首页 > 期刊投稿知识库 > 天体物理类论文题目

天体物理类论文题目

发布时间:

天体物理类论文题目

中国科学院紫金山天文台是国务院学位委员会批准的首批博士、硕士学位授予单位之一。据2015年12月天文台官网信息显示,共设有1个一级学科博士、硕士研究生培养点,1个工程硕士培养点,3个二级学科硕士、博士研究生培养点,并设有1个博士后科研流动站。 硕士研究生培养点(1个,一级学科):天文学 博士研究生培养点(1个,一级学科):天文学 硕士研究生培养点(3个,二级学科):天体物理、天体测量和天体力学、天文技术与方法 工程硕士培养点(1个):控制工程 博士研究生培养点(3个,二级学科):天体物理、天体测量和天体力学、天文技术与方法 博士后科研流动站(1个):天文学 截至2015年9月,中国科学院紫金山天文台共有在学研究生157人(其中硕士生77名、博士生80名)、在站博士后12名;先后共有八篇博士学位论文获“中国科学院优秀博士学位论文奖”。2015年,中国科学院紫金山天文台研究生中获院长特别奖1名,院长优秀奖1名,院、分院类冠名奖5名,有1篇博士生论文获得中科院优博论文,1篇硕士论文获江苏省优硕论文。 中国科学院优秀博士学位论文奖(8篇,不全)序号获奖者论文题目指导人年份1陈果系外凌星热型类木星大气的地面观测研究王红池20152任远太赫兹量子级联激光器与超导热电子混频器特性及集成技术研究史生才20143宿英娜太阳双带耀斑中的剪切磁场黄光力20094范一中/韦大明20085王红池 年轻星质量外流―光学和近红外观测研究 熊大闰2005参考资料:

浩瀚的宇宙魅力无穷,它吸引着无数的科学志士为之求索探秘。千百年来,人们为了认识天体和宇宙的奥秘,不屈不挠地探求着。伟大的波兰天文学家哥白尼有一句名言:“人类的天职是勇于探索”,中国古代诗人屈原说过:“路漫漫,其修远兮,吾将上下而求索”,可见探索天文知识是人类永恒的科学主题。 天文学是人类运用所掌握的最新的物理学、化学、数学等知识以及最尖端的科学技术手段,对宇宙中的恒星、行星、星系以及其它像黑洞等天文现象进行专业研究的一门科学.它是一门集人类智慧之大成的综合系统。 天文学主要研究天体的分布、运动、位置、状态、结构、组成、性质及起源和演化。随着天文学的发展,人类的探测范围由目测的太阳、月球、天空中的星星到达了距地球约100亿光年的距离,根据尺度和规模,天文学的研究对象可以分为:行星层次,恒星层次以及整个宇宙。 天文学的一个重大课题是各类天体的起源和演化。天文学和其他学科一样,都随时同许多邻近科学互相借鉴,互相渗透。天文观测手段的每一次发展,又都给应用科学带来了有益的东西。 天文学的研究对于我们的生活有很大的实际意义,对于人类的自然观有很大的影响。古代的天文学家通过观测太阳、月球和其他一些天体及天象,确定了时间、方向和历法。这也是天体测量学的开端。如果从人类观测天体,记录天象算起,天文学的历史至少已经有5、6千年了。天文学在人类早期的文明史中,占有非常重要的地位。埃及的金字塔、欧洲的巨石阵都是很著名的史前天文遗址。哥白尼的日心说曾经使自然科学从神学中解放出来;康德和拉普拉斯关于太阳系起源的星云说,在十八世纪形而上学的自然观上打开了第一个缺口。 牛顿力学的出现,核能的发现等对人类文明起重要作用的事件都和天文研究有密切的联系。当前,对高能天体物理、致密星和宇宙演化的研究,能极大地推动现代科学的发展。对太阳和太阳系天体包括地球和人造卫星的研究在航天、测地、通讯导航等部门中都有许多应用。

(4)量子引力理论20世纪基础物理研究的巨大成就,当归功于相对论、量子论与引力论的建立。相对论、量子论和引力论都具有普适性,它们的普适性的一个重要体现分别表现在c、h和G这三个普适常数上。然而,三个理论是否真的具有普适性,还在于它们彼此间的相容性,广义相对论的建立证实了引力论与相对论的相容性。量子理论的发展证明,物质的各种运动形态都遵从量子化的要求,与此同时,一切相对论性场,如电磁场也应是量子化的。在场量子化研究的初期,曾出现了一系列的发散困难。在40年代末,量子化电磁场的发散困难初步通过重正化理论得以解决。发散困难的最根本解决是在60年代完成。弱电统一理论的建立,不仅解决了弱相互作用中的发散困难,而且在类似弱相互作用的框架之中,还可望在强相互作用领域解决相对论与量子论的相容性。最困难的一步就是引力论与量子论的相容,这一步骤的一个主要目标就是建立量子化的引力理论。量子引力理论的研究还起源于广义相对论的奇点问题。由彭罗塞提出,后经霍金和杰罗奇等人最终建立的奇点定理表明,在相当宽的物态条件下,引力场方程的解必定具有奇性。奇性的存在表明,广义相对论属于服从因果律的经典物理范畴,在奇点处,这一理论不再适用。有可能在考虑到引力场的量子性之后,奇性自然消失,这一猜测随后在霍金黑洞蒸发理论中得到了支持。迫使人们研究量子引力理论的第三个动机来源于大统一理论。弱电统一理论已经建成,弱电与强相互作用的大统一理论正是当前的热门课题,研究过程表明,必须同时考虑到它们与引力作用的统一,而这一统一的实质就是建立量子引力理论。经典物理学的理论框架是建立在因果律的基础上的,经典物理学依赖于物理定律和它相应的边界条件,然而当问题涉及到奇点,而这个奇点又不是数学或模型的缺陷由人为造成的时,奇点很难消除,又很难给出合理的边界条件,这就迫使人们必须重新考虑原有的理论。沿着膨胀和暴涨的宇宙反向历程,应用经典宇宙学所给出的框架,回溯宇宙在暴涨之前的状态,很自然地会得到宇宙的尺度将趋于零。这意味着,引力场的强度以及物质场的能量密度将趋于无限大,宇宙是从一个奇点演化而来的,而这个奇点并非由于模型的缺陷人为引起的。早在60年代,彭罗塞和霍金就曾利用整体微分几何证明过①,奇点不仅是高度对称的,而且是广义相对论的必然产物。这意味着,在广义相对论的理论框架之中,不可能找到解决奇点的方案,或者说,尽管广义相对论揭示了时空的引力弯曲,但它对于极高曲率的空间并不适用。量子论的鼻祖普朗克很早就主张,应在所有的自然力之间建立联系。1899年,他首先提出了“普朗克长度”这一普适的这一最小长度Lp,以后又陆续提出了“普朗克时间”tp、“普朗克温度”Tp与“普朗克质量”Mp,它们分别为Lp=(hG/c3)1/2=4.05×10-33cm, tp=(hG/c5)1/2=1.35×10-43s,Mp=(hc/G)1/2=5.45×10-5g,Tp=(hc5/k2G)1/2=3.56×1032K。由于h、c和G三个常量都是相对论不变量,以它们为基准的普朗克自然单位将是不变和唯一的,这一点具有深刻意义。审查上述量的大小不难看出,温度Tp极高,甚至比宇宙大爆炸时刻的温度还高,长度Lp、时间tp却极小,质量Mp也不很大,虽然这些值都是实验室条件下无法得到的,它们却使人们想到,在暴涨之前的宇宙这些是否是可以接近的尺度,因此,应该由一个量子化的广义相对论取代经典广义相对论。本世纪初,量子力学诞生之后,量子力学原理首先用于解释微小系统——原子结构方面的困难,确立了薛定谔方程,同时也得到了有关原子特征的一系列量子力学描述。本世纪60年代以来,当人们试图用量子力学解释巨大的体系——宇宙结构时,却发现它们之间有着惊人的相似①。首先,在具有电磁作用的质子与电子微小体系中,重要自由度r(t)在趋于零时,产生奇点的经典困难,而在具有引力作用的大物质体系中,重要自由度标度因子R(t)在趋于零时,也产生奇点的经典困难;微小电磁体系具有玻尔半径10-8cm的量子长度,而引力作用体系则具有普朗克长度10-33cm的量子长度;微小体系服从薛定谔方程的动力学规律,而引力体系则有惠勒-德维特方程。关于这两个体系间的相似与联系,近年来的研究又有了新的进展。本世纪60~70年代,德维特(DeWitt,B.S.)、米斯纳(Misner,C.W.)和惠勒等人在量子宇宙学方面做出了重要的基础性工作,他们建立了描述宇宙量子特征的惠勒-德维特方程,然而求解这个方程却面临边界条件的确立。因为最初宇宙究竟处于什么状态仍然不能确定。D、宇宙学的进展在物理学研究深入发展的同时,人们也在力求对时空大尺度上,即从整体上认识宇宙。宇宙的起源、结构和演化都是人们关心的课题。物理学与高科技的结合,创造了口径相当于25米的巨型光学望远望、空间X射线和红外线望远镜以及地域甚大的天线阵列射电望远镜,这不仅使人们观测宇宙的窗口从红外、可见光一直延伸到X射线和γ射线整个波段,还使观测宇宙的时空尺度伸展到了170亿光年。如今,在人类面前,已展现出一幅生动壮丽的宇宙画面。以现代高能粒子物理与广义相对论为基础建立起来的理论宇宙学,已能从理论上描述出从原始火球大爆炸,到星系形成和演化的整个过程。大爆炸模型已经由现代天文学的观测,如河外星系谱线红移、3K微波背景辐射以及氦丰度等得到了一定的证实。与此同时,在解决这一模型自身的问题,如视界问题、平坦性问题和磁单极问题等的过程中,与高能物理真空相变理论相结合,又发展成更为完善的暴胀宇宙模型。虽然具有暴胀机制的大爆炸模型为宇宙学的发展奠定了基础,然而随着量子引力理论的发展,有关量子宇宙学的一系列更深层次的问题,如宇宙时空拓扑结构、基本耦合常数的真空参数问题、宇宙常数的动力学解释等,又引起了更新一轮的激烈争论。这场理论研究的重要进展的源头,即把世人的目光从一般天体引向宇宙整体的就是哈勃定律的建立。1.哈勃定律与膨胀的宇宙研究表明,宇宙的年龄、演变及结局,在很大的程度上决定于它的膨胀速率。对宇宙膨胀的观测大体分成两个方面,这就是测定星系的运动速率与测定地球到星系的距离。前者关系到宇宙的形成模型及有关理论的发展,而后者则是估算天体亮度、质量和大小的重要依据,然而无论哪一种,都取决于哈勃常数的测量。哈勃常数已成为近代宇宙学中最重要的基本常数之一。20世纪初,几台口径1米的大型望远镜陆续建造成功,它们为河外星系的系统观测创造了条件。美国天文学家哈勃(Hubble,EdwinPowell1889~1953)在这种条件下,为现代天文学与宇宙学做出了重要的贡献。哈勃1910年毕业于芝加哥大学天文学系,后到英国牛津大学读书,在那里获得法律学硕士学位。1914年至1917年在耶基斯天文台攻读天文学博士学位。第一次世界大战期间,曾在法国服役,战后在威尔逊山天文台从事星系的观测研究。当时的威尔逊山天文台已建成100英寸的天文望远镜。利用这台望远镜,哈勃把观测的目标集中在他所称的“一片片的亮雾”之上,这就是星云。与哈勃同时代的一些天文学家也在对这些星云做了大量的观测工作,例如在里克天文台工作的美国天文学家柯蒂斯(Curtis,HeberDoust1872~1942)致力于河外星系的研究,他借助对新星的观测及利用星系角大小估算距离,认为所观测到的绝大部分星云都属于河外星系。热衷于星系观测与研究的还有美国天文学家沙普利(Shap-ley,Harlow1885~1972),他曾任美国哈佛大学天文台台长,1915~1920年间,曾用威尔逊山天文台100英寸望远镜研究旋涡星云,他利用勒维特(Leavitt,HenriettaSwan1868~1921)发现的造父变星作为量天尺,确定了这些星云的距离,认为它们大约距太阳5万光年左右,应该属于银河系,因此将银河系的尺度扩展到原有的3倍。沙普利还第一个提出,太阳系不处在银河系的中心,虽然他把太阳从银河系的中心地位赶了下来,却又把银河系放到了宇宙的中心之上。柯蒂斯的看法则不同,他认为宇宙中充满着大量的像银河系那样的恒星系统。1920年,在美国国家科学院,柯蒂斯与沙普利的两种不同观点正式交锋,虽然在这场论战中柯蒂斯占了上风,却并未有得出公认一致的结论,直到三年后,哈勃给出的观测事实,才使上述论战有了决定性的结果。1923年,威尔逊山天文台建成了2.5米口径的天文望远镜,哈勃利用它在仙女座星云外缘找到一颗造父变星,根据其光变周期与光度之间的关系,他推断出该星的距离为15万秒差距(实际为80万秒差距),比沙普利的银河系要大得多。这表明,仙女座大星云是一个河外星系,从而结束了河外天体是否存在的辩论,使天文学家的研究领域迈出了银河系。与哈勃同时代的另一位天文学家斯里弗(Slipher,VestoMelvin 1875~1969)也对星云研究感兴趣。他对星系光谱做了大量的观测。1921年,他首先把多普勒-斐索效应用于仙女座大星云,发现所观测到的星系光谱波长大多比实验室观测到的要长,这表明,这些星云都在远离地球退行,其退行速度大大地高于恒星的视向速度。 1929年,在同行们研究成果的基础上,哈勃仅以24个已知距离星系的观测资料为依据,做出了速率-距离的关系图。图中显示速率与距离值成正比,即vr=H0r,vr为星系对银河系的视向速率,上式即为哈勃定律,式中的常数H0就是哈勃常数,由这一常数得到的宇宙年龄H0-1=1.84×108年,该值恰与当时用散射方法观察到的地壳中古老岩石年龄1.8×108年惊人地一致,哈勃的结果,很快地得到认同。哈勃的这一结果,不仅证明了整个宇宙处于膨胀之中,而且这种膨胀速度与距离r成正比,因而既是处处没有中心又是处处为中心的。为了扩展观测的范围,需要能观测到更为遥远星系团中的星系。由于工作量的骤增,哈勃开始与赫马逊(Huma-son,MiltonLaSalle1891~1972)合作。哈勃负责测量星系的亮度,赫马逊负责测量红移量。赫马逊并非科班出身,最初只是威尔逊山天文台的一位看门人,工作之便使他热爱上了天文学,在为别人假期代班的天文观测中,显示了他出众的才华和娴熟的观测技巧,不久即正式投入天文学研究。在哈勃去世后,他继续了哈勃的天文观测事业,1956年,他又与其他人合作,利用观测到的资料,改进了哈勃定律,因而与勒梅特和盖莫夫的大爆炸理论取得了一致。2.哈勃常数值修正的三次高潮从原理上看,似乎哈勃常数的测定是简单的,即只要测出星系距离与退行速率,即可由哈勃定律得到哈勃常数。然而在实际上并非如此,星系的速率可以直接从谱线红移获得,可是距离的测量却是既困难又复杂的。对于1000万光年以内附近星系的距离,天文学家们的测量结果都比较一致,这种测量以造父变星为量天尺进行。1908年,在哈佛天文台工作的勒维特在南非观测时发现,造父变星的亮度周期性变化,光变周期越长,平均亮度也越大。这一发现具有不寻常的意义,因为观察亮度变化的整个过程,就可以得到光变周期和视亮度,随后即可计算得到它的绝对亮度。再根据距离加大,视亮度递减的关系,即可由绝对亮度与视亮度之比,确定造父变星的距离。因此,把造父变星作为量天尺,利用三角视差法,逐步扩大测量范围,不仅可以量出银河系的大小,还能测量出各河外星系的大小和距离。在20年代,哈勃用造父变星证实了银河系以外还存在有其它星系以后,从30年代到50年代,哈勃与桑德奇(Sandage,Allen Rex 1926~)等人,又在附近星系中寻找更多的造父变星以确立更新的量天尺,为此做了大量的工作。他们成功地测量了十几个星系的距离,改进了确定哈勃常数的基础。最初的哈勃常数值为H0=550千米/秒/百万秒差距(以下单位略)。1936年,考虑到星际消光因素,哈勃常数被修定为H0=526。在最初,这一数值被认为是准确的,因为按H0-1得到的宇宙年龄恰好与当时的地质观测结果相一致。二战之后,利用造父变星为量天尺,使哈勃常数逐渐得到了修正。1952年,在威尔逊山帕洛马文天台工作的旅美德国天文学家巴德(Baade,Walter 1893~1960)掀起了哈勃常数修正的第一个高潮。这次高潮是由修改量天尺引起的。此时,帕洛马天文台5米口径天文望远镜建成并开始运转。巴德利用他的精确而系统的测量,不仅在仙女星座中找到了300个以上的造父变星,而且还发现恒星分为两种星族,每一星族都有自己的造父变星,它们只适用于附近星系,而原有哈勃定律所针对的则都是建立在第一星族基础上的造父变星。随着对造父变星周光曲线的修定,随着观测尺度的加大,必须更换原有哈勃常数测定中的量天尺。经巴德计算,遥远星系的距离比原来的估计值增加了一倍,哈勃常数将比原来减小一倍。1952年,巴德在罗马举行的第8届国际天文学大会上,宣布了他的结果,H0=260。哈勃常数修正的第二个高潮由哈勃的接班人桑德奇掀起。桑德奇是一位著名的实测天文学家,从1956年开始,他在帕洛马天文台对哈勃常数进行了系统的测量工作。在几年的时间内,他得到了600多个星系的数据,最大的红移量值达到Z=0.202,所得到的哈勃常数值为H0=180。在此基础上,桑德奇又对哈勃常数做了进一步的修正,他们再度更换量天尺并把观测范围进一步加大,此时原有确定距离的方法已不再适用,因为当星系距离达到了几百万秒差距时,望远镜已无法区分星系中单个的星,必须寻找代替造父变星做为新距离标准的“指示体”。他们通过天体的绝对星等和视星等的关系,先确定指示体的距离,再由指示体确定星系距离。他们认为能作为距离指示体的有,造父变星、HⅡ区、球状星云、超新星和椭圆星系等。1961年,桑德奇在美国伯克利召开的国际天文学大会上宣布,总估各种测量结果,哈勃常数值应在75与113之间,最或然值为H=98±15,一般可取为100。这一结果表明,宇宙的尺度要比人们早期预期结果远大得多。进入70年代以来,哈勃常数的测定日益受到天文学家们的重视,对它的测量方法也更加系统,测量的精度也日益提高,因而形成了哈勃常数修正的第三次高潮。然而,这次修正高潮之后,局面却日益复杂化。哈勃常数的各次测量值越来越多地接近高低两个值上。桑德奇和他的合作者塔曼得到的值是50,而德克萨斯大学的德瓦科列尔(de Vaucouleurs)的结果却是100,两个值的测量方法都是以造父变星为起点,其后选用不同距离的指示体进行的,结果竟然相差一倍,不仅出现了哈勃常数纷争的局面,也使人们在实际运算中,出现了任意选择的局面,有人选取50,有人选取100,还有人选择平均值75,虽然这些值的选取都具有权威性,但是仍无法最后判定哪一个最准确。目前,对哈勃常数做出裁决为时尚早,但是,从其它方面得到的佐证中,仍然可以提出带有倾向性的意见。根据哈勃常数值,宇宙的哈勃年龄应为t0=19.7×109年和t9=9.8×109年。然而宇宙的年龄还有其它的估算方法。一种方法是测量矿石中放射性元素的含量,根据其半衰期加以估算。对各种放射性元素综合测量的结果,所给出的宇宙年龄是1×1010另一种较为有效的方法是测定球状星团的年龄。根据球状星团的赫罗图,得出它们的年龄在(10~20)×1010综合这些从不同角度得到的估算结果,宇宙的年龄不超过200亿年,这表明取小值哈勃常数更符合实际。由于哈勃常数已成为近代宇宙学中最重要也最基本的常数之一,近年来,对它的研究已成为十分活跃的课题。正式发表的有关哈勃常数的论文已有数百篇。1989年,著名天体物理学家范登堡(Van den Bergh)为天文学和天体物理评论杂志撰写了一篇权威性论文①,它综述了截止到80年代末所有关于哈勃常数的测量和研究结果,最后认为,哈勃常数的取值应为H0=67±8。3.多余天线温度的发现1963年初,在贝尔实验室工作的年青物理学家彭齐亚斯(Penzias,Arno Allan 1933~)和射电天文学家威尔逊(Wilson,Robert Woodrow 1936~)合作,测量银河系内高纬星系的银晕辐射。他们所使用的射电望远镜原是用于接收人造卫星“回声号”回波用的大喇叭口天线加辐射计制成。他们还采用了当时噪音最低的红宝石行波微波激射器,并利用液氦致冷的波导管作为参考噪音源,因为它能产生功率确定的噪音以作为噪音的基准,使噪音的功率可以用等效的温度表示。由于当时的手头正好有一台7.35cm的红宝石行波微波激射器,他们就先在7cm波段上开始了天线的测试工作。彭齐亚斯和威尔逊的测量结果①表明,天线的等效温度约为6.7±0.3K,天线自身的温度为3.2±0.7K,其中大气贡献为2.3±0.3K,天线自身欧姆损耗和背瓣响应的贡献约为1K,扣除这些因素,最后得到,天线存在有多余噪音,它的等效温度约为3.5±1K。尽管他们采用了各种措施,把各种估计到的噪音来源尽量消除,这个多余噪音的等效温度值依然存在,它不仅稳定,而且均匀无偏振,在任何方向都能接收到。彭齐亚斯和威尔逊观测到天线多余噪音温度现象,带有一定的偶然性,因为实验并没有在理论的预言或指导下进行。然而可贵的是,他们重视观测的结果,忠实于原始资料,不但没有轻易放弃偶然观测到的现象,反而抓住它们一追到底。并想方设法挖掘观测事实背后的意义,这就使他们能不失时机地做出重大发现。在这一成功之中,更难能可贵的是贝尔实验室对实验工作的支持。这一当今最大的工业实验室,拥有数千名才华出众的科技工作者,他们在进行电话、电报技术发展与开发业务的同时,始终重视基础科学,特别是基础物理学的研究工作。它在世界通讯事业中起着中流砥柱的作用,在物理学的研究中,也取得了许多令世人瞩目的成果,例如,在天体物理学方面,1931年,贝尔实验室的电信工程师央斯基(Jansky,Kart Guthe 1905~1950)首先发现了来自银心的周期性噪音射电辐射,从此开创了射电天文学的新领域。这次彭齐亚斯与威尔逊的观测是贝尔实验室与国家射电天文观测台合作进行,贝尔实验室远见卓识地从人力、设备与资金上给予了大力支持,提供了当时世界一流的灵敏毫米波谱线射电望远镜、热电子辐射计、液氦致冷参照噪音源,为实验的成功起到了至关重要的作用。4.宇宙微波背景辐射的证实在与彭齐亚斯、威尔逊实验观测的同时,另一些人也在对同一目标搜寻着。他们是以迪克(Dicke,Robert Henry 1916~)为首的普林斯顿大学的一个研究小组,正在开展一项有关宇宙学的探索性研究。1941年,迪克从罗彻斯特大学获得博士学位。1946年前,他在普林斯顿大学物理系执教。迪克成名于他的一项重要成果——标量-张量场论的提出①。这一理论与爱因斯坦的引力理论并驾齐驱,也能成功地解释引力研究中的一些观测现象,以致在引力场研究中,谁是谁非还一时难见分晓。在60年代,随着宇宙学研究的兴起,迪克对伽莫夫的宇宙原始大爆炸理论产生了浓厚的兴趣。他曾设想,至今宇宙应残存有大爆炸的遗迹,例如宇宙早期炽热高密时期残留的某种辐射。他与他的合作者认为,这种辐射有可能是一种可观测到的射电波②。迪克建议罗尔(Roll,P.G.)和威尔金森(Wilkinson,D.T.)进行观测,还建议皮布尔斯(Peebles,P.J.E.)对此进行理论分析。皮布尔斯等人在1965年3月所发表的论文中①明确指出,残存的辐射是一种可观测的微波辐射。叙述了极早期宇宙中重元素分解后,轻元素重新产生的图景。皮布尔斯后来在霍普金斯大学做过的一次学术报告中,也阐明了这个想法。1965年,彭齐亚斯在给麻省理工学院射电天文学家伯克(Burke,B.)的电话中,告之他们难以解释的多余天线噪音,伯克立即想起了在卡内基研究所工作的一个同事特纳(Turner,K.)曾提到过的皮布尔斯的那次演讲,就建议彭齐亚斯与迪克小组联系。就这样,实验上和理论上的两大发现由此汇合并推动事态迅速地发展起来。先是彭齐亚斯与迪克通了电话,随即迪克寄来一份皮布尔斯等人论文的预印本,接着迪克及其同事访问了彭齐亚斯和威尔逊的实验基地,他们在离普林斯顿大学只有几英里之遥的克劳福德山讨论了观测的结果之后,双方协议共同在《天体物理学》杂志上发表了两篇简报,一篇是迪克小组的理论文章《宇宙黑体辐射》②,另一篇是彭齐亚斯与威尔逊的实验报导《在4080MHz处天线多余温度的测量》③,虽然后一篇论文考虑到自己尚未在宇宙论方面做出什么工作,出于慎重,论文并未涉及背景辐射宇宙起源的理论,只是提到“所观察到的多余噪音温度的一种可能解释,由本期Dicke、Peebles、Roll和Wikinson所写的另一篇简讯中给出”,但是,两篇论文分别从理论与实验的不同角度表述的研究成果竟如此珠联璧合,不能不令人惊叹。两篇论文发表后,引起了极大的反响。人们意识到,如果能给出天线多余温度确实来自宇宙背景辐射的证明,这个成果对宇宙学的发展的影响将是不可估量的。根据理论分析,早期宇宙极热状态下的光辐射是处于热平衡状态下的,它应具有各向同性且热辐射能量密度分布遵守普朗克定律等特点。随着宇宙的热膨胀,宇宙逐渐冷却,残存的光辐射谱仍应保持普朗克分布。彭齐亚斯与威尔逊所检验到的辐射是否遵从这一分布,应是检验天线多余温度是否来源于宇宙背景辐射的一项重要标准。从1965年到70年代的中期的近十年时间里,不少研究小组相继完成了各种测试。迪克小组在3.2cm波段上得到了3.0±0.5K,夏克斯哈夫特和赫威尔在20.7cm上测得2.8±0.6K,彭齐亚斯和威尔逊在21.1cm上测得3.2±0.1K。然而3K黑体辐射的峰值应在0.1cm附近,为取得0.1cm附近的测量值,康奈尔大学的火箭小组和麻省理工学院的气球小组的高空观测结果是,在远红外区有相当于3K的黑体辐射。加州大学伯克利分校的伍迪小组用高空气球测出,在0.25cm到0.06cm波段,有2.99K的黑体辐射。至此,实验结果与理论已得到极好的符合,彭齐亚斯和威尔逊观测到的多余天线温度确实是宇宙微波背景辐射,这种辐射在宇宙各处的各向同性、无偏振、具有大约3K的黑体谱。这项成果对宇宙学的研究具有重大意义,为此,彭齐亚斯和威尔逊获得了1978年诺贝尔物理学奖。

