要求环氧树脂的氯含量尽可能的低。
环氧树脂:
环氧树脂(Phenolic epoxy resin),分子式为(C11H12O3)n,又称人造树脂,是一类分子结构中含有两个以上环氧基团的有机高分子聚合物,一种热固性塑料。它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物,具有优良的绝缘性能、力学性能及化学稳定性等。被广泛用于粘合剂、涂料等领域。
环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。
由环氧氯丙烷与双酚A或多元醇的浓缩聚集而来。根据查询环氧树脂性质得知,氯是由环氧树脂中的环氧氯丙烷与双酚A或多元醇的浓缩聚集而来,是一种热固性树脂。环氧树脂是一种高分子聚合物,分子式为(C11H12O3)n,是指分子中含有两个以上环氧基团的一类聚合物的总称。
[1]曾清华,王栋知,王淀佐.聚合物-粘土矿物纳米复合材料.化工进展,1998,17(2):13~16.
[2]王立新,张楷亮,任丽,等.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报,2001,18(3):5~9.
[3] Giannalis E P.Polymer layered silicate nanocomposites.Adv Mater,1996,8(1):29~35.
[4] Alexandre M,Dubois P.Polymer-layered silicate nanocomposites:Preparation,properties and uses of a new class of materials.Mater Sci Eng,2000,Report,28(1~2):1~63.
[5]徐卫兵.聚合物/蒙脱土插层纳米复合材料的研究.中国科学技术大学,博士论文,2001.
[6]张琴.熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能.四川大学,博士论文,2002.
[7]袁昌来,董发勤.粘土/有机纳米复合粉体材料.中国非金属矿工业导刊,2003,(4):14~17.
[8]吕建坤.环氧树脂及高性能热塑性树脂与粘土插层复合的研究.浙江大学,博士论文,2001.
[9]须藤俊男,著.严寿鹤,刘万,贾克实,译.粘土矿物学.北京:地质出版社,1981.
[10] OlejnikSL,etal.JPhysChem,1968,72(1):241~249.
[11] Theng B K G,Churchman G J,Whitton J S,Claridge G G C.Comparison of Intercalation Methods for differentiating halloysite from kaolinite.Clays and Clay Minerals,1984,32(4):249~258.
[12] Thompson.J G.Interpretation of Solid State13Cand29Si nuclear Magnetic Resonance spectra of Kaolinite Intercalates.Clays and Clay Minerals,1985,33(3):173~180.
[13] Sugahara Y,Satokawa S,Kuroda K,Kato C.Evidence for the Formation of Interlayer Polyacrylonitrile in Kaolinite.Clays and Clay Minerals,1988,36(4):343~348.
[14] Sidheswaran P,Bhat A N,Ganguli P.Intercalation of Salts of Fatty Acids into Kaolinite.Clays and Clay Minerals,1990,38(1):29~32.
[15] Sugahara Y,Satokawa S,Kuroda K,Kato C.Preparation of a kaolinite-polyacrylamide intercalation compound.Clays and Clay Minerals,1990,38(2):137~143.
[16] Tunney J J,Detellier C.Preparation and characterization of two distinctet hylene glycol derivatives of kaolinite.Clays and Clay Minerals,1994,42(5):552~560.
[17] Tunney J J,Detellier C.Aluminosilicate nanocomposite materials.Poly(ethyleneglycol)-kaolinite intercalates.Chem.Mater.1996,8:927~935.
[18] Frost R L,Tran T H,Kristof J.FT-Raman spectroscopy of the lattice region of kaolinite and its intercalates.Vibrational Spectroscopy,1997,13:175~186.
[19] Frost R L,Kristof J.Intercalation of halloysite:a Raman Spectroscopic Study.Clays and Clay Minerals,1997,45(4):551~563.
[20] Frost R L,Tran T H,Kristof J.The structure of a intercalated ordered kaolinite-a Raman microscopy study.Clay Minerals,1997,32:587~596.
[21] Komori Y,Sugahara Y.A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite.J.Mater.Res,1998,13(4):930~934.
