要求的字体为:公式编辑器样式中的数学字体。
word公式编辑器里的字母默认字体为Symbol.。
Word 公式编辑器中的其它字体样式(格式) :
文字:Times New Roman.
全角文字:宋体。
函数:Times New Roman
变量:Times New Roman倾斜( )。
小字希腊字母:Symbol(倾斜)。
大字希腊字母:Symbol。
扩展资料:
由于MathML需要安装插件,所以应用并不广泛。那么无需安装插件的在线公式编辑器,应运而生。这类编辑器以JMEditor为代表。
JMEditor(JavaScript Math Editor)是基于CKEditor、jQuery、MathQuill等组件开发的,轻量级、开放源代码、所见即所得、无任何插件的在线公式编辑器。CKEditor与jQuery应用的十分广泛,不再过多介绍。需要指出的是MathQuill,使用HTML+CSS+JS实现公式编辑的效果,他把dom的力量发挥到了极致。
参考资料来源:百度百科-公式编辑器
大学毕业论文格式要求及字体大小
下面是我整理的大学毕业论文格式要求及字体大小,希望对大家有所帮助。
一、封面
题目:小二号黑体加粗居中。
各项内容:四号宋体居中。
二、目录
目录:二号黑体加粗居中。
章节条目:五号宋体。
行距:单倍行距。
三、论文题目: 小一号黑体加粗居中。
四、中文摘要
1、摘要:小二号黑体加粗居中。
2、摘要内容字体:小四号宋体。
3、字数:300字左右。
4、行距:20磅
5、关键词: 四号宋体,加粗。 词3-5个,每个词间空一格。
五、英文摘要
1、ABSTRACT:小二号 Times New Roman.
2、内容字体:小四号 Times New Roman.
3、单倍行距。
4、Keywords: 四号 加粗。 词3-5个,小四号 Times New Roman. 词间空一格。
六、绪论: 小二号黑体加粗居中。内容500字左右,小四号宋体,行距:20磅
七、正文
(一)正文用小四号宋体
(二)安保、管理类毕业论文各章节按照一、二、三、四、五级标题序号字体格式
章:标题 小二号黑体,加粗,居中。
节:标题 小三号黑体,加粗,居中。
一级标题序号 如:一、二、三、 标题四号黑体,加粗,顶格。
二级标题序号 如:(一)(二)(三) 标题小四号宋体,不加粗,顶格。
三级标题序号 如:1.2.3. 标题小四号宋体,不加粗,缩进二个字。
四级标题序号 如:(1)(2)(3) 标题小四号宋体,不加粗,缩进二个字。
五级标题序号 如:①②③ 标题小四号宋体,不加粗,缩进二个字。
医学、体育类毕业论文各章序号用阿拉伯数字编码,层次格式为:1××××(小2号黑体,居中)××××××××××××××(内容用4号宋体)。1.1××××(3号黑体,居左)×××××××××××××(内容用4号宋体)。1.1.1××××(小3号黑体,居左)××××××××××××××××××××(内容用4号宋体)。①××××(用与内容同样大小的宋体)a.××××(用与内容同样大小的.宋体)
(三)表格
每个表格应有自己的表序和表题,表序和表题应写在表格上方正中。表序后空一格书写表题。表格允许下页接续写,表题可省略,表头应重复写,并在右上方写“续表××”。
(四)插图
每幅图应有图序和图题,图序和图题应放在图位下方居中处。图应在描图纸或在洁白纸上用墨线绘成,也可以用计算机绘图。
(五)论文中的图、表、公式、算式等,一律用阿拉伯数字分别依序连编编排序号。序号分章依序编码,其标注形式应便于互相区别,可分别为:图2.1、表3.2、公式(3.5)等。
文中的阿拉伯数字一律用半角标示。
八、结束语: 小二号黑体加粗居中。内容300字左右,小四号宋体,行距:20磅。
九、致谢: 小二号黑体加粗居中。内容小四号宋体,行距:20磅
十、参考文献
(一)小二号黑体加粗居中。内容8—10篇, 五号宋体, 行距:20磅。参考文献以文献在整个论文中出现的次序用[1]、[2]、[3]……形式统一排序、依次列出。
(二)参考文献的格式:
著作:[序号]作者.译者.书名.版本.出版地.出版社.出版时间.引用部分起止页
期刊:[序号]作者.译者.文章题目.期刊名.年份.卷号(期数). 引用部分起止页
会议论文集:[序号]作者.译者.文章名.文集名 .会址.开会年.出版地.出版者.出版时间.引用部分起止页
十一、附录(可略去)
小二号黑体加粗居中。 英文内容小四号 Times New Roman. 单倍行距。翻译成中文字数不少于500字 内容五号宋体,行距:20磅。
十二、提示
论文用A4纸纵向单面打印。页边距设置:上2.5cm,下2.5cm,左3.0cm,右2.0cm。
所需的字体是:公式编辑器样式的数学字体。
设置方法:
1、mathtype打开公式编辑器。
2、点击“样式”,选择“数学”。
3、在框子里输入论文里面的公式。(例如F=ma)
4、复制所选公式并粘贴到Word中,公式编辑器样式的数学字体就处理好了。
哥们,数理化期刊论文绝大大多数不是用word排版的(那会累死排版人员的),是用神器TEX或者LaTeX等商用软件排版的。论文里或者教材上公式用的字体,有很多,比如Computer Modern、MathTime (Times)、TX Fonts (Times)等等。。。
图片里的字体是Computer Modern
大写加粗体。论文公式向量、矩阵量符号字体使用规范注意要点变量一律斜体、硕士论文公式中矩阵大写加粗斜体、向量小写加粗斜体;注意对齐。
要求的字体为:公式编辑器样式中的数学字体。
设置方法:
1、首先打开公式编辑器。
2、点击“样式”,选择“数学”。
3、接着输入公式。
4、选中公式复制后,粘贴到word即可。
扩展资料:
数学论文的目的:培养学生的科学研究能力,加强综合运用所学知识、理论和技能解决实际问题的训练,从总体上考查学生大学阶段学习所达到的学业水平。
数学论文的意义:撰写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节,通过撰写毕业论文,提高写作水平是干部队伍“四化”建设的需要。
既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。
通常用MATHTYPE5.0以上版本输入的公式就可以, 可设定好使用的格式,对所有公式更新一次就可以了! 如果是WORD自带的公式编辑器不知行不行!