从物理学专业本科毕业论文所涉及的研究领域来看,又可以将其分为物理学理论、电子技术、计算机和应用物理四大类。A、物理学理论方向的毕业论文内容:力学、声学、数学物理、物理学与交叉学科、引力与天体物理、原子与分子和团簇物理、凝聚态物理、量子物理、场论与粒子物理、等离子体物理、光学、核物理、化学物理、统计物理、物理学史、综合等。B、电子技术:物理实验、电路的设计、传感器、C、计算机技术:多媒体技术、数据库等。D、应用物理:①材料科学:纳米材料技术、生物医学材料、薄膜材料以及新型高性能结构材料等;材料的先进合成、制造、加工的理论与新方法,材料组分、结构与性能的设计理论;结构、性能控制、材料的环境效应和寿命的评价理论;分子、纳米及微观尺度下的材料科学理论。②信息科学:高速信息网络体系结构与安全性的基础理论;微(纳)米电子学与分子电子学基础与半导体集成系统;光子、光电子集成与光子学基础;以感觉系统、神经系统、免疫系统以及系统生物学仿生和建模的生物信息系统。从分子层次着手设计的具有半导体、超导、吸氢、吸波、非线性光学等特殊功能的光、电、磁和力学纳米功能材料。③传感器技术。④测量与仪器。

天体物理论文题目

这个发现者很难确定,因为发现的过程很曲折。1948年, 美国科学家阿尔弗和赫尔曼预言,宇宙大爆炸产生的残系辐射,由于宇宙的膨胀而逐渐冷却,它目前所具有的温度应该在绝对零度以上5K(绝对零度等于零下273.15摄氏度,即-273℃)左右。但人们不以为然。到1950年代末,宇宙大爆炸理论逐渐热了起来,人们开始关注到宇宙的温度。到60年代初,在美国、前苏联、英国等地,都有物理学家在寻找宇宙中可能存在的大爆炸残余温度,而且都是用温度对应的微波辐射来测量的。其中前苏联科学家因为所使用的仪器原因,得出了宇宙温度在7K的结论。因为他们用的仪器的测量下限是7K。英国人更惨,他们用的天线是二战时的警戒雷达天线,因为当时的技术不行,天线的灵敏度太差,什么也测不到。美国当时有两个课题组在进行这项研究,但其中并没有贝尔实验室的工程师彭齐亚斯和威尔逊,而是普林斯顿大学的科学家。但普林斯顿大学的科学家们测量手段不行,空有理论,没有实际发现。贝尔实验室的彭齐亚斯和威尔逊当时并没有因为寻找宇宙的温度而进行研究,他们进行的是如何更好地实现卫星通讯。他们安装了一架号角形天线,用于接收卫星信号,但他们总是发现有莫明其妙的无线电信号干扰,干扰发生在微波频段,对应的温度约为3K。这个干扰无论如何也消除不掉,他们无可奈何。此事被附近普林斯顿大学的迪克、皮布尔斯和威尔金斯听说了,于是,科学家们来到彭齐亚斯和威尔逊的实验室,理论和实际终于碰头了。真相大白于天下,他们发现的是宇宙大爆炸的余温。时间是1965年。两个小组各发表了一篇论文,叙述了各自的发现。发表于同一期《天体物理学报》上。狄克、皮布尔斯、劳尔和威尔金森论文题目是《宇宙黑体辐射》,彭齐亚斯和威尔逊的论文以《在4080兆赫上额外天线温度的测量》为题,并说“关于此现象的解释由本卷另一篇论文给出”。1978年诺贝尔物理学奖评奖时,可能评选委员会没有认真核实真正的发现者是谁,就把奖颁给了彭齐亚斯和威尔逊。也许是因为当时迪克、皮布尔斯和威尔逊他们只是进行了理论计算,从而认为发现者是彭齐亚斯和威尔逊。但彭齐亚斯和威尔逊当时根本就不知道他们发现的是什么,他们只以为是莫明其妙的干扰,甚至为了消除这种信号,连天线上的鸽子粪都打扫干净了。所以,虽然宇宙微波背景辐射的发现者是彭齐亚斯和威尔逊,这一说法已成定论,但这一说法根本就经不起推敲。谁发现的?难说!

自己看着办!