[22] Komori Y,Sugahara Y,Kuroda K.Thermal transformation of a kaolinite-poly(acrylamide)intercalation compound.J.Mater.Chem,1999,9:3081~3085.
[23] Gardolinski J E,Zamora P P,Wypych F.Preparation and Characterization of akaolinite-1-methyl-2-pyrrolidone Intercalation Compound.Journal of Colloid and Interface Science,1999,211:137~141.
[24] Itagaki T,Komori Y,Sugahara Y,Kuroda K.Synthesis of a kaolinite-poly(β-alanine)intercalation compound.J.Mater.Chem,2001,11:3291~3295.
[25] Komori Y,Sugahara Y.Kazuyuki Kuroda.Direct intercalation of poly(vinylpyrrolidone)into kaolinite by arefined guest displacement method.Chem.Mater,1999,11:3~6.
[26] Komori Y,Sugahara Y,Kuroda K.Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate.Applied Clay Science,1999,15:241~252.
[27] Takenawa R,Komori Y,Hayashi S,Kawamata J,Kuroda K.Intercalation of nitroanilines into kaolinite and second harmonic generation.Chem.Mater,2001,13:3741~3746.
[28] Matsumura A,Komori Y,Itagaki T,Sugahara Y,Kuroda K.Preparation of a kaolinite-nylon 6 intercalation compound.Bull.Chem.Soc.Jpn,2001,74:1153~1158.
[29] Szilvia Papp,Anna Szucs,Imre Dekany.Colloid synthesis of monodisperse Pd nanoparticles in layered silicates.Solid State Ionics,2001,141~142:169~176.
[30] Patakfalvi R,Oszko A,Dekany I.Synthesis and characterization of silver nanoparticle/kaolinite composites.Colloids and Surfaces A:Physicochem.Eng.Aspects,2003,220:45~54.
[31]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.
[32]杨雅秀,张乃娴,苏昭冰,等.中国粘土矿物.北京:地质出版社,1994.
[33] Hayashi S.NMR Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl Sulfoxide.Clays and Clay Minerals,1997,45(5):724~732.
[34] Hayashi S.NMR Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation Compound.J.Phys.Chem,1995,99:7120~7129.
[35] Hayashi S,Ueda T,Hayamizu K,et al.NMR study of kaolinite.Ⅰ.29Si,27Al,1Hspectra.J Phys Chem,1992,96:10992~10928.
[36] Xie X L,Hayashi S.NMR study of kaolinite in tercalation compound with formamide and its derivatives.Ⅰ.Structure and orientation of guest molecules.J Phys Chem B,1999,103:5949~5955.
[37] Tunney J J,Detellier C.Aluminosilicate nanocomposite materials.Poly(ethyleneglycol)~kaolinite intercalates.Chem.Mater,1998,8:927~935.
[38] Komori Y,Sugahara Y.A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite.J.Mater.Res,1998,13(4):930~934.
[39] Komori Y,Sugahara Y,Kuroda K.Thermal transformation of a kaolinite-poly(acrylamide)intercalation compound.J.Mater.Chem,1999,9:3081~3085.
[40] Kelleher B P,Sutton D,O'Dwyer T F.The Effect of Kaolinite Intercalation on the Structural Arrangements of NMethylformamide and 1-Methyl-2-pyrrolidone.Journal of Colloid and Interface Science,2002,255:219~224.
[41]Frost R L,Kristof J,Horrath E,et al.JColloid Interface Sci,1999,412:380.
[42]王林江,吴大清,袁鹏,等.高岭石/甲酰胺插层的1H魔角旋转核磁共振谱.科学通报,2001,46(22):1910~1913.
[43] Tunney J J,Detellier C.Chemically modified kaolinite.Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite.J.Mater.Chem,1996,6(10):1679~1685.
[44]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,21(4):620~624.
[45]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.
[46] FrostRL,VanDerGaastSJ,Zbik M,Kloro eJT,Paroz G N.Birdwood kaolinite:a hihly ordered kaolinite that is difficult to intercalate-an XRD,SEM and Raman spectroscopic study.Applied Clay Science,2002,20:177~187.