所以算出A的广义逆A+,然后验证上述条件即可。
矩阵是工程技术以及经济管理等领域的不可缺少的数学工具,凡是用到矩阵的地方,基本上都要涉及广义逆矩阵,尤其数值分析与数理统计有着重要作用.广义逆矩阵共15类,但最常用有5类,包括A{1},A{1,2},A{1,3},A{1,4},A{1,2,3,4}.主要讨论这5类广义逆矩阵的计算及其应用.作 者: 马秀珍 韩静华 MA Xiu-zhen HAN Jing-hua 作者单位: 沈阳航空工业学院理学系,辽宁,沈阳,110034 刊 名: 沈阳航空工业学院学报 英文刊名: JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING 年,卷(期): 2005 22(2) 分类号: O175.14 关键词: 广义逆矩阵 矩阵方程 自反广义逆 最小范数广义逆 通解 机标分类号: 机标关键词: 广义逆矩阵应用数值分析数学工具数理统计经济管理工程技术计算 基金项目:
逆矩阵和广义逆矩阵的区别如下。1、若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。2、若A是奇异阵或长方阵,Ax=b可能无解或有很多解。3、若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。4、当A非奇异时,A^(-1)也满足AA^(-1)A=A,且x=A^(-1)b+(I-A^(-1)A)у=A^(-1)b。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。
很多应用啊。。。比如工程上的,控制上的。你可以多看看书,上面都有应用的例子。比如应用数值线性代数,控制论中的矩阵计算等等。。
告诉你拟就会写吗。不如我给你写得了
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
一类特殊对称矩阵的特征值与特征向量陆全 徐仲 【摘要】:【作者单位】:西北工业大学西北工业大学【关键词】:矩阵的特征值正交特征向量特征值与特征向量对称矩阵实对称阵特征问题矩阵A正交变换《线性代数》正交阵【分类号】:O151【DOI】:CNKI:SUN:XUSJ.0.1997-04-013【正文快照】:同济大学《线性代数》第130页例10要求一个正交变换.把二次型化为标准形,其中需要求矩阵的特征值与单位正交特征向量。事实上,这个矩阵R是一种具有特殊对称性的矩阵。这类矩阵的特征问题有如下的一般结论。考虑如下的特殊对称矩阵其中A、B均为m阶实对称阵,u是m维列向量,
逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。
一、伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。例题如下:
伴随矩阵法解题过程
注:用伴随矩阵法计算逆矩阵时需要运用代数余子式和余子式的相关知识,即代数余子式(Aij)和余子式(Mij),其中,i表示第几行,j表示第几列。
二、初等变换法。根据矩阵初等行变换的计算方式,然后引入单位矩阵E(矩阵对角线所对应的三个数字均为1,其他数字均为0的矩阵)。矩阵 A与单位矩阵E组成一个大矩阵,而后通过行变换将原来A的位置转变为E,此时,变换后的E就是所求的逆矩阵。
本人手写笔记
三、待定系数法。根据矩阵定义的推论,利用矩阵A乘以它的逆矩阵A^(-1)等于单位矩阵E的计算公式求得逆矩阵的方法。这种计算过程繁琐,需要列多组方程组,耗时,不建议使用。
题主可根据以上三种计算方法计算逆矩阵,希望对题主有帮助。
矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。
A^*=A^(-1)|A|,
两边同时取行列式得
|A^*|=|A|^2 (因为是三阶矩阵)
又|A^*|=4,|A|>0,所以|A|=2
所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。
特殊求法:
(1)当矩阵是大于等于二阶时 :
主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以 ,一直是正数,没必要考虑主对角元素的符号问题。
(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。
(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。
矩阵性质
矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。
设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。
典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等。