从物理学专业本科毕业论文所涉及的研究领域来看,又可以将其分为物理学理论、电子技术、计算机和应用物理四大类。A、物理学理论方向的毕业论文内容:力学、声学、数学物理、物理学与交叉学科、引力与天体物理、原子与分子和团簇物理、凝聚态物理、量子物理、场论与粒子物理、等离子体物理、光学、核物理、化学物理、统计物理、物理学史、综合等。B、电子技术:物理实验、电路的设计、传感器、C、计算机技术:多媒体技术、数据库等。D、应用物理:①材料科学:纳米材料技术、生物医学材料、薄膜材料以及新型高性能结构材料等;材料的先进合成、制造、加工的理论与新方法,材料组分、结构与性能的设计理论;结构、性能控制、材料的环境效应和寿命的评价理论;分子、纳米及微观尺度下的材料科学理论。②信息科学:高速信息网络体系结构与安全性的基础理论;微(纳)米电子学与分子电子学基础与半导体集成系统;光子、光电子集成与光子学基础;以感觉系统、神经系统、免疫系统以及系统生物学仿生和建模的生物信息系统。从分子层次着手设计的具有半导体、超导、吸氢、吸波、非线性光学等特殊功能的光、电、磁和力学纳米功能材料。③传感器技术。④测量与仪器。

浅论天文天文学历史 天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。 古时候,人们通过用肉眼观察太阳、月亮、星星来确定时间和方向,制定历法,指导农业生产,这是天体测量学最早的开端。早期天文学的内容就其本质来说就是天体测量学。从十六世纪中期哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文学在内的自然科学,受到宗教神学的严重束缚。哥白尼的学说使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。 十八、十九世纪,经典天体力学达到了鼎盛时期。同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。 二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。 天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。 人类很早以前就想到太空畅游一番了。1903年人类在地球上开设了第一家月亮公园。花50美分就能登上一个雪茄状、带翼的车,然后车身剧烈摇晃,最后登上一个月亮模型。 同一年,莱特兄弟在空中哒哒作响地飞行了59秒,同时一位名为康斯坦丁·焦乌科夫斯基、自学成才的俄罗斯人发表了题为《利用反作用仪器进行太空探索》的文章。他在文内演算,一枚导弹要克服地球引力就必须以1.8万英里的时速飞行。他还建议建造一枚液体驱动的多级火箭。 50年代,有一个公认的基本思想是,哪个国家第一个成功地建立永久性宇宙空间站,它迟早就能控制整个地球。冯·布劳恩向美国人描述了洲际导弹、潜艇导弹、太空镜和可能的登月旅行。他曾设想建立一个经常载人的、并能发射核导弹的宇宙空间站。他说:“如果考虑到空间站在地球上所有有人居住的地区上空飞行,那么人们就能认识到,这种核战争技术会使卫星制造者在战争中处于绝对优势地位。 1961年,加加林成为进入太空的第一人。俄国人用他说明,在天上飞来飞去的并不是天使,也不是上帝。美国约翰·肯尼迪竞选的口号是“新边疆”。他解释说:“我们又一次生活在一个充满发现的时代。宇宙空间是我们无法估量的新边疆。”对肯尼迪来说,苏联人首先进入宇宙空间是“多年来美国经历的最惨痛的失败”。唯一的出路是以攻为守。1958年美国成立了国家航空航天局,并于同年发射了第一颗卫星“探险者”号。1962年约翰·格伦成为进入地球轨道的第一位美国人。 许多科学家本来就对危险的载人太空飞行表示怀疑,他们更愿意用飞行器来探测太阳系。 而美国人当时实现了突破:三名宇航员乘“阿波罗号”飞船绕月球飞行。在这种背景下,计划在1969年1月实现的两艘载人飞船的首次对接具有特殊的意义。 20世纪的80年代,苏联的第三代空间站“和平”号轨道站使其航天活动达到高峰,都让美国人感到眼热。“和平”号被誉为“人造天宫”,1986年2月20日发射上天,是迄今人类在近地空间能够长期运行的唯一载人空间轨道站。它与其相对接的“量子1号”、“量子2号”、“晶体”舱、“光谱”舱、“自然”舱等舱室形成一个重达140吨、工作容积400立方米的庞大空间轨道联合体。在这一“太空小工厂”相继考察的俄罗斯和外国宇航员有106名,进行的科考项目多达2.2万个,重点项目600个。 在“和平”号进行的最吸引人的实验是延长人在太空的逗留时间。延长人在空间的逗留时间是人类飞出自己的摇篮地球、迈向火星等天体最为关键的一步,要解决这一难题需克服失重、宇宙辐射及人在太空所产生的心理障碍等。俄宇航员在这方面取得重大进展,其中宇航员波利亚科夫在“和平”号上创造了单次连续飞行438天的纪录,这不能不被视为20世纪航天史上的一项重要成果。在轨道站上进行了诸如培养鹌鹑、蝾螈和种植小麦等大量的生命科学实验。 如果将和平号空间站看作人类的第三代空间站,国际空间站则属于第四代空间站了。国际空间站工程耗资600多亿美元,是人类迄今为止规模最大的载人航天工程。它从最初的构想和最后开始实施既是当年美苏竞争的产物,又是当前美俄合作的结果,从侧面折射出历史的一段进程。 国际空间站计划的实施分3个阶段进行。第一阶段是从1994年开始的准备阶段,现已完成。这期间,美俄主要进行了一系列联合载人航天活动。美国航天飞机与俄罗斯“和平”号轨道站8次对接与共同飞行,训练了美国宇航员在空间站上生活和工作的能力;第二阶段从1998年11月开始:俄罗斯使用“质子-K”火箭把空间站主舱——功能货物舱送入了轨道。它还担负着一些军事实验任务,因此该舱只允许美国宇航员使用。实验舱的发射和对接的完成,将标志着第二阶段的结束,那时空间站已初具规模,可供3名宇航员长期居住;第三阶段则是要把美国的居住舱、欧洲航天局和日本制造的实验舱和加拿大的移动服务系统等送上太空。当这些舱室与空间站对接后,则标志着国际空间站装配最终完成,这时站上的宇航员可增至7人。 美、俄等15国联手建造国际空间站,预示着一个各国共同探索和和平开发宇宙空间的时代即将到来。不过,几十年来载人航天活动的成果还远未满足他们对太空的渴求。“路漫漫其休远兮,吾将上下而求索”,人类一直都心怀征服太空的欲望和和平利用太空资源的决心。1998年11月,人类第一个进入地球轨道的美国宇航员、77岁的老格伦带着他未泯的雄心再次踏上了太空征程,这似乎在告诉人类:照此下去,征服太空不是梦。 [编辑本段]天文学概况 天文和气象不同,它的研究对象是地球大气层外各类天体的性质和天体上发生的各种现象——天象,而气象研究的对象是地球大气层内发生的各种现象——气象。 天文学所研究的对象涉及宇宙空间的各种物体,大到月球、太阳、行星、恒星、银河系、河外星系以至整个宇宙,小到小行星、流星体以至分布在广袤宇宙空间中的大大小小尘埃粒子。天文学家把所有这些物体统称为天体。地球也是一个天体,不过天文学只研究地球的总体性质而一般不讨论它的细节。另外,人造卫星、宇宙飞船、空间站等人造飞行器的运动性质也属于天文学的研究范围,可以称之为人造天体。 宇宙中的天体由近及远可分为几个层次:(1)太阳系天体:包括太阳、行星(包括地球)、行星的卫星(包括月球)、小行星、彗星、流星体及行星际介质等。(2)银河系中的各类恒星和恒星集团:包括变星、双星、聚星、星团、星云和星际介质。(3)河外星系,简称星系,指位于我们银河系之外、与我们银河系相似的庞大的恒星系统,以及由星系组成的更大的天体集团,如双星系、多重星系、星系团、超星系团等。此外还有分布在星系与星系之间的星系际介质。 天文学还从总体上探索目前我们所观测到的整个宇宙的起源、结构、演化和未来的结局,这是天文学的一门分支学科——宇宙学的研究内容。天文学按照研究的内容还可分为天体测量学、天体力学和天体物理学三门分支学科。 天文学始终是哲学的先导,它总是站在争论的最前列。作为一门基础研究学科,天文学在不少方面是同人类社会密切相关的。时间、昼夜交替、四季变化的严格规律都须由天文学的方法来确定。人类已进入空间时代,天文学为各类空间探测的成功进行发挥着不可替代的作用。天文学也为人类和地球的防灾、减灾作着自己的贡献。天文学家也将密切关注灾难性天文事件——如彗星与地球可能发生的相撞,及时作出预防,并作出相应的对策。[编辑本段]太阳系 (注:在2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,冥王星被划为矮行星,并命名为小行星134340号,从太阳系九大行星中被除名。所以现在太阳系只有八大行星。文中所有涉及“九大行星”的都已改为“八大行星”。) 太阳系(solar system)是由太阳、8颗大行星、66颗卫星以及无数的小行星、彗星及陨星组成的。 行星由太阳起往外的顺序是:水星(mercury)、金星(venus)、地球(earth)、火星(mars)、木星(jupiter)、土星(saturn)、天王星(uranus)和海王星(neptune)。 离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets)。宇宙飞船对它们都进行了探测,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(大于3.0克/立方厘米)、体积小、自转慢、卫星少、主要由石质和铁质构成、内部成分主要为硅酸盐(silicate)并且具有固体外壳。 离太阳较远的木星、土星、天王星及海王星称为类木行星(jovian planets)。宇宙飞船也都对它们进行了探测,但未曾着陆。它们都有很厚的大气圈、主要由氢、氦、冰、甲烷、氨等构成、质量和半径均远大于地球,但密度却较低,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。 在火星与木星之间有100000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的,或者是一些未能聚积成为统一行星的石质碎块。陨星存在于行星之间,成分是石质或者铁质。 星,距离(AU),半径(地球),质量(地球),轨道倾角(度),轨道偏心率,倾斜度,密度(g/cm3) 太 阳,0 ,109 ,332,800 ,--- ,--- ,--- ,1.410 水 星 ,0.39 ,0.38 ,0.05 ,7 ,0.2056 ,0.1° ,5.43 金 星 ,0.72 ,0.95 ,0.89 ,3.394 ,0.0068 ,177.4° ,5.25 地 球 ,1.0 ,1.00 ,1.00, 0.000 ,0.0167 ,23.45° ,5.52 火 星 ,1.5, 0.53, 0.11 ,1.850 ,0.0934, 25.19° ,3.95 木 星 ,5.2 ,11.0 ,318 ,1.308 ,0.0483 ,3.12° ,1.33 土 星 ,9.5, 9.5 ,95 ,2.488 ,0.0560 ,26.73° ,0.69 天王星 ,19.2, 4.0 ,17 ,0.774 ,0.0461 ,97.86° ,1.29 海王星 ,30.1 ,3.9 ,17 ,1.774 ,0.0097 ,29.56° ,1.64 行星离太阳的距离具有规律性,即从离太阳由近到远计算,行星到太阳的距离(用a表示)a=0.4+0.3*2n-2(天文单位)其中n表示由近到远第n个行星(详见上表) 地球、火星、木星、土星、天王星、海王星的自转周期为12小时到一天左右,但水星、金星自转周期很长,分别为58.65天和243天,多数行星的自转方向和公转方向相同,但金星则相反。 除了水星和金星,其它行星都有卫星绕转,构成卫星系。 在太阳系中,现已发现1600多颗彗星,大致一半彗星是朝同一方向绕太阳公转,另一半逆向公转的。彗星绕太阳运行中呈现奇特的形状变化。 太阳系中还有数量众多的大小流星体,有些流星体是成群的,这些流星群是彗星瓦解的产物。大流星体降落到地面成为陨石。 太阳系是银河系的极微小部分,太阳只是银河系中上千亿个恒星中的一个,它离银河系中心约8.5千秒差距,即不到3万光年。太阳带着整个太阳系绕银河系中心转动。可见,太阳系不在宇宙中心,也不在银河系中心。 太阳是50亿年前由星际云瓦解后的一团小云塌缩而成的,它的寿命约为100亿年。[编辑本段]宇宙航天 宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。 宇宙是物质世界,它处于不断的运动和发展中。 千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。 在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,之后发生了大爆炸。 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的。 然而,大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底存在着什么东西? “大爆炸理论”是伽莫夫于1946年创建的。 大爆炸理论 (big-bang cosmology)现代宇宙系中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度后,早期形成化学元素的过程结束(见元素合成理论)。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。大爆炸模型能统一地说明以下几个观测事实: (1)大爆炸理论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温度下降至今天这一段时间为短,即应小于200亿年。各种天体年龄的测量证明了这一点。 (2)观测到河外天体有系统性的谱线红移,而且红移与距离大体成正比。如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。 (3)在各种不同天体上,氦丰度相当大,而且大都是30%。用恒星核反应机制不足以说明为什么有如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效率也很高,则可以说明这一事实。 (4)根据宇宙膨胀速度以及氦丰度等,可以具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言,今天的宇宙已经很冷,只有绝对温度几度。1965年,果然在微波波段上探测到具有热辐射谱的微波背景辐射,温度约为3K。

天体物理论文题目怎样取

从物理学专业本科毕业论文所涉及的研究领域来看,又可以将其分为物理学理论、电子技术、计算机和应用物理四大类。A、物理学理论方向的毕业论文内容:力学、声学、数学物理、物理学与交叉学科、引力与天体物理、原子与分子和团簇物理、凝聚态物理、量子物理、场论与粒子物理、等离子体物理、光学、核物理、化学物理、统计物理、物理学史、综合等。B、电子技术:物理实验、电路的设计、传感器、C、计算机技术:多媒体技术、数据库等。D、应用物理:①材料科学:纳米材料技术、生物医学材料、薄膜材料以及新型高性能结构材料等;材料的先进合成、制造、加工的理论与新方法,材料组分、结构与性能的设计理论;结构、性能控制、材料的环境效应和寿命的评价理论;分子、纳米及微观尺度下的材料科学理论。②信息科学:高速信息网络体系结构与安全性的基础理论;微(纳)米电子学与分子电子学基础与半导体集成系统;光子、光电子集成与光子学基础;以感觉系统、神经系统、免疫系统以及系统生物学仿生和建模的生物信息系统。从分子层次着手设计的具有半导体、超导、吸氢、吸波、非线性光学等特殊功能的光、电、磁和力学纳米功能材料。③传感器技术。④测量与仪器。