[47]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001,(5):29~32.
[48]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.
[49]李学强,夏华.高岭土-乙酸钾夹层复合物制备.非金属矿,2002,25(4):22~23.
[50] Tunney J J,Detellier C.Preparation and Characterization of two Distinct Ethylene Glycol Derivatives of Kaolinite.Clays and Clay Minerals,1994,42(5),552~560.
[51] Sato M.Preparation of Kaolinite-Amino acid intrecalates derived from hydrated kaolinite.Clays and Clay Minerals,1999,47(6):793~802.
[52] Itagati A,Matsumura A,Kato M,et al.Journal of material of science letters,2001,20:1483~1484.
[53]沈忠悦,袁明永,叶瑛,杨帅杰.高岭石的夹层化合物及其剥片作用.非金属矿,2000,23(6):12~13.
[54]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展.合成橡胶工业,2002,25(3):190~193.
[55] Lawrence G,Ginanelis P.New polymer electrolyte nanocomposites:Melt intercalation of poly(ethyleneoxide)in micatype silicates.Adv Mater,1995,7(2):154~156.
[56] LiuYJ,Schindler J L,DeGroot D C,et al.Synthesis,structure,and reactions of poly(ethyleneoxide)/V2O5intercalative nanocomposites.Chem Mater,1996,8(2):525~534.
[57] Murray H H.Traditional and new applications for kaolin,smectite,and palygorskite:A general overview.Appl Clay Sci,2000,17(5~6):207~221.
[58] Balbir Singh,Woodlands,Ian Donald Richard Mackinnon,Ellengrove,Both of Australia.Modified Kaolins.US Patent 6022821,2000.
[59] John Gerard Thompson,Page;Ian Donald Richard Mackinnon,Ellengrove;Sasha Koun,Cook;Neil Gabbitas,Kambah,all of Australia.Kaolin derivatives.US Patent 5858081,1999.
自己看一下吧,汽车涂装废水的处理!这个网站上可以去搜索外文的论文文献,希望对你有帮助
1 。导言 吸水环氧树脂系统是一项具有挑战性的问题,由于不可逆转的变化,水运作的聚合物性能。据信,并有足够的实验证据的入口处水诱导: (一)膨胀的制度和建立残余应力及其附近的接口[ 1 ] , (二)破裂之间的粘接系统和一个由于基板[ 2 ] , (三)光圈环氧乙烷其余群体[ 3 ] , ( d )项修改地方应力状态和建立microcrazes通过环境应力开裂[ 4 ] 。 没有通用的模式,以涵盖所有类型的水分子扩散[ 1 ] 。几个机制水入口已经提出: (一)由菲克扩散的法律通过自由体积的聚合物[ 5 ] , ( b )个案二扩散机制的渗透肿胀是有限的聚合物蠕变[ 6 ] , (三)肿胀诱导有利聚合物溶剂参数, ( d )项渗透现象由于微孔的存在,渠道和其他缺陷聚合物[ 7 ] 。 这也是常见的文献,水扩散系数在不同的环氧树脂系统大约10月8日至10月10日平方厘米的S - 1 [ 1,2,8 ] ,也可用于橡胶改性成分[ 8 ] 。相似的价值得到了其他玻璃状聚合物系统[ 2 ] 。扩散系数措施最初率吸水率和原则,应该依赖于化学性质的聚合物系统和交联度的交联系统,如环氧树脂的。但是,因为这将显示在这个文件,类似的扩散系数被发现即使不能完全治愈系统。 在努力为设计抗水环氧系统,有必要知道哪些材料参数的真正参与和控制的过程中水分的吸收。在本文中,我们研究了水分的吸收性能的一个新的总部设在环氧树脂配方中使用的硬化剂的反应导数的疏水性聚合物,如聚硅氧烷。这将是表明,当共同的双酚A二缩水甘油醚( DGEBA )树脂固化,在场的聚( 3 - aminopropylmethylsiloxane ) (参与机构调动系统) ,平衡性能大大增强。此外,由于特殊的特点和形态的环氧系统[ 9 ] ,不同的行为,发现postcuring温度。