首页 > 期刊投稿知识库 > 研究生论文如何做数据分析报告

研究生论文如何做数据分析报告

发布时间:

研究生论文如何做数据分析报告

进行数据分析,首先要进行数据规划,拟定数据的来源和采集工具;然后通过采集平台进行数据采集和处理,可以生成条理清晰的报表或者录入数据库;数据分析过程使用数据分析工具连接到数据进行数据探索,这里可以使用excel,或者一些BI工具,目前国内有很多自主开发的BI工具很好用,比如我司在用的DataFocus,就很方便;最后结合需求和市场生成完整的数据分析报告文档,也可以直接用DataFocus的看板整合成漂亮的大屏直接向领导或客户进行演示哦。

到年底,写一份好的数据分析报告的重要性不言而喻(只要我写的好,年终奖就少不了我) 大家都知道,数据分析报告的输出是整个业务分析过程的成果,是评定一条业务线的参考依据,既然这么重要那当然要写好它了。 接下来我就分享我写数据分析报告的5个步骤,供大家学习参考。 一、明确分析目的 还是那句老话,在做任何事情之前,先想清楚做这件事的目的是什么。 写数据分析报告也是,如果一开始就没有明确清楚目的,盲目开始分析,最后的结果很可能就是,分析了半天却离目标越来越远。所以搞明白研究这个事情的目的,是开始数据分析的第一步。 二、拆解指标发现问题 在明确清楚我们的分析目的后,就要针对我们的分析目标进行指标拆解,通过拆解指标去发现问题。这么说有点虚,举个例子说明一下。 背景:某制造业公司到年底,需要进行销售线的业务复盘,因此需要检查各销售线人员的年度目标完成进度,并给出建议。同时,通过统计发现,今年公司的毛利率有所下降,需要数据分析师通过数据去找到影响毛利率下降的原因。 拆解流程: ①明确分析目标 ②确定问题 ③拆解问题 ④拆解指标&拓展纬度布局 第一步:明确分析目标 通过背景我们可以清楚知道,我们有两个目标需要去完成,这里我用导图的形式罗列出来 第二步:确定问题 在明确分析目标后,就需要确定为了达成该目标,提出围绕该目标需要解决的问题。可以使用思维脑图,写出在看到该目标后产生的问题。 第三步:拆解问题 在确定问题后,就需要找到能够数值化衡量这些问题的指标,以及它们的计算方式。 第四步:拓展维度 计算方式确定,就可通过分析组成这些计算公式的指标来探究影响其的原因,比如销售额=单价*数量,那么就可从单价、数量来分析销售额变动,以一个指标为定量,分析对比其他指标变化。 同时以计算公式结果为指标,拓展维度(比如地区、时间、品类等等)来探究不同维度下的指标差异。 三、 给出结论 同样的我们给出的结论需要和分析目的紧密相连,比如: 目的是了解业务的现状,那结论可以是:该业务有问题x关键指标,每个指标的数值是xxx,有什么样的异常; 目的是了解数据到什么情况算好,那结论可以是:某指标可以以 xxx 作为判断标准,原因是......; 目的是找出业务出现异常的原因,那结论可以是:经分析,有x各种原因,其中重点原因是...... ; 需要注意的是,如果是判断业务的状况,需要确定一个判断标准:结论=数据+判断标准 在对数据进行拆解分析的过程中,我们已经可以察觉到一些数据异常。但是这些 异常到底是好是坏,我们需要通过一个标准来确定。 比如说十月份销量数据下滑,我们可以增加比对去年的数据。如果去年也下滑了,说明是正常的月度下滑。如果去年没有下滑,那么说明今年下滑是个不正常现象,需要复盘解决。 四、结合业务,给出建议和方案 如果数据不能驱动业务成长,那它毫无用处。 下了结论以后,再结合对业务的理解,就可以就分析结果提出建议,甚至给出方案: 建议是:能解决业务问题的行动方向,是若干个潜在可行的范畴。 方案是:制定一个具体行动计划,方案要满足 5w2h ,要有具体的执行人、完成时间等等要素。 五、撰写分析报告 以上准备工作完成,如何撰写一份分析报告增加它的可读性呢? 架构清晰:参考经典的金字塔结构,结论先行,以上,先重要后次要。以上统下的顺序也符合数据分析过程中拆解指标的顺序,更容易帮助读者理解你的分析思路; 报告图表化:用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,更容易做到有理有据; FineBI制作 规范化:整篇文档的图表风格统一、名词统一;