哎~~看来真的是没人比你更缺了

如何写好毕业论文毕业论文无论在内容或形式上都有一定的要求,这也是考核论文成绩的基本依据之一。关于毕业论文写作的具体要求,在以后的有关章节中将作详细论述,这里先说说毕业论文写作的一些原则要求。一、坚持理论联系实际的原则撰写毕业论文必须坚持理论联系实际的原则。理论研究,特别是社会科学的研究必须为现实服务,为社会主义现代化建设服务,为两个文明建设服务。理论来源于实践,又反作用于实践。科学的理论对实践有指导作用,能通过人们的实践活动转化为巨大的物质力量。科学研究的任务就在于揭示事物运动的规律性,并用这种规律性的认识指导人们的实践,推动社会的进步和发展。因此,毕业论文在选题和观点上都必须注重联系社会主义现代化建设的实际,密切注视社会生活中出现的新情况、新问题。坚持理论研究的现实性,做到理论联系实际,就必须迈开双脚,深入实际,进行社会调查研究。这也是我们正确认识社会的基本途径。人们只有深入到实际中去,同客观事物广泛接触,获得大量的感性材料,然后运用科学的逻辑思维方法,对这些材料进行去粗取精,去伪存真,由此及彼,由表及里的加工制作,才能从中发现有现实意义而又适合自己研究的新课题。在我国改革开放的实践中,新情况、新问题、新经验层出不穷,需要研究的问题遍布社会的方方面面,只要我们对现实问题有浓厚的兴趣和高度的敏感性,善于捕捉那些生动而具有典型性的现实材料,通过深入的思考和研究,就能从中引出有利于社会主义现代化建设的规律性认识,提高毕业论文的价值。当然撰写毕业论文可选择的课题十分广泛,并不只限于现实生活中的问题,也可以研究专业基本理论,中西方比较研究等。但无论选择什么研究课题,都必须贯彻理论联系实际的原则,做到古为今用,洋为中用,从历史的研究中吸取有益于现实社会发展的经验教训,从对外国的研究中,借鉴其成功经验和失败的教训,或为我国的对外政策提供某些依据。贯彻理论联系实际的原则和方法,必须认真读书,掌握理论武器。李瑞环同志指出:“强调联系实际,绝不意味着否定读书的重要,恰恰相反,更要认真地读,反复地读,深钻苦研,做到真正读懂弄通。否则,没有掌握理论,怎么谈得上理论联系实际?”(《求是》杂志1989年第24期)认真读书包括两个方面的内容,一是学好专业课,具备专业基础知识。这是写好毕业论文的前提和必要条件。经验告诉我们,只有具备了相应水平的知识积累,才能理解一定深度的学术问题;同时,也只有具备了某一特定的知识结构,才能对某学科中的问题进行研究。正如黑格尔所说,在讨论学术问题之前,必须“先有具备某种程度的知识”,否则,“没有凭借作为讨论出发的根据,于是他们只能徘徊于模糊空疏以及毫无意义的情况中”。(小逻辑》第三版序言)二是要认真学习马克思主义的基本原理,学会运用马克思主义的立场、观点和方法分析问题、解决问题。马克思主义正确地揭示了自然界、人类社会和思维发展的最一般规律,成为无产阶级和革命人民认识世界和改造世界的强大思想武器。马克思主义作为伟大的认识工具,虽然并不直接提供解决各种具体问题的答案,但它对我们如何正确地发现问题,分析和解决问题提供了正确的立场、观点和方法,因此,大学毕业生在撰写毕业论文时,应当努力学习和掌握马克思主义基本理论,自觉地用马克思主义的立场、观点和方法来指导毕业论文的写作。二、立论要科学,观点要创新(一)立论要科学毕业论文的科学性是指文章的基本观点和内容能够反映事物发展的客观规律。文章的基本观点必须是从对具体材料的分析研究中产生出来,而不是主观臆想出来的。科学研究作用就在于揭示规律,探索真理,为人们认识世界和改造世界开拓前进的道路。判断一篇论文有无价值或价值之大小,首先是看文章观点和内容的科学性如何。文章的科学性首先来自对客观事物的周密而详尽的调查研究。掌握大量丰富而切合实际的材料,使之成为“谋事之基,成事之道”。其次,文章的科学性通常取决于作者在观察、分析问题时能否坚持实事求是的科学态度。在科学研究中,既不容许夹杂个人的偏见,又不能人云亦云,更不能不着边际地凭空臆想,而必须从分析出发,力争做到如实反映事物的本来面目。再次,文章是否具有科学性,还取决于作者的理论基础和专业知识。写作毕业论文是在前人成就的基础上,运用前人提出的科学理论去探索新的问题。因此,必须准确地理解和掌握前人的理论,具有广博而坚实的知识基础。如果对毕业论文所涉及领域中的科学成果一无所知,那就根本不可能写出有价值的论文。(二)观点要创新毕业论文的创新是其价值所在。文章的创新性,一般来说,就是要求不能简单地重复前人的观点,而必须有自己的独立见解。学术论文之所以要有创新性,这是由科学研究的目的决定的。从根本上说,人们进行科学研究就是为了认识那些尚未被人们认识的领域,学术论文的写作则是研究成果的文字表述。因此,研究和写作过程本身就是一种创造性活动。从这个意义上说,学术论文如果毫无创造性,就不成其为科学研究,因而也不能称之为学术论文。毕业论文虽然着眼于对学生科学研究能力的基本训练,但创造性仍是其着力强调的一项基本要求。当然,对学术论文特别是毕业论文创造性的具体要求应作正确的理解。它可以表现为在前人没有探索过的新领域,前人没有做过的新题目上做出了成果;可以表现为在前人成果的基础上作进一步的研究,有新的发现或提出了新的看法,形成一家之言3也可以表现为从一个新的角度,把已有的材料或观点重新加以概括和表述。文章能对现实生活中的新问题作出科学的说明,提出解决的方案,这自然是一种创造性;即使只是提出某种新现象、新问题,能引起人们的注意和思考,这也不失为一种创造性。国家科委成果局在1983年3月发布的《发明奖励条例》中指出:“在科学技术成就中只有改造客观世界的才是发明,……至于认识客观世界的科学成就,则是发现。”条例中对“新”作了明确规定:“新”是指前人所没有的。凡是公知和公用的,都不是“新”。这些规定,可作为我们衡量毕业论文创造性的重要依据。根据《条例》所规定的原则,结合写作实践,衡量毕业论文的创造性,可以从以下几个具体方面来考虑:(1)所提出的问题在本专业学科领域内有一定的理论意义或实际意义,并通过独立研究,提出了自己一定的认识和看法。(2)虽是别人已研究过的问题,但作者采取了新的论证角度或新的实验方法,所提出的结论在一定程度上能够给人以启发。(3)能够以自已有力而周密的分析,澄清在某一问题上的混乱看法。虽然没有更新的见解,但能够为别人再研究这一问题提供一些必要的条件和方法。(4)用较新的理论、较新的方法提出并在一定程度上解决了实际生产、生活中的问题,取得一定的效果。或为实际问题的解决提供新的思路和数据等。(5)用相关学科的理论较好地提出并在一定程度上解决本学科中的问题。(6)用新发现的材料(数据、事实、史实、观察所得等)来证明已证明过的观点。科学研究中的创造性要求对前人已有的结论不盲从,而要善于独立思考,敢于提出自己的独立见解,敢于否定那些陈旧过时的结论,这不仅要有勤奋的学习态度,还必须具有追求真理、勇于创新的精神。要正确处理继承与创新的关系,任何创新都不是凭空而来的,总是以前人的成果为基础。因此,我们要认真地学习、研究和吸收前人的成果。但是这种学习不是不加分析地生吞活剥,而是既要继承,又要批判和发展。三、论据要翔实,论证要严密(一)论据要翔实一篇优秀的毕业论文仅有一个好的主题和观点是不够的,它还必须要有充分、翔实的论据材料作为支持。旁征博引、多方佐证,是毕业论文有别于一般性议论文的明显特点。一般性议论文,作者要证明一个观点,有时只需对一两个论据进行分析就可以了,而毕业论文则必须以大量的论据材料作为自己观点形成的基础和确立的支柱。作者每确立一个观点,必须考虑:用什么材料做主证,什么材料做旁证;对自己的观点是否会有不同的意见或反面意见,对他人持有的异议应如何进行阐释或反驳。毕业论文要求作者所提出的观点、见解切切实实是属于自己的,而要使自己的观点能够得到别人的承认,就必须有大量的、充分的、有说服力的理由来证实自己观点的正确。毕业论文的论据要充分,还须运用得当。一篇论文中不可能也没有必要把全部研究工作所得,古今中外的事实事例、精辟的论述、所有的实践数据、观察结果、调查成果等全部引用进来,而是要取其必要者,舍弃可有可无者。论据为论点服务,材料的简单堆积不仅不能证明论点,强有力地阐述论点,反而给人以一种文章拖咨、杂乱无章、不得要领的感觉。因而在已收集的大量材料中如何选择必要的论据显得十分重要。一般来说,要注意论据的新颖性、典型性、代表性,更重要的是考虑其能否有力地阐述观点。毕业论文中引用的材料和数据,必须正确可靠,经得起推敲和验证,即论据的正确性。具体要求是,所引用的材料必须经过反复证实。第一手材料要公正,要反复核实,要去掉个人的好恶和想当然的推想,保留其客观的真实。第二手材料要究根问底,查明原始出处,并深领其意,而不得断章取义。引用别人的材料是为自己的论证服务,而不得作为篇章的点缀。在引用他人材料时,需要下一番筛选、鉴别的功夫,做到准确无误。写作毕业论文,应尽量多引用自己的实践数据、调查结果等作为佐证。如果文章论证的内容,是作者自己亲身实践所得出的结果,那么文章的价值就会增加许多倍。当然,对于掌握知识有限、实践机会较少的大学生来讲,在初次进行科学研究中难免重复别人的劳动,在毕业论文中较多地引用别人的实践结果、数据等,在所难免。但如果全篇文章的内容均是间接得来的东西的组合,很少有自己亲自动手得到的东西,那也就完全失去了写作毕业论文的意义。(二)论证要严密论证是用论据证明论点的方法和过程。论证要严密、富有逻辑性,这样才能使文章具有说服力。从文章全局来说,作者提出问题、分析问题和解决问题,要符合客观事物的规律,符合人们对客观事物认识的程序,使人们的逻辑程序和认识程序统一起来,全篇形成一个逻辑整体。从局部来说,对于某一问题的分析,某一现象的解释,要体现出较为完整的概念、判断、推理的过程。毕业论文是以逻辑思维为主的文章样式,它诉诸理解大量运用科学的语体,通过概念、判断、推理来反映事物的本质或规律,从已知推测未知,各种毕业论文都是采用这种思维形式。社会科学论文往往是用已知的事实,采取归纳推理的形式,求得对未知的认识。要使论证严密,富有逻辑性,必须做到:(1)概念判断准确,这是逻辑推理的前提;(2)要有层次、有条理的阐明对客观事物的认识过程;(3)要以论为纲,虚实结合,反映出从“实”到“虚”,从“事”到“理”,即由感性认识上升到理性认识的飞跃过程。此外,撰写毕业论文还应注意文体式样的明确性、规范性。学术论文、调查报告、科普读物、可行性报告、宣传提纲等都各有自己的特点,在写作方法上不能互相混同。学术论文各部分的写作要求与写作方法作者:None发布日期:2002-5-21全文:学术论文各部分的写作要求与写作方法(一)题名(Title,Topic)题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。论文题目是一篇论文给出的涉及论文范围与水平的第一个重要信息,也是必须考虑到有助于选定关键词不达意和编制题录、索引等二次文献可以提供检索的特定实用信息。论文题目十分重要,必须用心斟酌选定。有人描述其重要性,用了下面的一句话:"论文题目是文章的一半"。对论文题目的要求是:准确得体:简短精炼:外延和内涵恰如其分:醒目。对这四方面的要求分述如下。1.准确得体要求论文题目能准确表达论文内容,恰当反映所研究的范围和深度。常见毛病是:过于笼统,题不扣文。如:"金属疲劳强度的研究"过于笼统,若改为针对研究的具体对象来命题。效果会好得多,例如"含镍名牌的合金材料疲劳强度的研究",这样的题名就要贴切得多。再如:"35Ni-15Cr型铁基高温合金中铝和钛含量对高温长期性能和组织稳定性能的影响的研究"这样的论文题目,既长又不准确,题名中的35Ni-15Cr是何含义,令人费解,是百分含量?是重量比?体积比?金属牌号?或是其它什么,请教不得而知,这就叫题目含混不清,解决的办法就是要站在读者的角度,清晰地点示出论文研究的内容。假如上面的题目中,指的是百分含量,可放在内文中说明,不必写在标题中,标题中只需反映含Ni和Cr这一事实即可。可参考的修改方案为:"Ni、Cr合金中Al和Ti含量对高温性能和组织稳定性的影响"。关键问题在于题目要紧扣论文内容,或论文内容民论文题目要互相匹配、紧扣,即题要扣文,文也要扣题。这是撰写论文的基本准则。2.简短精炼力求题目的字数要少,用词需要精选。至于多少字算是合乎要求,并无统一的"硬性"规定,一般希望一篇论文题目不要超出20个字,不过,不能由于一味追求字数少而影响题目对内容的恰当反映,在遇到两者确有矛时,宁可多用几个字也要力求表达明确。常见了繁琐题名如:"关于钢水中所含化学成分的快速分析方法的研究"。在这类题目中,像"关于"、"研究"等词汇如若舍之,并不影响表达。戏是论文,总包含有研究及关于什么方面的研究,所以,上述题目便可精炼为:"钢水化学成分的快速分析法"。这样一改,字数便从原21个安减少为12个字,读起来觉得干净利落、简短明了。若简短题名不足以显示论文内容或反映出属于系列研究的性质,则可利用正、副标题的方法解决,以加副标题来补充说明特定的实验材料,方法及内容等信息,使标题成为既充实准确又不流于笼统和一般化。如?quot;(主标题)有源位错群的动力学特性--(副标题)用电子计算机模拟有源位错群的滑移特性"。3.外延和内涵要恰如其分"外延"和"内涵"属于形式逻辑中的概念。所谓外延,是指一个概念所反映的每一个对象;而所谓内涵,则是指对每一个概念对象特有属性的反映。命题时,若不考虑逻辑上有关外延和内涵的恰当运用,则有可能出现谬误,至少是不当。如:"对农村合理的全、畜、机动力组合的设计"这一标题即存在逻辑上的错误。题名中的"人",其外延可能是青壮年,也可以是指婴儿、幼儿或老人,因为后者也?quot;人",然而却不是具有劳动能力的人,显然不属于命题所指,所以泛用"人",其外延不当。同理,"畜"可以指牛,但也可以指羊和猪,试问,哪里见到过用羊和猪来犁田拉磨的呢?所以也属于外延不当的错误。其中,由于使用"劳力"与"畜力",就不会分别误解成那些不具有劳动能力和不能使役的对象。4.醒目论文题目虽然居于首先映入读者眼帘的醒目位置,但仍然存在题目是否醒目的问题,因为题目所用字句及其所表现的内容是否醒目,其产生的效果是相距甚远的。有人对36种公开发行的医学科持期刊1987年发表的论文的部分标题,作过统计分析,从中筛选100条有错误的标题。在100条有错误的标题中,属于"省略不当"错误的占20%(如:"完状动肪疾病运动后异常血压反应的决定因素"的标题,将"冠状动脉疾病患者"省略为"冠状动肪疾病";"一年来世界各国肝病的进展"的标题,将"肝病治疗"省略为"肝病");属于"介词使用不当"错误的占12%(如:"内镜荧光检测对诊断消化道癌的评价"的标题,本意是作者运用这种方法去诊断消化道癌并做出评价,而实际上"内镜荧火检测"成了主语,当然不妥当)。在使用介词时产生的错误主要有:①省略主语--第一人称代词不达意后,没有使用介词结构,使辅助成分误为主语;②需要使用介词时又没有使用;③不需要使用介词结构时使用。粲"主事的错误"的占11%(如"新冠片"错对冠心病的临床及实验研究);属于"并列关系使用不当"错误的占9%(如:"老年患者的膀胱镜检查与并发症");属于"用词不当"、"句子混乱"错误的各占9%,其它类型的错误,如标题冗长、文题不符、重复、歧意等亦时有发生。(二)作者姓名和单位(Author and department)这一项属于论文署名问题。署名一是为了表明文责自负,二是记录作用的劳动成果,三是便于读者与作者的联系及文献检索(作者索引)。大致分为二种情形,即:单个作者论文和多作者论文。后者按署名顺序列为第一作者、第二作者……。重要的是坚持实事求是的态度,对研究工作与论文撰写实际贡献最大的列为第一作者,贡献次之的,列为第二作者,余类推。注明作者所在单位同样是为了便于读者与作者的联系。(三)摘要(Abstract)论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的简短陈述。其他用是不阅读论文全文即能获得必要的信息。摘要应包含以下内容:①从事这一研究的目的和重要性;②研究的主要内容,指明完成了哪些工作;③获得的基本结论和研究成果,突出论文的新见解;④结论或结果的意义。论文摘要虽然要反映以上内容,但文字必须十分简炼,内容亦需充分概括,篇幅大小一般限制其字数不超过论文字数的5%。例如,对于6000字的一篇论文,其摘要一般不超出300字。论文摘要不要列举例证,不讲研究过程,不用图表,不给化学结构式,也不要作自我评价。[示例]论文题目:天体对地球重力加速度的影响论文摘要:地球重力加速度是一个极其重要的物理量,随着对重力加速度测量精度要求的日益提高,必须考虑天体对地球重力加速度的影响。本文介绍了天体(包含日、月及太阳系行星)对地球重力加速度影响的基本概念,推导了影响的计算公式,并经过误差分析,证明此公式的相对误差小于1×10-9,完全可满足现代精密重力加速度测量的要求。撰写论文摘要的常见毛病,一是照搬论文正文中的小标题(目录)或论文结论部分的文字;二是内容不浓缩、不概括,文字篇幅过长。[示例]论文题目:集成电路热模拟模型和算法论文提要:众所周知,半导体器件的各种特性参数都是温度的灵敏函数学[诸如ls(T),B(T),C1(T),Cp(T)……]。集成电路将大量元件集成在一块苡片上,电路工作时,元件功耗将产生热量,沿晶片向四周扩散。但是由于半导体片及基座材料具有热阻,因此芯片上各点温度不可能相同。特别对于功率集成电路,大功率元件区域将有较高温度所以在芯片上存在着不均匀的温度分布。但是为了简化计算,一般在分析集成电路性能时,常常忽略这种温度差别,假定所有元件者处于同一温度下。例如通用的电路模拟程序--SPICE就是这样处理的。显然这一假定对集成电路带来计算误差。对于功率集成电路误差将更大。因此,如何计算集成电路芯片上的温度分布,如何计算元件温度不同时的电路特性,以及如何考虑芯片上热、电相互作用,这就是本文的目的。本文介绍集成电路的热模拟模型,并将热路问题模拟成电路问题,然后用电路模拟程序求解芯片温度分由。这样做可以利用成熟的电路分析程序,使计算的速度和精度大为提高。作者根据这一模型和算法,编制了一个YM-LiN-3的FORTRAN程序,它可以确定芯片温度分布,也可发计算元件处于不同温度时的电路特性,该程序在微机IBM-PC上通过,得到满意结果。上述论文提要字数近600,显然过长,只要认真加以修改(例如:第一段可删掉,第二段只保留其中的最后几句话,加上第三段),便可以二三百个字编写论文摘要。(四)关键词(Key words)关键词属于主题词中的一类。主题词除关键词外,还包含有单元词、标题词的叙词。主题词是用来描述文献资料主题和给出检索文献资料的一种新型的情报检索语言词汇,正是由于它的出现和发展,才使得情报检索计算机化(计算机检索)成为可能。主题词是指以概念的特性关系来区分事物,用自然语言来表达,并且具有组配功能,用以准确显示词与词之间的语义概念关系的动态性的词或词组。例如:主题词之一"等离子体应用"。它具有概念的特性,说明它不是别的,而是"等离子体应用",采用的是自然语言词汇。关键词是标示文献关建主题内容,但未经规范处理的主题词。如,关键?quot;原子能"(其规范的主题词可能是"核能")。关键词是为了文献标引工作,从论文中选取出来,用以表示全文主要内容信息款目的单词或术语。一篇论文可选取3~8个词作为关键词。[示例]论文题目:一种新的天线阵方向图综合方法关键词:天线阵;方向图;综合;互耦;偶极子;输入阻抗(共6个)相应的英译文:Title: A new method for array pattern synthe

你可以去看下物理类的文献,像(物理化学进展、应用物理)

天体物理论文2000字

很基础的方案.物理的最后一章讲了一点儿狭义相对论的原理及一些常用公式.如果你们高数或者微积分已经学完了,可以试从从麦克斯韦方程组开始试着解释论动体的电动力学论文中提到的1个至2个公式.这个题目要想做好的话,可以用心去做.要想忽悠的话,就算推导时出了点儿错,估计都不会被老师发现,因为没几个人愿意去看那些偏微分方程组.

(一)广义惯性使牛顿力学进化爱因斯坦独具慧眼,从司空见惯的现象中及自由落体运动与质量因素无关的经验事实,总结出了等效原理,且明确与准确地说:物体的同一性质按照不同的处境或表现为"惯性",或表现为"重性"([3]第55页)。这个同一性就是广义惯性,这个处境就是空间。牛顿第二定律实质是其第一定律涵义的数学表达式。所以,广义惯性的发现,其革命意义是指动摇了牛顿第一定律的核心地位。广义惯性包含了牛顿惯性,所以,又是其进化。同时,也说明了需要建立一个取代牛二律的进化性质的核心命题系统的新力学理论。广义惯性又引出了两种空间及其区别的新问题。这个新问题困扰了爱因斯坦的一生,走了一大圈"弯"路后,在他晚年时,才看到了解决这个问题的曙光--物体具有空间的广延性([3]第十五版说明),由此"广延性"再往前走一步,就是[2]文说的ρ空间及其区别的标志是其梯度值的有否。这说明还需要一个新的涉及空间的基本概念及与其相对应的原来等效原理所没有涉及到的新的经验事实:物体质量部分的压强梯度现象(注:在固态的具体物体内部,此"压强梯度"表现为"胁强"),也就是爱因斯坦的物体的空间广延性的具体体现。同时也引出了物体的非刚性及其具有内部空间结构的抽象性质([4]第六章)。于是,"万事俱备",只欠建立一个新的核心命题系统了。可以说,惯三律就是这个系统。广义惯性是由于把"重性"也归于同牛顿惯性一样的物体属性,所以,其革命意义也主要体现在"重力"方面。"引力"是对重力本质的错误认识。广义惯性与场概念把原来引力中的两个平权的物体分离开来:一个是仅表现广义惯性的一般(非整体)物体;另一个是具有产生重力场的特殊性的中心物体。一般物体与中心物体之间已经没有"力"的关系了。但通过重力场(原来引力场与自转惯性离心力合成的重力场涵义需要改变)有"能"的关系(见此文的"ρ空间与能"一节)。到此为止,广义惯性已经完成了其逻辑任务,即取消了引力及导出了中心物体的特殊性(当然也具有广义惯性的一般性)。这个特殊性的中心物体就是整体天体。于是,广义惯性与整体天体就构成了理论的内部逻辑性(也就是"自圆其说")。广义惯性取消了惯性质量与引力质量的区别。当然,更没有质量的第三个属性--产生引力场。说重力场是特殊的ρ空间,也有其对应的经验事实,即具有重力场的质量部分的天体,一般都具有密度及压强(也有温度及磁场因素)与中心距离近似反比分布(中聚度)的现象。同时,其现象也表明了这个天体(中心物体)的特殊性。中聚度现象已经是整体性的一种体现。(二)再看牛顿力学为什么人们回避牛顿第二定律中的"力"(外力)的反作用力就是物体的惯性力的道理呢?就是因为把重力也当作外力(引力)时,物体本身没有反作用力 --惯性力(重力加速度与物体质量的大小无关),这正是牛顿力学理论内部的不能"自圆其说"的地方,这也正是爱因斯坦所注意的地方。为了回避这矛盾性(无意识的),不得不让其"外力"担当"广义"的力的重任。"力是物体加速运动的原因"这一没有条件限制的观念,是牛顿力学最主要的思维定势。不管是相对的加速运动还是"绝对"的加速运动,人们都在头脑中马上反映出来要乘上物体的质量,使力成为其运动的原因。于是,其直接错误后果就是把非牛顿惯性系内或重力场内的物体"自由"或有阻力的"不自由"的加速运动,也当作有外力(不包括阻力)正在作用之。之所以把非牛顿惯性系中的外力惯性力叫做虚构力,是说明牛顿力学中还有第二个观念:"力是物体对物体的直接作用"--这是作用方式力,但有的教材除了摩擦力外,把作用方式力几乎都归结于弹性力则是错误的。又从这第二个观念来看其外力惯性力时,真的不存在另一个物体来表现之,只得权宜称为虚构力。当把重力也当作外力时,发现确实有另一个物体(中心物体)与之对应,这可是"真实"的外力了。麻烦又出现了,这个引力是超距作用性质的力,从作用方式力的观念角度来看时,又难理解了。为了让引力回复到可理解的直接作用性,又引起了从牛顿时代起至今的许多人去虚构在两个超距的物体之间飞来飞去的各种"微粒子",以此物来担当引力成为直接作用性的重任。引力本来也是虚构力,还要为这虚构的"东西"再虚构一些东西,麻烦可就大了。因为凡是具有质量的物体都具有广义惯性,也可以说是"万有"惯性。之所以惯性力学在力学体系中占有主要及重要的地位,而其他属性(如弹性与磁性等)力学占次要地位,且以"惯性力"作为力的物理单位,也是由于其"万有"的原因。但作为表现广义惯性力的重力的空间(重力场)及场源物体(整体天体)可不"万有"。这两个角度分不开,还会认为重力(引力)"万有",这又会回到为什么会超距作用的难理解的怪圈。广义惯性使探索"引力作用机制"的研究方向成为毫无意义的方向,是徒劳无功的方向,因为引力本身是由牛二律的局限性而派生出来的虚构的力。(三)再看广义相对论爱因斯坦特有的知识结构(马赫哲学、狭义相对论、四维时空、光、场及黎曼几何),决定了他走上了一条充满荆棘的理论之路。马赫的功绩是看到了牛顿力学体系中有一个缺陷,就是物体的运动状态依参考系的不同而有所不同,于是,作为判断牛顿惯性运动的前提也就成为不确定的了(相对性)。不得已,马赫把现象世界的远处的恒星当作其绝对参考系了。马赫的错误就是把牛顿惯性定律中的物体的属性(保持性)与其运动状态问题混在一起了。爱因斯坦受马赫哲学的启发,又发现了等效原理,但同时又继承了马赫的错误。被夸大为改变人们时空观念意义的四维时空,只不过是用"运动"(还是光运动)角度来规定空间的一种方法。规定有结构的空间可有各种方法,其各种方法是平权的。用什么方法来规定空间则取决于理论与实践的需要。如果去掉了"光速"的弯曲时空还有力学意义的话,与牛顿引力定律正是互为补充的关系本体性的场的描述:一个是以广义惯性"运动"的角度的描述;一个是以广义惯性"力"的角度的描述。而牛顿引力势所包含的空间意义,正是中心结构的ρ非均匀空间(重力场)的经验性的描述。终究是"描述",都不能代替核心命题性质的"表述"。没有明确的命题表述,其描述也就没有明确的理解前提。惯三律与广义相对论都以等效原理为其经验基础。只不过爱因斯坦又走上了光速的等效原理之路。而光速的等效原理是由"思维"实验得来的,且唯一能验证其理论的星光在太阳附近偏转现象,爱因斯坦在具体计算其偏转角度时,实际上是"非常谨慎地用惠更斯原理"([5]第23页)。而惯三律所依据的" 低速"等效原理,连幼儿园里的儿童都可以感觉到坐滑梯时的加速度与坐汽车时的汽车加速度的区别,因其身体内有胁强的有否或大小之区别。战斗机飞行员已经体验了低速等效原理的所有内涵。所以,任何脱离与回避"低速"等效原理的力学理论,肯定是不会成功的理论,因为其现象普遍存在于客观世界,且与力学密切相关。爱因斯坦之所以对"光"情有独钟,也许是无意识的回避其理论中的一个内在矛盾:"产生"引力场的中心质量(中心物体)必须很大,而体现弯曲时空(引力场)作用的物体必须很小且产生与不产生引力场无关紧要,这与引力中的两个平权的物体涵义是矛盾的。而"光子"正好是最小的物体,也就回避了这个矛盾。只有"整体天体才产生重力场"的结论,才可以解决这个矛盾。引力波、黑洞与四种相互作用力的统一的课题,来源于爱因斯坦。引力已经不存在了,当然"引力"波也不存在了;如果重力场有边界,重力场就与电磁场不同,当然引力"波"也不存在了。如果以光线在重力场中弯曲的角度而导出的"黑洞",黑洞不存在,因为光线在重力场中弯曲的原理不是由于"引力";如果是由于"弯曲时空"原理而导出的"黑洞",黑洞也不存在,因为本来弯曲时空是由光线的弯曲(光子的广义惯性运动)而规定出来的,反过来又认为光线的弯曲是由弯曲时空所造成的,这是什么逻辑?如果光线在重力场中有红移效应,那么,由此原理而导出的黑洞,黑洞有可能存在。引力都不存在了,也就无所谓四种相互作用力的统一的问题。目前的"大统一理论"仅剩下"引力"没有被统一进去,也正说明了这个问题。经归纳的现象)再变为抽象层次的基本概念的过程,是人们最不习惯的过程,总不容易摆脱"具象"。之所以不习惯,其原因之一也是因为人们先有了原来理论的抽象及已经习惯了的思维方式,即使有了"具象"也看不到其抽象意义。而由抽象变为"具象"的过程,那可容易多了,但也往往"具象"出来客观世界不存在的东西。从逻辑学角度,基本概念是不能被其它概念来定义的概念,其内涵具有一定的模糊性。ρ空间也是如此,只能用"感觉"到的物体质量部分的压强梯度现象来说明之,但又不是压强梯度本身。"真空"是具象空间,真空里照样存在"重力场"的ρ梯度值的有否,可用具象的压强梯度来检验之。但不能认为真空是ρ均匀空间。ρ空间与压强梯度的关系可类比铁粉末直观表现磁场结构的关系。摆脱不了具象,不能变为一个基本概念,也是爱因斯坦的"一无所有"的空间怎能分出两种空间的困惑原因之一,而用"运动"规定出来的弯曲时空又不能区分出是表述了物体的广义惯性还是表述了场的属性。特别强调的是:物体内部空间只能指物体质量部分所占据的空间,也是爱因斯坦晚年醒悟的"物体具有空间广延性"的涵义;而重力场空间不仅包含质量部分(整体天体)的空间,也包含没有质量部分的空间。这样就避免了变为"一无所有"的无边界的抽象参考系而带来的"相对"不清的问题。总的说来,ρ空间仅在数学形式上是标量场(其梯度为矢量场),但在物理意义上,则包含了表述广义惯性、可变为物体内部空间及重力场的本体性场、势、能、熵与质量部分的压强梯度等涵义。

物理学概览 物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。 物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这—目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。经典力学 经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。                                       自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。  牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。  经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。  在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。  早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。                                         机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。热学、热力学和经典统计力学  热学是研究热的产生和传导,研究物质处于热状态下的性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度和热量),并在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。  物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的,因此热力学第一定律就是能量守恒与转换定律的一种表现。  在卡诺研究结果的基础上,克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体,不可能自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。                                       深入研究热现象的本质,就产生了统计力学。统计力学应用数学中统计分析的方法,研究大量粒子的平均行为。统计力学根据物质的微观组成和相互作用,研究由大量粒子组成的宏观物体的性质和行为的统计规律,是理论物理的一个重要分支。  非平衡统计力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包含有大量粒子的宏观物理系统来说,系统处于无序状态的几率超过了处于有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态,在热力学中,这就相应于熵的增加。  处于平衡状态附近的非平衡系统的主要趋向是向平衡状态过渡。平衡态附近的主要非平衡过程是弛豫、输运和涨落,这方面的理论逐步发展,已趋于成熟。近20~30年来人们对于远离平衡态的物理系统,如耗散结构等进行了广泛的研究,取得了很大的进展,但还有很多问题等待解决。  在一定时期内,人们对客观世界的认识总是有局限性的,认识到的只是相对的真理,经典力学和以经典力学为基础的经典统计力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典统计力学也发展成为以量子力学为基础的量子统计力学。