我个人觉得,你可以去找和你数据差不多的文献去参考下,像数据挖掘、统计学与应用等等这类的资料~你都可以参考借鉴下前辈的数据是怎么分析的

大数据分析报告不仅能够对某个具体领域的宏观经济趋势进行判断和预测;还可以把我们的触角深入到某一个社区、某一类人群、某一个具体的产品,来了解他们的真实情况;同时,我们还能够借助大数据分析的结果来制定精细化的线上广告投放策略或是做针对性的地面推广活动;而最终,我们把大数据分析的成果以大数据工具的形式固化,才能让我们的大数据效力持续。也就是说,真正有价值的大数据分析报告能够在中宏观规划、微观/细分市场分析、方案执行和策略部署等方方面面为企业带来价值。很多企业不认可分析报告的价值,很大程度是不了解它的原力。今天索性告诉你整个分析思路、框架,帮助企业更好地认识、认可大数据分析报告的价值。一、大数据报告怎么做出来的?认识大数据分析流程首先,我们要理解大数据分析的基本流程,一个完整的大数据分析流程包含了商业问题理解、数据理解、数据准备、数据分析、产出分析报告、提出解决方案6个环节,并且是一个闭环、不断优化的过程。对于企业,可能不需要掌握高难度的分析处理能力,但是掌握数据分析思路、数据思维和意识都是非常重要的。二、大数据报告究竟研究了什么东西?解密大数据分析思路大数据报告根据功能来分,可分为4个常见类型:1. 市场/行业分析:对某一个行业、细分领域的市场现状的分析、发展趋势预测;2. 用户画像:了解用户的人群特征、某个产品的不同群体的用户行为差异;3. 竞品监测:对同类产品的用户使用情况、市场情况、功能性能进行对比研究;4. 经营分析/业务问题专题:企业经营中重大战略决策的分析或针对某具体业务问题进行专题分析,如营销效果评估等。

免疫系研究生如何写数据分析论文

数据分析主要就是通过数据去解决企业实际遇到的问题,包括根据数据分析的原因和结果推理以及预测未来进行制定方案、对调研搜集到的各种产品数据的整理、对资料进行分类和汇总等等。主要就是学习Python、R、SAS等编程工具,数据仓库,分布式存储HDOOP,云计算,数据可视化,大数据技术,还可以到九道门数据分析实训官网上去看一些案例,自己做做训练,总之要学习很多东西。

如何利用数据分析工具,对自己的文章进行诊断

数据分析法论文研究方法怎么写

数据分析法论文研究方法怎么写,毕业论文对大学生是很重要的一项内容,如果毕业论文不通过就可能毕不了业了,论文的数据是很重要的,如果你的论文数据不准确,就没研究意义了, 下面我和大家分享数据分析法论文研究方法怎么写。

确定数据分析方法

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

搜集整理实验数据

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

使用软件进行分析

接下来第三部分就是使用软件进行数据分析,本部分是非常重要的一个部分。因而可能会出现各种各样的问题。

在本部分大家可以通过软件对所得数据按照前面选定的研究方法进行分析。实践是检验一切的'唯一标准。有很多问题往往都是在进行了数据分析以后才暴露出来的。

根据自身经历,通过软件分析了实验数据以后,才发现结果非常不理想,此时就需要及时跟论文指导老师沟通去进行数据分析方法的调整。

在使用软件进行数据分析之前,一切都是未知的,只有分析之后才能对症下药。所以本环节大家一定要高度重视,根据分析结果及时对研究方法或者样板数据进行微调。

梳理归纳实验结果

最后一个部分就是梳理和归纳实验数据分析结果,此时,大家要讲结果进行合理化解释。同时也需要大量参考先前学者的优秀文献,寻找类似的结果或者解释,从而为自己的实验结果的合理解释提供参考。

有的实证性论文的课题研究可能还不止一个阶段,因为很多研究方法会分阶段进行,比如考虑外部因素的影响或者投出产入效率等等,所以大多研究方法都是两阶段或者三阶段。此时就需要大家根据论文整体性原则,及时对实验结果进行分阶段阐述,所以大家一定要自己思维清晰,层次分明。

这一部分也是将来在毕业论文答辩需要大家重点向答辩老师介绍和阐述的,一定要熟稔于心。

1、调查法

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。

4、文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。

5、实证研究法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

数据分析可以分成两部分,一部分是对分析过程及分析结果的描述,另一部分是结合专业知识对结果进一步分析,为什么会出现这样的结果。如果完全没有思路推荐使用spssau,里面的结果包括智能文字分析可以提供一些思路。

毕业论文问卷调查如何做数据分析

问卷调查数据整理分析的方法有描述性统计分析、信度系数分析、探索性因素分析和验讧性因素分析、结构方程模型分析、综合评价法。

1、描述性统计分析

包括样本基本资料的描述,作各变量的次数分配及百分比分析,以了解样本的分布情况。

2、信度系数分析

信度是指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。

3、探索性因素分析和验讧性因素分析

用以测试各构面衡量题项的聚合效度与区别效度。

4、结构方程模型分析

可同时处理多个因变量,容许自变量和因变量含测量误差,可同时估计因子结构和因子关系。

5、综合评价法

综合评价法指的是运用多个指标对多个参评单位进行评价的方法,简称综合评价方法。综合评价是指某些企业通过多元化评价对企业的发展及方向进行一个综合的统计评价,从而来判断企业的走向和目标,这对任何一个企业或者行业化发展都有很大好处。