物理研究的是关于力的、声的、热的、光的、电的等现象。象折射、沸腾等。 呵呵呵,很唯象的解释 即是研究大自然,解开各个现象后面的秘密,联系;或者说 把自然界数学化,将数学运用到自然现象的描述,以帮助我们的理解,以及对自然界的利用什么是物理 ?这是一个十分基础的问题。翻开任何一本物理教科书,都不难找到这样的定义:物理学是研究物质结构、物质相互作用和运动规律的自然科学。但这只是对于物理这门科学在学术意义上的一种界定。而我们所面对的“物理”,它同时又是一门课程,于是就有必要从教育意义的层面上去进行一番再认识、再分析,以挖掘蕴含在其中的丰富内涵。 首先,物理是一门科学。 物理学是一门以实验为基础的自然科学,它是发展最成熟、高度定量化的精密科学,又是具有方法论性质、被人们公认为最重要的基础科学。物理学取得的成果极大地丰富了人们对物质世界的认识,有力地促进了人类文明的进步。正如国际纯粹物理和应用物理联合会第23届代表大会的决议《物理学对社会的重要性》指出的,物理学是一项国际事业,它对人类未来的进步起着关键性的作用:探索自然,驱动技术,改善生活以及培养人才。 上世纪初相对论和量子力学的建立,为物理学的飞速发展插上了双翅,取得了空前辉煌的成就,以致于人们将20世纪称誉为“物理学的世纪”。什么21世纪呢?有一种流行的说法:21世纪是生命科学的世纪。其实,这句话更确切的表述应该是:21世纪是物理科学全面介入生命科学的世纪。生命科学只有与物理相结合,才有可能取得更大的发展。 展望物理学的未来,充满着机遇与挑战。李政道先生在《物理的挑战》一文中,曾提出21世纪物理领域所面对的四大难题:为什么一些物理现象在理论上对称但实验结果不对称?为什么一半的基本粒子不能单独存在而且看不见?为什么全宇宙90%以上的物质是暗物质?为什么每个类星体的能量竟然是太阳能量的1015倍?这些问题极大地激励着人们不懈探索的勇气与热情。可以预见,一旦拨去这几朵笼罩在物理天空中的乌云,物理学将会展现出更加灿烂的前景。 其次,物理又是一种智能。 诚如诺贝尔物理学奖得主、德国科学家玻恩所言:“如其说是因为我发表的工作里包含了一个自然现象的发现,倒不如说是因为那里包含了一个关于自然现象的科学思想方法基础。”物理学之所以被人们公认为一门重要的科学,不仅仅在于它对客观世界的规律作出了深刻的揭示,还因为它在发展、成长的过程中,形成了一整套独特而卓有成效的思想方法体系。正因为如此,使得物理学当之无愧地成了人类智能的结晶,文明的瑰宝。 大量事实表明,物理思想与方法不仅对物理学本身有价值,而且对整个自然科学,乃至社会科学的发展都有着重要的贡献。有人统计过,自20世纪中叶以来,在诺贝尔化学奖、生物及医学奖,甚至经济学奖的获奖者中,有一半以上的人具有物理学的背景;——这意味着他们从物理学中汲取了智能,转而在非物理领域里获得了成功。——反过来,却从未发现有非物理专业出身的科学家问鼎诺贝尔物理学奖的事例。这就是物理智能的力量。难怪国外有专家十分尖锐地指出:没有物理修养的民族是愚蠢的民族! 当今,物理学的触角已经伸向众多领域,并取得了越来越大的成就,以至我们很难再用传统的眼光去界分什么是物理学了。1995年在我国厦门举行了第十九届国际统计物理学大会,会上交流论文的涉及面十分广泛,诸如植物的花序、DNA药物系统、交通的流量、文字的存储等等,光看这些篇目,似乎都不太象是物理。什么,究竟什么是物理呢?几年前,美国《今日物理》杂志,曾就此问题向读者广泛征求意见。最后,他们推崇的答案是:物理学家所做的就是物理学。这话乍听似觉偏颇,其实不无道理。因为在今天看来,物理学更多的是体现出一种智能,“代表着一套获取知识、组织和应用知识的有效步骤和方法,把这套方法用到什么问题上,这问题就变成了物理学。”(赵凯华语) 再次,物理还是一种文化。 从广义来说,文化指的是人类历史实践过程中创造的物质财富和精神财富的总和。它包括科学文化和人文文化。同样地,物理学家在长期科学实践中所创造的大量物质产品与精神产品,也就构成了物理文化。物理文化是科学文化的重要组成部分。 大家知道,物理学是以实验为基础的科学,它的基本研究方式就是实践,因而在客观性上表现为“真”;物理学创造的成果最终是为了造福于人类,它在目的性上体现出“善”;另外,物理学还在人的情感、意识等多方面反映了“美”。正因为物理学本身兼具真、善、美的三重属性,我们完全有理由说,物理不仅是一种文化,而且是一种高层次、高品位的文化。 物理学是求真的。物理最讲究实证,物理学家在科学研究活动中最基本的态度就是实事求是,坚守“实践是检验真理唯一标准”的原则。正如物理学家费曼所说:“不论你的想法有多美,不论你什么聪明,更不论你名气有多大,只要与实验不符便是错了,简简单单,这就是科学”。可以说,物理学的发展史,就是一部不断修正错误、不断逼近真理的“求真”史。 物理学是从善的。物理学致力于将人从自然中解放出来,从必然王国走向自由王国,帮助人们不断认识自己,促使人的生活趋于高尚。这是物理学的价值取向和终极目标,因而物理学的本质是从善的;另外,物理学家的行为也是从善的。爱因斯坦曾这样评价居里夫人和以她为代表的杰出物理学家:“第一流人物对时代和历史进程的意义,在其道德方面,也许比单纯的才智成就更大”。他们那种严谨求实的态度、献身科学的精神,热爱人民的情怀等等,对于后人无疑是一份尤为珍贵的人文财富。 物理学是至美的。德国物理学家海森伯说过:美是真理的光辉;罗马哲学家普洛丁又说过:善是美的本原。由此,物理学因真而美、因善而美就是十分自然的了。物理的美属于科学美,主要体现于简单、对称和统一;对称则统一,统一则简单,它们构成了物理学的基本美学准则。 翻开物理学的篇章,可以发现到处都跳动着美的音符,体现了人们对美的追求与创造。仅以统一性为例。当代物理学的发展,正朝着两个相反的研究方向延伸:最宏大的宇宙与最微小的粒子。令人感到惊讶的是,随着研究的深入,它们两者并非是分道扬镳、越走越远,反倒显示出不少殊途同归、相反相成的迹象。例如,粒子物理学的一些研究成果常被天体物理学家所借鉴,用来探寻宇宙早期演化的图象;(正由于此,粒子物理学在某种意义上也被称为“宇宙考古学”。) 反过来,宇宙物理学的研究也为粒子物理学家提供了丰实的信息与印证。于是,物理学中两个截然相反的分支,就这般奇妙地衔接在了一起——犹如一条怪蟒咬住了自己的尾巴。 又如,英国物理学家狭拉克首先发现,在自然界的某些物理量之间存在着下列引人注目的关系: 宇宙半径/电子半径≈1040,宇宙年龄/强衰变粒子寿命≈1040, 氢核与电子的电力/氢核与电子的引力≈1040,…… 在上述比数中,宇宙这个最大的系统,与基本粒子这个最小系统之间,竟然珠联璧合达到了如此完美的统一,让我们再次领略到了物理世界的美,一种动人心弦的壮丽的美。正是这许多美不胜收的事例,激发起人们对大自然由衷的赞叹与敬畏,难怪爱因斯坦会说:“宇宙间最不可理解的,就是宇宙是可以理解的”。 通过以上分析,我们对于物理有了一个较为全面的认识:它既是一门科学,又是一种智能,更是一种文化。作为一名物理教师,能对自己所任教的物理作一番全方位的审视与剖析,这是十分必要的。一方面可使我们看到,物理原来有着如此丰富的的内涵,从而会更自觉、有意识的去挖掘和开发它的育人功能,全面提升教学质量;另一方面又使我们看到,物理原来有着如此美好的禀性,从而会更加钟爱物理,更有激情地去从事物理教学。我以为,只有真正热爱物理的物理教师,才能做到不仅教会学生理解物理、应用物理,而且还进一步引导他们去感悟物理、欣赏物理。 二、为什么教物理 这是一个看似简单却又十分根本的问题,要正确回答并非易事。笔者对此问题的认识,就经历过从“知识本位”到“学科本位”,最后又回归到“学生本位”这样一个曲折渐进的过程。 有很长一段时期,我都把物理教学的目标锁定在知识层面上,认为教物理就是要把物理知识尽可能多地传授给学生,以供他们今后一生的受用。因为我信奉“知识就是力量”。然而令人困惑的是,我们授予学生什么多的物理知识,其中不乏象“F=ma”这类极其重要的知识,但在他们往后的生活和工作中,却很少显示出有什么直接的功用。以至过了若干年后,许多学生把所学的物理知识几乎忘得一干二净,用他们的话说,“全部都还给老师了”。我为此感到深深的失落;但每当我向他们提出“高中三年岂不白读了”的反诘时,这些离开学校多年的学生,却又都会异口同声地作出否定的回答,一致认为高中阶段的学习,对于他们的成长起到了重要的奠基作用,可又说不清究竟是哪些具体知识所起的作用。我想,这大概好比晚饭,谁都不会否认吃饭对于生存的意义,然而谁又都说不清楚,吃了这顿饭究竟是在身上的什么地方长了块肉。 一位毕业已有二十余年的学生,曾与笔者聊起他“印象最深”的一堂物理课。原来那堂课讲的是重力势能。当时为了说明重力势能的相对性,我曾向学生提出过这样的问题:有人站在五楼的窗台上要往下跳,你说危险吗?开始大家都认为这太玩命了,后来仔细一琢磨,又全都乐了:你别往窗外跳,往窗里跳不就没事了吗?这位学生觉得这个例子特有意思,于是经久不忘;但问他该例说明了什么物理知识时,他说忘了。正当我面露憾色时,他紧接着的一番话却令人宽慰,他说:“这个例子使我懂得凡事都是相对的,从不同角度看会有不同的结果”。尽管这堂课所传授的物理知识,这位学生已经遗忘殆尽,但通过有关知识的学习而凝炼成的思想、方法等,却在他的心里铭刻上深深的印记。从这个意义上说,二十多年前的这堂物理课,对他不也是极有价值的吗?学生从高中毕业后,他们中的大多数可能将告别物理,所学的物理知识终究会被忘记,到那时再回头审视一下:物理教学留给他们的还有些什么呢?如果在他们的身上,体现不出物理所给予的才智与启迪,那将是物理教学的失败。由此看来,具体的知识通常只是作为教学的载体,在知识的背后还有更多值得我们去追求的东西。正如我国资深科学家钱伟长教授说的:“我在大学里学的是物理学,……. 以物理学为对象我学到了调查研究,收集资料,分析资料和逻辑思维的能力,物理学的知识有时是很有用的,但通过物理学学到的这些能力,比物理学知识更有用。”钱老在读书时就是通过“物理学”这个载体,获得了很多比物理知识更重要的能力。所以,那种将物理教学等同于物理知识教学的看法是偏面的,而以“知识本位”来确立物理教学目标取向的做法同样是短视的。 随着教学实践的深入,教师一般都会对自己所任教的学科日臻熟悉,从而格外钟爱。可能是受了这种职业情感的影响,我还一度把物理教学的目标,定位于“将尽可能多的学生培养成为物理学家或物理工作者”。尤其是当我从农村普通中学调入重点高中,面对的是一个个聪颖好学的学生时,这种愿望愈显强烈。但我不久就发现,其它学科的教师大概也出于各自的职业偏好,都对学生有着与我类似的期望。这样一来,大家自扫门前雪,各唱各的调,没能将各学科的分力凝聚成一股合力,实际效果当然就差强人意了。尤其令我沮丧的是,班上那些物理学习优秀的“得意门生”,日后直接从事物理专业的竟然也少之又少。正当我陷于迷惘之时,复旦大学原校长杨福家先生的一则事例给了自己极大的启迪。当年复旦大学曾对核物理专业的毕业生的去向做过一次调查,结果发现,只有不到十分之一的学生毕业后从事与核物理有关的工作,其余的都纷纷改行,活跃在金融、企业或行政等岗位上。对此,多数人都断言这是物理系的失败,而杨福家却认为这正是“复旦”的成功。因为,通过这四年本科的物理教育,使学生具备了良好的素质,为他们今后的发展打下了坚实的基础,于是毕业后都能很快适应各种不同领域的工作。这也印证了赵凯华先生的话:“一个人学了物理之后干什么都可以,他的物理没有白学。在我看来,对于学物理的人无所谓‘改行’……。” 经过上述曲折的认识历程,使我逐渐看清了物理教学最终目标的聚焦点,既不在知识的本位上,也不在学科的本位上,而应该落实在我们的教育对象——学生的本位上。 对于“为什么教物理”这个问题,也可以反过来设问:“如果我们不教物理,学生不学物理,将会对他们今后的发展留下那些缺憾?”一种显而易见的回答是,学生将因此学不到许多重要的物理知识。这话没错,但不够全面。因为除此之外,学生还将失去更为重要的,有关科学方法、科学精神等方面的培养与熏陶,从而最终影响他们的科学素养的提高。当前,物理已经深入到社会的方方面面,成为每一位有教养的公民都必须懂得的知识。对于大多数学生来说,他今天学习物理的目的,恐怕不是为了明天去进一步研究物理,而是有助于他去面对或决策所遇到的大量非物理的问题,为他们今后一生的文明、健康,高质量的生活奠定基础。正如《面向全体美国人的科学》一书中所说的:“教育的最高目标是为了使人们能够过一个实现自我和负责任的生活作准备。” 据此,对于“为什么教物理”这个问题,最确切的答案就是:为提高全体学生的科学素养而教。——这应该成为我们的物理教学观。 众所周知,生物基因对于生物进化有着非同小可的作用,极其细微的基因差异,往往会导致生物之间的巨大差别。受此启发,有不少社会学者正致力于寻求在人类文化传承与发展过程中,有着哪些最为核心的要素,从而提出了“文化基因”的概念,并将其定义为人类文化系统中的“遗传密码”。文化基因的核心是思维方式和价值观念。人类的进化比一般的生物进化更为复杂,它具有双重进化机制,除了生物基因进化机制外,还有文化基因进化机制。教育正是推动文化基因机制的重要途径。学校教育的要义,不只是文化现象的展示与诠释,而在于文化基因的传承和发展。物理教育当然也不例外。什么,蕴含在物理教学中的“文化基因”究竟有些什么呢?笔者以为主要体现为三个方面,即科学知识、科学方法和科学精神,因为这三者是构成科学素养最基本的要素。如果将科学素养比拟为一座金字塔,什么科学知识犹如塔基,科学方法就是塔身,科学精神则是塔尖。物理教学的最高宗旨,就是为了构建这座宏伟的科学素养之塔而添砖加瓦。换言之,物理教学的核心价值就在于促进学生实现三个转化:一是把人类社会积累的知识转化为学生个体的知识,使他们知识世界是什么样的,成为一个客观的人;二是把前人从事智力活动的思想方法转化为学生认识能力,使他们明白世界为什么是这样的,成为一个理性的人;三是把蕴含在知识中的观念、态度等转化为学生的行为准则,使他们懂得怎样使世界更美好,成为一个创造的人。

天体物理毕业论文范文

物理学概览 物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。 物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这—目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。经典力学 经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。                                       自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。  牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。  经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。  在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。  早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。                                         机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。热学、热力学和经典统计力学  热学是研究热的产生和传导,研究物质处于热状态下的性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度和热量),并在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。  物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的,因此热力学第一定律就是能量守恒与转换定律的一种表现。  在卡诺研究结果的基础上,克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体,不可能自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。                                       深入研究热现象的本质,就产生了统计力学。统计力学应用数学中统计分析的方法,研究大量粒子的平均行为。统计力学根据物质的微观组成和相互作用,研究由大量粒子组成的宏观物体的性质和行为的统计规律,是理论物理的一个重要分支。  非平衡统计力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包含有大量粒子的宏观物理系统来说,系统处于无序状态的几率超过了处于有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态,在热力学中,这就相应于熵的增加。  处于平衡状态附近的非平衡系统的主要趋向是向平衡状态过渡。平衡态附近的主要非平衡过程是弛豫、输运和涨落,这方面的理论逐步发展,已趋于成熟。近20~30年来人们对于远离平衡态的物理系统,如耗散结构等进行了广泛的研究,取得了很大的进展,但还有很多问题等待解决。  在一定时期内,人们对客观世界的认识总是有局限性的,认识到的只是相对的真理,经典力学和以经典力学为基础的经典统计力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典统计力学也发展成为以量子力学为基础的量子统计力学。

为了纪念伟大的爱因斯坦发表改变世界的五篇论文一百周年,以及他逝世50周年,联合国大会在04年6月份一致通过决议把2005年定为“世界物理年”。 谈到物理学,首先要对物理学下一个定义。物理者,万物之理也。在英文中PHYSICS一词与PHYLOSOPHY(哲学)很相近,物理学最早被称为自然哲学,是哲学专门研究自然界的分支。这个概念最早可追溯到亚里士多德《物理学》一书,后来在牛顿的巨著《自然哲学的数学原理》给了物理学的诞生时一个比较准确的定义:用数学工具解决自然哲学问题,即用数学了解整个自然界的运动规律。中国古代采用“格物至知”一词来定义这门学科,即采用分析的方法研究物质获得知识,与中国古代哲学重视整体统一性而严重忽略事物细节和内部规律的做法大相径庭。 从诞生的那一天起,物理学就通过对自然界五花八门千变万化的各种现象内在本质的探索来帮助人类认识这个世界,从而能改造这个世界。既然物理学追求的是物质世界的一切运动规律,那么从广义上讲,一切自然科学都是物理学。这中说法毫不过分,自然科学本身就是人类为了认识这个世界而发展起来的方法和知识体系,自然科学的其他分支诸如化学,生命科学,宇宙学(天文),地球科学(地理)等等研究领域都是自然界的一部分或是一个知识层面,只有物理学研究的是整个自然界,大到浩瀚宇宙小到基本粒子。相比于其他学科定性概念居多研究深度有限而言,物理学深入探索整个自然界一切现象的本质规律,并尽可能地使其数学定量化,其他自然科学学科领域最基础最本质的运动规律和产生现象的原因都要靠物理学来回答,因此从广义上讲一切自然科学都是广义上的物理学。 然而这并不意味着其他自然科学学科可以简单地并入物理学成为他的一个分支,系统科学的出现表明,很多宏观概念还原到微观本质上的物理学规律以后是不能准确地反映这个概念的,因为在微观还原过程中层层近似并且忽略了在微观情况下可以忽略而组成宏观系统后影响较大不能忽略的那部分因素,因此还原论只是寻找本质,而本质并不代表一切。在化学和生物学等学科中很多概念都是复杂系统特有而对单个粒子意义不大的性质,诸如PH值、反应速率、生态系统等等。物理学本身也有很多这样的概念,例如温度本质上虽然是分子平均动能的体现,但在实际研究中后者显然不能替代前者。 于是我们通常所说的物理学便是狭义上的物理学。探讨中国物理学的现状,首先要知道世界物理学的现状,因为中国物理学一直落后于西方,它的现状和发展很基本上是由世界物理学现状及发展所决定的。国内将物理学列为一级学科,其下有理论物理,粒子物理及原子核物理,原子分子物理,凝聚态物理,光学,声学,等离子体物理,无线电物理八个二级学科。从研究目的和方法上可以把物理学分为理论物理,实验物理和应用物理三个领域。其中粒子物理和原子核物理以及原子分子物理两个二级学科主要属于实验物理方面,而后五个二级学科大多研究方向以应用为主,可划归到应用物理领域。 理论物理本身可分为基础理论研究和应用理论研究两大部分,公众往往把这个小小的基础理论研究部分误认为是物理学本身了,这是因为从古到今成就物理学界耳熟能详的大师级人物基本都来自这个领域。基础理论研究就是一步一步深入探索寻找自然界最深层次的统一规律,它是整个物理学最前沿的最神秘也是最挑战人类智力的部分,其成果也是物理学最核心最辉煌的,这些成果包括历史上的牛顿力学,麦克斯韦电磁理论,到二十世纪初的相对论和量子力学以及目前的量子场论和超弦,现在研究基础理论的学者们都是在做量子场论(既结合了相对论之后更深入的量子理论)及在场论基础上发展起来的超弦假说。 大三时教我热统的老师曾说搞基础理论研究一般只有两个结果:一是是零,即成为后人成功的铺路石而终生默默无闻;另一个是无穷大,既成为诸如爱因斯坦、狄拉克、费曼、温博格或威藤等等那样的大师级人物。而能成为后者的毕竟是少数幸运天才,因此不但研究理论物理的人是所有研究物理的人中很少的一部分(小于5%,在中国应该更少),搞基础理论的人在研究理论物理的人中也只是少部分,剩下的一大半做的是应用理论研究,这其中包括凝聚态理论,量子光学,原子分子理论等等,它们大多采用现成的量子理论来解释各自领域的内在物理机制,与基础理论研究最大的区别是它们停留在原子(确切地说是核外电子)的层面上采用现有的量子理论解决问题,而对更深入的粒子本质不做探讨。由于应用理论研究很大程度上是对现有基础理论的复杂应用,于是它的研究方式不可避免地引入大量计算,甚至有人将计算物理看做物理学的又一分支。 谈完理论物理,下面说一说实验物理和应用物理。其实这两个领域并没有明显的界限,区别只是实验出的结果应用程度大小的问题。本文所说的实验物理主要是指高能物理(即粒子物理),他的实验目的不是以应用而是以验证基础理论是否正确为主,并希望通过高能实验的某些新现象来促进基础理论的发展,这个领域最重要也是最独特实验仪器便是“加速器”。建造加速器需要国家政府投入大量的财力物力而且在经济上很难得到回报,因此世界上除几个大国外其他国家都对它望而却步。由于加速器更新改进的财政困难使得国际粒子物理学研究陷入一个瓶颈,中国自然也不例外。这样客观上导致了中国研究高能物理的人与研究理论物理的人一道成为物理学界为数很少的小团体。 谈到这里我不得不提出一个事实,那就是搞物理的人绝大多数是在研究应用物理,即研究领域与人类生活密切相关,比较容易其将成果转化为应用技术的领域。在研究的过程中运用应用理论研究的成果来解决人类需要,并能反过来推动应用理论发展。 凝聚态物理是现在物理学最大的分支领域,所谓凝聚态是指物质固态和液态的统称。在地球上与人类生活密切相关的物质除了阳光和空气其余都是以凝聚态的形式存在,这足以看出研究凝聚态物理对人类的重要性。凝聚态物理最早的重大成就是半导体的发现及应用,它最后产生的社会价值想必不用我多说了,您只需看一眼身边这台电脑变见分晓。凝聚态物理最近有两个大名鼎鼎的热门方向,一个是“超导”,另一个是“纳米”,传媒上关于它们已经有很多的介绍,我就不再重复。其他领域诸如软物质,准晶体,磁学等等很可能酝酿着下一个重大的突破。可以肯定的是,作为物理学最大的分支方向,它已经逐渐发展为整个物理学的主干和中心,超过半数研究物理的人在这个领域辛勤地工作着为人类造福。 前面说过原子分子物理目前主要停留在实验物理学阶段,单个原子对人类的意义虽然没有多个原子形成的凝聚态物质重要,但既然一切物质除光以外都是由原子所构成。这个领域麻雀虽小却是五脏俱全,它与物理学乃至整个自然科学各个分支学科都有非常紧密的联系,而这些交叉领域恰恰是其最重要的应用领域。研究化学反应化合物本质的量子化学实质上就是分子物理学,研究DNA大分子的分子生物学实质上也是分子物理学的一个研究领域。由此可见这个学科的发展义对其他的自然科学学科有多么重大的意义。 光也许是世界上最神奇的东西了,难怪古希伯莱人认为上帝先创造了光然后创造的万物。通常人们爱把所有物质分为狭义的由原子分子组成的“物质”,以及由光子作为载体的“能量”。毫不夸张地说物质世界一切能量传递的过程都是靠传递光子完成的(如果广义相对论和量子场论标准模型正确的话)。例如声光电热磁,声音和热量本质上可还原为电磁相互作用,而电磁相互作用本质上就是靠电荷吸收辐射光子来完成的(QED)。因为光是一切能量的载体,量子力学中的“量子”实际上指的就是光量子,即光子。光速是一切速度的极限,光子可以转化为正反粒子对,也许对光的本质的研究会直接触及物质世界最深层次的奥秘。 然而光学的发展却完全偏离探索光本性的方向,光学目前是物理学最接近应用领域的一个分支,因为它的应用性太强了,在实际应用中即可成为能量的载体也可成为信息的载体。激光的发现重要性丝毫不亚于半导体,它使得光学发展为仅次于凝聚态物理的物理学第二大分支,并且目前比凝聚态物理更接近实际应用。这个分支的基础部分自然还是划归于物理学,但其应用研究部分很可能会继电子之后成为一门从物理学独立出去的学科。 其它的应用方向都是物理学比较小的分支,对于声学的情况我不是很了解,所以不敢枉加评论,但可以肯定的是它的研究领域集中在经典宏观领域,其学科特点更像是工科,声音对人类的重要性决定着这门学科的重要性。 等离子体是气体在极高温状态下形成的一种电离态,它跟原子分子物理联系的最为密切。虽然浩瀚宇宙中到处弥漫着等离子体构成的恒星,但由于在地球上很少出现所以对它的研究长期不受重视,直到受控核聚变的研究采用了激光约束等离子体的办法才使对等离子的研究有了十分重要的意义,一旦受控核聚变应用成功将一劳永逸解决人类能源问题。 谈到核聚变就要说说核物理了,核物理的核子(质子,中子)探索部分属于前面讲过的高能物理范畴,但它的应用部分对人类的影响却是更加深远。原子弹和氢弹的发明对人类是福是祸也许只有若干个世纪以后才会有最后的答案。除了巨大的能量之外,核物理的其他一些成果例如核磁共振以及中子散射等的应用对人类贡献也是十分重要的。 欧美国家习惯上都把天文学(宇宙学)纳入物理学的范畴,二十世纪在天文学领域有重大发现的几个人都获得了诺贝尔物理学奖。爱因斯坦的广义相对论巨大成就使得天体物理在理论上很难有新的东西出现,只有那神秘的黑洞一直激发着霍金等大师的无尽创造力。这个方向越来越像高能物理,成了一门观察实验物理学,一个深入最微观领域,一个畅游于最宏观的宇宙,他们源源不断地给基础理论物理学家提供数据,共同寻求着万物一理的统一答案。宇宙学最近由于暗物质和暗能量的出现激发着基础理论的大师们酝酿着一个新的突破。 以上简要介绍了现今物理学的现状及发展方向,希望能够消除读者对物理学的误解。物理专业的学生并不是出来都要像爱因斯坦一样从事世界最本质规律的探索,也不是都要像建国后老一辈物理家那样去大西北研究核武器。前面已经说过从事基础理论研究和从事核物理研究的人只是在物理专业的人中很少很少的一部分,大多数人都从事着凝聚态物理和光学这样与人类生产生活密切相关的领域做应用研究,现代物理学的主干和重心恰恰就是这些应用领域,整个世界都是如此。 国内的物理系一般把本科专业分为三个,即物理学,应用物理学,光信息科学技术。光信息专业自然是光学方向;应用物理学主要研究偏向工科的微电子,声学,微波无线电等方向,剩下的物理学专业俗称大物理今后主要研究方向是凝聚态物理学,少量会研究原子分子物理学以及相关的物理化学,其中每年只有很少几个人会选择理论物理或者高能物理核物理方向。 从广义上说物理学可泛指所有自然科学,从狭义上说物理学研究物质世界最基本最深入最普遍的东西,当其在某个层面知识领域发展出比较完善的理论基础以后,这个理论所发挥作用的领域便成为完全以应用为主的科学进而形成一门技术学科(工科)。例如:经典力学体系的完善产生了机械等专业;热力学的理论体系完善产生了热能等专业;麦克斯韦方程组的完善产生了电力、无线电、通讯工程等学科;半导体能带理论的完善产生了电子科学技术专业。那么从物理学中诞生出来下一个这样的学科将会是什么?毫无疑问将是光学,从光学理论基础来看,几何光学加上麦克斯韦方程组连同非线性光学的理论虽然远不足以解释光的本性,但对应用来说基本已足够,目前国家已经把光学工程列为一级学科正好说明了这个趋势。也许在不远的将来,凝聚态物理学的理论和实验趋于完善之时,它很可能也会独立成为一门应用技术学科,那么留给物理学的的仅剩下原子尺度及以下领域的探索了,研究物理学的人也许会变少,但这并不代表物理学会枯萎。物理学是自然科学之母,它的成果早已遍地开花深入到每一门学科的领域,并且一次次诞生新的学科来实现人类认识自然,改造自然的愿望。 如果看我帖子的人中,有今后有志于进入大学物理专业学习的高中生的话,我的奉劝是学物理是一个比想像中困难得多的过程,除了专业上四大力学等高深理论需要花费大量时间去理解外,在生活中真正想融入这个专业也要耐的住寂寞。一般国内高校较知名的物理系除了个别师范院校外,大多男女生比例高打7:1到8:1。当然我希望更多的优秀高中毕业生投入到这个专业中来,因为前面已经说过,学物理的人只有极少数在搞高深的基础理论和恐怖的高能实验,大多数人在研究凝聚态和光学等倾向于应用的方向,如今交叉学科领域成果层出不穷,很多地方都是无人开采的金矿。而具备雄厚物理理论基础并从事应用方向研究的人在这些领域最容易做出成果,成就自己的事业。顺便提一句,研究物理只会让你的理性思维变得更强,并不会对你感性的一面构成明显伤害,由于国内多年片面的宣传使得物理学家们有了一种被神化同时又被妖魔化的感觉。其实物理学家也是人,有着正常人的喜怒哀乐爱恨情仇,有着正常人的一切人性特点,他们是最正常不过的人,只是由于社会分工的不同使他们走上了探索大自然奥秘来改善人类生活的道路。杨振宁82岁高龄同样可以娶28岁的妻子新闻正好说明了这一点。 对于高中正在进行中学物理学习的学生,我想告诉你们一个事实,那就是大学物理和中学物理基本上完全是两回事,中学物理学的好坏可能对你在大学普通物理(理工科任何专业都要学的物理基础课)力学部分的课程稍微有一点影响,但对于物理学专业来讲,中学物理的内容可以近似为零忽略不计。如果某位同学因为看了“第一推动丛书”等优秀的科普读物,或者因为其他原因从而喜欢上探索自然奥秘的基础理论物理的话,如果你仍然对它有或一样的激情,那么我奉劝你选择物理专业。即使因为4年的专业学习觉得大自然远远比你想像的神秘从而放弃基础理论转向应用研究方向的话(绝大多数物理专业学生最终会这样),你毕竟对自然界的规律和各种现象产生的原因有了比别人更深的理解。可是现实中往往是一些没有或很少有物理专业背景的人却对探索自然奥秘有着火一样的热情,这样的结果导致这些人成了物理学的民科(民间科学家),使得各个论坛科学版上类似于“驳倒相对论,我超越爱因斯坦了……我发现了惊世定律……”等等等等民科的垃圾文章层出不穷。当然我不是反对民科,他们也许可能在一些应用技术方面能有少许的创新和贡献,这些人都是在表面上认识了几个理论物理的词汇却根本不明白它的含义,然后通过整天的胡思乱想用他们编造出了毫无用处离物理学研究十万八千里的一堆“原理”、“定律”甚至还有出版社为之出书,这些人不但浪费是在浪费自己的时间,也是在浪费读者的饿时间,从这上面来看中国的科普工作还任重道远,而物理专业的人才对自然的认识比其它专业要深刻得多使他们更能胜任这一角色。

浩瀚的宇宙魅力无穷,它吸引着无数的科学志士为之求索探秘。千百年来,人们为了认识天体和宇宙的奥秘,不屈不挠地探求着。伟大的波兰天文学家哥白尼有一句名言:“人类的天职是勇于探索”,中国古代诗人屈原说过:“路漫漫,其修远兮,吾将上下而求索”,可见探索天文知识是人类永恒的科学主题。 天文学是人类运用所掌握的最新的物理学、化学、数学等知识以及最尖端的科学技术手段,对宇宙中的恒星、行星、星系以及其它像黑洞等天文现象进行专业研究的一门科学.它是一门集人类智慧之大成的综合系统。 天文学主要研究天体的分布、运动、位置、状态、结构、组成、性质及起源和演化。随着天文学的发展,人类的探测范围由目测的太阳、月球、天空中的星星到达了距地球约100亿光年的距离,根据尺度和规模,天文学的研究对象可以分为:行星层次,恒星层次以及整个宇宙。 天文学的一个重大课题是各类天体的起源和演化。天文学和其他学科一样,都随时同许多邻近科学互相借鉴,互相渗透。天文观测手段的每一次发展,又都给应用科学带来了有益的东西。 天文学的研究对于我们的生活有很大的实际意义,对于人类的自然观有很大的影响。古代的天文学家通过观测太阳、月球和其他一些天体及天象,确定了时间、方向和历法。这也是天体测量学的开端。如果从人类观测天体,记录天象算起,天文学的历史至少已经有5、6千年了。天文学在人类早期的文明史中,占有非常重要的地位。埃及的金字塔、欧洲的巨石阵都是很著名的史前天文遗址。哥白尼的日心说曾经使自然科学从神学中解放出来;康德和拉普拉斯关于太阳系起源的星云说,在十八世纪形而上学的自然观上打开了第一个缺口。 牛顿力学的出现,核能的发现等对人类文明起重要作用的事件都和天文研究有密切的联系。当前,对高能天体物理、致密星和宇宙演化的研究,能极大地推动现代科学的发展。对太阳和太阳系天体包括地球和人造卫星的研究在航天、测地、通讯导航等部门中都有许多应用。