一、学习背景

本科学了四年文科专业,除了形式逻辑外几乎没再接触过与理科搭边的东西。想借着毕业论文学一点数据分析的东西,知网上找了几篇相关文献,以为数据分析很简单,于是跟导师定了题开始着手做。

二、问卷编制+数据分析类论文框架

(一)低阶版:非专业,要求低,不需要用spss,调研规模200+即可。

如果时间相对紧张,不想在毕业论文上花过多时间,建议采用低阶版即可,字数也绝对够。知网上“问卷编制+数据分析”类的文章除少部分期刊论文,大多数都是硕博论文,看看文献综述即可,不要用他们的数据分析框架,这是高阶版需要考虑的。

引言,研究背景写完,就写研究综述。把需要研究的变量列出来分别写研究综述,记得加上一些国外的研究,引用一些外文文献。接下来,简单地说一下自己如何编制的问卷,如何发放的问卷(线上/线下),回收问卷的情况。然后写样本情况,可以列一个大表格,内容包括哪类人有多少个,占百分之多少。接下来就是对数据结果的分析,用例如“A越...,B就越...”、“C的总体水平较低/高”、“D的....比E的....水平要高”的句式,找出一些规律即可。最后就可以写讨论、结论、总结对策建议了。

(二)高阶版:比较专业,要求高,不确定因素大(比如数据可能真的拟合不了模型),需要用spss statistics 和 amos。

采用高阶版不仅对人有要求,对数据也有要求。如果你没有把握自己能拿到样本较大的数据,也没有把握帮你填问卷的人是认真的,还是谨慎尝试为好,免得前面都做得很好,最后卡在模型拟合或者相关分析之类。大多数本科毕业论文的同学都是用问卷星,让小伙伴、家长等帮扩,这个样本量可能不会很大,而且如果题目比较多,不排除会出现开始东一个西一个乱填的情况。

以上内容就是青藤小编关于本科毕业论文做问卷和数据分析应该怎么着手的相关分享,希望对小伙伴们有所帮助,想要了解更多毕业论文相关内容,欢迎大家及时在本平台进行查看哦!

如何做毕业论文的折线数据分析图

要用WORD制作数据分析图,参照下面步骤:

1、打开word,点击“插入”,再点击“图表”;

2、在弹出的选项中选择“折线图”,然后双击其中一个折线图的缩略图;

3、插入折线图之后,可以通过修改excel里面的数据来修改折线图的内容。

2003及其以下版本:选定数据——菜单栏——插入——图表——图表类型:折线图——下一步或默认完成。2007及其以上版本:选定数据——菜单栏——插入——图表版块——折线图。

大家都中毒excel是数据计算和分析的高手,其实,在word2010中也可以使用公式和函数进行数值的计算哦,下面就由我进行具体的介绍吧。

word制作数据分析图步骤一: 点击word文档左上角,弹出的工具框,再点击图标。 点击你需要的类型图看, 同时右边会出现一个数据表格,将你需要的数据输入就ok了 输入数据之后 右边的word中会相应的折线图 。,在word工具栏的左上方 点,点击word文档左上角,弹出的工具框,再点击图标。

word制作数据分析图步骤二: 点击你需要的类型图。我选择的是折线图,你的word文档里面会出现一个数据图。

word制作数据分析图步骤三: 同时右边会出现一个数据表格,将你需要的数据输入就ok了

word制作数据分析图步骤四: 输入数据之后 右边的word中会相应的折线图 。

word制作数据分析图步骤五: 在word工具栏的左上方 点击更换图标类型

如何分析毕业论文的数据分析

1、获取数据

获取数据也有两种途径,要么就是手上有的或者是能直接使用到的现成数据,还有一种就是二手数据。现在的数据分析库主要分为了调查数据和政府数据。

2、整理数据

整理数据就是对观察、调查、实验所得来的数据资料进行检验与归类。得出能够反映总体综合特征的统计资料的工作过程。并且,对已经整理过的资料(包括历史资料)进行再加工也属于统计整理。

3、呈现数据

当数据收集充分且真实过后,研究者可运用数据,但要清楚的说明数据来源以及如何对原始的数据进行加工的。需要尽可能的描述获取数据的过程,提供足够多的细节,以便同行能重复研究过程,并保障原生作者的创作性。

请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

  • 索引序列
  • 研究生论文如何做数据分析报告
  • 免疫系研究生如何写数据分析论文
  • 毕业论文问卷调查如何做数据分析
  • 如何做毕业论文的折线数据分析图
  • 如何分析毕业论文的数据分析
  • 返回顶部