大学本科毕业论文标准格式×××××三号黑体)学 号:(××××××××三号黑体)指导教师:(××××××××三号黑体)专业:(××××××××三号黑体)年 级:(××××××××三号黑体)学 校:(××××××××三号黑体)4.2摘要:摘要是论文内容不加注释和评论的简短陈述,应以第三人称陈述。它应具有独立性和自含性,即不阅读论文的全文,就能获得必要的信息。摘要的内容应包含与论文同等量的主要信息,供读者确定有无必要阅读全文,也供文摘等二次文献采用。摘要一般应说明研究工作目的、实验研究方法、结果和最终结论等,而重点是结果和结论。摘要中一般不用图、表、公式等,不用非公知公用的符号、术语和非法定的计量单位。摘要页置于封面页后。中文摘要一般为300汉字左右,用5号宋体,摘要应包括关键词。英文摘要是中文摘要的英文译文,英文摘要页置于中文摘要页之后。申请学位者必须有,不申请学位者可不使用英文摘要。关键词:关键词是为了文献标引工作从论文中选取出来用以表示全文主题内容信息款目的单词或术语。一般每篇论文应选取3~5个词作为关键词。关键词间用逗号分隔,最后一个词后不打标点符号。以显著的字符排在同种语言摘要的下方。如有可能,尽量用《汉语主题词表》等词表提供的规范词。4.3目次页:目次页由论文的章、节、条、附录、题录等的序号、名称和页码组成,另起一页排在摘要页之后,章、节、小节分别以1.1.1、1.1.2等数字依次标出,也可不使用目次页5.主体部分5.1格式:主体部分的编写格式由引言(绪论)开始,以结论结束。主体部分必须另页开始。5.2序号毕业论文各章应有序号,序号用阿拉伯数字编码,层次格式为:1××××(三号黑体,居中) ××××××××××××××××××××××(内容用小四号宋体)。 1.1××××(小三号黑体,居左) ×××××××××××××××××××××(内容用小四号宋体)。 1.1.1××××(四号黑体,居左) ××××××××××××××××××××(内容用小四号宋体)。例子 原子核和强相互作用物质的相变[1]刘玉鑫,穆良柱,常雷1.北京大学物理系, 北京1008712.北京大学重离子物理教育部重点实验室,北京1008713.重离子加速器国家实验室理论核物理中心,兰州730000 摘要:简要回顾原子核和强相互作用物质的相结构及相变研究的现状。说明原子核和强相互作用物质的相结构和相变的研究是原子核物理、粒子物理、天体物理、宇宙学和统计物理等领域共同关心重要前沿领域,到目前为止已取得重大进展,但无论是具体实际问题还是研究方法等方面都需要系统深入的研究。关键词:原子核物理;强相互作用物质;相与相变 1 引言 100年前,爱因斯坦通过分析充满空腔的辐射系统的熵与充满空腔的气体系统的熵,提出电磁辐射由光量子组成[1,2],从而建立了光子的概念,吹响了引导人们探索微观世界的冲锋号。进一步的深入研究表明,组成物质世界的粒子可以分为强子和轻子两类,粒子间的相互作用可以分为引力作用、电磁作用、弱作用和强作用4类。参与强相互作用的粒子或具有强相互作用的系统统称为强相互作用物质(包括强子物质、夸克物质等)及其特殊形式——原子核(由有限个强子组成的系统),对原子核和强相互作用系统的相结构及相变的研究,对于认识强相互作用系统的相结构、相变,了解宇宙的起源和演化至关重要,并且可能是有限系统的统计物理的检验平台。因此,近年来关于原子核和强相互作用系统的相变的研究不仅是原子核物理、天体物理、宇宙学及粒子物理等领域研究的重要前沿课题,还引起了有限量子多体系统领域和统计物理学界的极大关注。本文简要介绍原子核及强相互作用系统的相及相变研究的现状。2 原子核的相及相变2.1 原子核的单粒子运动与集体运动 原子核是有限数目的强子组成的束缚系统,其中的核子(质子和中子)自然具有单粒子运动,并建立壳模型成功的描述原子核的相应性质。实验上对原子核的能谱和电磁跃迁等的研究表明,原子核还具有整体运动,并建立了原子核具有形状和振动、转动等集体运动模式的概念。人们通常利用将核半径按球谐函数 展开来描述原子核的形状,并将相应的形变称为 极形变(如图1所示)。已经观测到和已经预言的原子核形状多种多样[3,4],比较重要的是四极形变,实验上已经观测到的最高极形变是16极形变[3,4]。按照壳模型和集体模型的观点, 幻数核多为球形, 而偏离满壳的核则为形变核,形变核可以细分为长椭球形、扁椭球形、三轴不对称形、梨形、香蕉形、纺锤形等。同时原子核还可能有形状共存现象。 图1 时原子核的 极形变的形状示意图(取自文献[3])Fig. 1 Sketch of the shape of a nucleus in -pole deformation with ( taken from Ref. [3] )近年来的研究表明,在较高激发能和较高角动量情况下,原子核的集体能谱消失,即出现带终结现象[5],这表明发生了由集体运动到单粒子运动的相变。2.2 原子核的形状相变 原子核形状的研究一直是原子核结构理论中一个重要的问题,这是因为原子核形状与原子核组成成分及其两种运动形式--集体运动和单粒子运动、中子质子比、角动量、激发态能量和核环境的温度等都密切相关。例如,集体模型中计算单粒子运动时常用的变形平均势就和核形状有关,不同形状原子核的集体运动模式各不相同[6];同时原子核的形状由所有核子的空间分布决定,而且随集体运动模式的不同而变化[7]。另一方面,原子核的形状和一定的动力学对称性相联系[4],核形状变化与原子核的动力学对称性的破缺相联系。原子核的形状发生变化表明其状态和性质发生了变化,也就是发生了相变。因此,原子核的形状相结构和相变的研究是原子核结构研究的重要内容。由于形状共存可能是单粒子运动和集体运动较强耦合的结果[7],因此形状共存也是核形状研究中关注的焦点[8]。 早期对于原子核形状相变的研究大多集中在一系列同位素或同中子素的基态[4,9],基态核的形状相变普遍存在于各个质量区[3],近年来关于临界状态对称性和三相点的研究[10-16]以及对超重核的形变和形状共存的研究[17],极大地丰富了基态和形状相变的研究内容。另一方面,由于实验上g-射线探测器阵列技术的进步,使得我们不仅可以对原子核基态的形状进行研究,而且可以对激发态、尤其是高自旋态的核形状进行研究。激发态核的形变则更富含物理内容, 如超形变带、回弯现象、同核异能态等都和形变直接相关;2003年观测到的沿Yrast带出现的集体振动模式到定轴转动模式的变化表明低激发态中可能存在转动(或角动量)驱动的由球形(振动)到长椭球形(定轴转动)的形状相变[18]。 对于原子核基态形状的研究通常采用的理论模型有集体模型[6]、相互作用玻色子模型(IBM)[4]、Hartree-Fock-Bogoliubov(HFB)方法[19], 另外还可以使用热力学统计理论[20]。而对于原子核激发态的形状的研究则采用Landau相变理论[21]、有限温度推转HFB[22]、推转IBM[23]等。在这些方法中,集体模型有比较直观的几何图象,但是缺乏微观机制;而微观理论没有直接的几何图象。由于IBM既有较好的微观基础[24],又可以由相干态理论建立直观的几何图象[4],所以IBM理论在原子核的形状相变研究中得到了广泛的应用。早期利用IBM对原子核基态的形状相变的研究可以归纳为Casten三角形[4],近年来Iachello利用几何模型对原子核基态形状相变的研究将Casten三角形扩展到四面体[25],如图2所示。图中三个顶点对应IBM的U(5)、SU(3)、O(6)三种对称性极限,另一个顶点对应SU*(3)对称性(将SU(3)的生成元 中的 替换为 )。由相干态理论知,U(5)、SU(3)、SU*(3)、O(6)对称性分别对应球形、轴对称长椭球形变、轴对称扁椭球形变、g-不稳定形变[4]。并且,沿球形到g-不稳定形变的相变为二级相变,临界点附近的核态具有E(5)对称性[10];从球形区到长椭球形变区的相变为一级相变,临界点附近的核态具有X(5)对称性[11];还存在球形、长椭球形和g-不稳定形变三相共存的三相点[15,16]。此外,长椭球形变与扁椭球形变之间的临界点附近的核态具有O(6)对称性[12]、Y(5)对称性[13],也有人认为长椭球与扁椭球形状相变临界点附近的核态还可能具有Z(5)对称性[14]。理论上发现形状共存和各种临界点对称性之后,很快就在实验上找到了对应的原子核。如152Sm可能有形状共存现象[26], 与E(5)对称性对应的原子核有134Ba[27]、108Pd[28]、130Xe[29]等,与X(5)对称性对应的原子核有152Sm、154Gd、156Dy和其他N=90的同中子素链[30],与Y(5)对称性对应的原子核有166,168Er[31]等,与Z(5)对称性相对应的原子核有194Pt等[25]。同时,类似Iachello四面体的工作很快被推广到区分质子玻色子和中子玻色子的IBM-2[32],同样成功的找到了各种极限对称性之间的相变。 图2 扩展的IBM的对称性间的演化图(取自文献[25])Fig. 2 Extended sketch of the symmetries and their evolution in the IBM ( taken from Ref. [25] ) 对于角动量变化可能引起的原子核形状相变,早期的研究主要基于液滴模型[19]。近年来,人们开始利用Landau相变理论[21]、有限温度推转HFB理论[22]、推转IBM[23]、推转无规位相近似[33]以及IBM框架下考虑角动量投影的相干态方法[34,35]进行研究,结果表明即使是核的低激发态也可能存在各种形状之间的相变,并说明低激发能谱中出现振动到定轴转动的相变的机制可能是,随着角动量升高,振动逐渐减弱,转动逐渐加强,临界点以后成为很好的定轴转动。另一方面,直接从核子层次对原子核形状相变的研究也已取得进展[36]。3 强相互作用物质的相变3.1 原子核的液气相变 早在20世纪30年代,根据实验观测到的原子核的性质,人们就对原子核的结构提出了费米气体模型和液滴模型。这说明在某些条件下,原子核呈液相,或者说其某些性质表现为液相的性质;而在另一些方面,原子核表现为气相。在这一层次上,所谓的“液相”和“气相”只是作为原子核的不同性质的唯象表述,根本没有关心这两种相之间的演化。到20世纪90年代中期,随着中高能核核碰撞研究的深入,人们研究了核核碰撞形成的系统的温度与其中核子的激发能之间的关系,最早的由德国GSI报告的结果[37]如图3所示,这一关系显然与通常物质处于液相、气相及其间相变中温度与单粒子平均能量间的关系相同,从而说明发生了液气相变。由于相变通常由热力学函数和状态方程出发进行研究,原子核的液气相变自然成为研究核物质状态方程、进而研究核天体状态及其演化的突破口。于是,美国Brookhaven国家实验室、Lawrence国家实验室、Michigan州立大学、德州农机学院、俄罗斯的Dubna、德国的GSI、法国的GANIL和LNS Saclay、意大利的del Sud国家实验室等国际大型实验室的核物理学家系统研究了中高能核核形成的系统的温度与单粒子激发能的关系、热容、高碎裂多重度、集体膨胀、有限尺寸及Fisher定律标度等[38~41],理论上发展了核玻尔兹曼方程[42]、有限系统费米子-分子动力学[43]、全反对称分子动力学[44]等方法、并利用渗渝理论[45]对这些系统进行研究,结果都表明,在一定的条件下,中高能核核碰撞形成的系统中都会出现液气相变,并说明该相变的机制是失稳分解。事实上,这些研究还都有待深化,尤其是相变的序参量、同位旋依赖性、相变的临界温度、对核天体的结构和演化的影响等都是目前研究关注的重要问题。图3 核核碰撞形成的系统的温度与单核子能量的关系(取自文献[37])Fig. 3 Relation between the temperature and the energy of single nucleon of the system formed in nucleus-nucleus collision (taken from Ref. [37])3.2 强相互作用物质的相变 强相互作用物质是由强子(包括重子和介子)组成的强子物质和由夸克、胶子组成的夸克物质的统称。因此,对强相互作用物质的组分、性质、相结构及相变的研究是当代原子核物理、粒子物理、天体物理和宇宙学等领域共同关注的重大课题。 我们已经知道,强子由夸克和胶子组成,并且可以形象地将之比喻为束缚有夸克和胶子的口袋,口袋内的夸克、胶子的相互作用与强相互作用真空内的作用之间的差异提供的袋常数常被用来描述束缚的强度。随着强子物质系统温度的升高,强子无规则运动的能量和其内部夸克、胶子无规则运动的能量都会升高,压强会增大;系统密度的增大也会引起压强增大,当系统的真空压不能平衡强子内部的压强时,强子将消失,夸克和胶子将成为夸克物质,也就是可以发生退禁闭相变。退禁闭形成的夸克物质可能以等离子体状态存在,从而形成夸克胶子等离子体(QGP)。另一方面,描述强相互作用的基本理论是量子色动力学(QCD),QCD具有渐近自由的性质(上述退禁闭相变正是渐近自由的结果和表现),并且零质量的费米子(夸克等)具有左旋和右旋的等价性,这种等价性称为手征对称性。然而,现实的强子世界处于低能区域,夸克是禁闭的、有质量的,并且不具有手征对称性。但当退禁闭相变发生以后,手征对称性可能恢复,从而发生手征恢复相变。再者,我们知道,由于电声作用的相互影响,声子可以为电子之间提供一个较弱的吸引力,从而形成电子库珀对,出现超导现象;由于夸克之间的特殊的相互作用道本来就是吸引的,因此夸克之间也可以形成夸克库珀对,由于夸克具有3种颜色,3种色混合或一种色与其反色混合形成无色的强子,但两个夸克形成的对却带有颜色,因此由夸克库珀对形成的凝聚状态称为色超导态[46]。根据色超导态的夸克库珀对的色味结构,色超导态具有两味色超导、色味锁定色超导等多种相(有时简单地统称之为色超导相)。目前的研究表明,强相互作用物质的相图如图4所示。图4 强相互作用物质相图(取自)Fig. 4 Phase diagram of strong interaction matter (taken from ) 由于QCD具有渐近自由的性质,因此,对于高能区的场和粒子性质,可以利用微扰QCD进行研究,并得到了很好的结果。但对于低能区域,QCD的求解问题尚没有解决,于是人们发展了QCD因子化和重求和(硬热圈展开和硬密圈展开)方法[47],并利用QCD的非微扰有效场论模型方法和唯象模型方法(Dyson-Schwinger方程、瞬子模型、整体色对称模型、手征模型、孤立子模型、夸克介子耦合模型、NJL模型、袋模型)[48~54]等对强相互作用物质进行理论研究。近年来,随着对基本原理的扩展和计算方法的发展,利用格点QCD对强相互作用物质的研究已有重大进展[55]。实验上,人们利用高能核核碰撞对强相互作用物质及其相变进行研究。目前,美国Brookhaven国家实验室的AGS和RHIC、欧洲核子中心的SPS等大型高能核核碰撞装置都已为强相互作用物质的研究作出了重大贡献,即将开始运行的欧洲核子中心的LHC和正在兴建的德国GSI的SIS将为强相互作用物质的研究揭开新的一页,我国在兰州兴建并即将运行的CSR装置也将为强相互作用物质的研究谱写新的篇章。尽管对强相互作用物质的相结构和相变的研究已取得丰硕成果,但仍有很多重大基本问题(例如手征对称性破缺和恢复的机制、过程和准确信号、费米子质量的起源、QGP的准确信号和鉴别、强子物质和夸克物质的状态方程,等等)需要研究。4 小结 综上所述,原子核和强相互作用物质的相结构和相变的研究是原子核物理、粒子物理、天体物理、宇宙学和统计物理等领域共同关心的重要前沿领域,尽管已取得重大进展,但无论是实际问题还是研究方法都需要系统深入的研究。 参考文献[1] EINSTAIN A. Ann. Phys[J]. 1905 (17): 132-148; G. N. Lewis, Nature [J]. 1926 (118): 874.[2] ZEILINGER A., WEIHS G., JENNEWEIN T., ASPELMEYER M., Nature[J]. 2005 (433): 230. [3] LUCAS R. Europhysics News[J] 2001(31).[4] IACHELLO F ,Arima A. The interacting boson model[M].Cambridge: Cambridge University Press, 1987.[5] AFANASJEV A V,FOSSAN D B, LANE G J, RAGNARSSON I., Phys. Rept[J]. 1999(322): 1.[6] BOHR A., MOTTELSON B. R. Nuclear Structure[M]( Inc.Massachusetts :W. A. Benjamin, 1975, 1-748.[7] GREINER W, MARUHN J. A. Nuclear Models[M] Berlin:Springer, 1996, 47-53.[8] HEYDE K, JOLIE J., FOSSION R., BAERDEMACKER S De, HELLEMANS V. Phys. Rev[J]. 2004( C 69): 054304.[9] CASTEN R. F. KUSNEZOV D.ZAMFIR N. V..Phys. Rev. Lett[J]. 1999(82): 5000. Phase Transitions of Nucleus and Strong Interacting MatterLIU Yu-xin 1,2,3,MU Liang-zhu1,CHANG Lei1 1. Department of Physics, Peking University, Beijing 100871,China2. The Key Laboratory of Heavy Ion Physics at Peking University, Ministry of Education, Beijing 100871,China3. Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000,ChinaAbstract: We review the status of the research on the phase structure and phase transitions of nucleus and strong interacting matter briefly. It shows that the related studies are the very active current frontier commonly interested by nuclear physics, particle physics, astrophysics, cosmology, statistical physics and other areas. A lot of significant progress has been made. However, not only concrete problems but also researching approaches need to be studied further.Key Words: nucleus, strongly interacting matter, phase and phase transition

  • 索引序列
  • 天体物理类论文题目
  • 天体物理论文题目
  • 天体物理论文题目怎样取
  • 天体物理论文2000字
  • 天体物理毕业论文范文
  • 返回顶部