一、 中国农作物虫螨害概述(一)基础知识1昆虫的基础知识2昆虫的基本分类3螨的基本分类4害虫和虫害形成的条件5害虫种群动态与虫害形成机制(二) 中国农业主要害虫(螨)1蝗虫2地下害虫3水稻主要害虫4禾谷类粮食作物主要害虫5棉花主要害虫(螨)6其他经济作物主要害虫7蔬菜主要害虫(螨)8果树主要害虫(螨)9园林植物主要害虫(螨)参考文献二、杀虫剂研究开发的新进展与发展趋势1鱼尼丁受体类2季酮酸类3拟除虫菊酯类4苯甲酰脲类5双酰肼类6新烟碱类7吡唑类8嘧啶类9氨基脲类10天然产物类11其他类型的杀虫剂参考文献三、主要单剂品种(一)杀虫剂1阿维菌素(abamectin)2甲氨基阿维菌素苯甲酸盐(emamectinbenzoate)3伊维菌素(ivermectin)4雷皮菌素(lepimectin)5弥拜菌素(milbemectin)6多杀菌素(spinosad)7乙基多杀菌素(spinetoram)8苏云金素(thuringiensin)9印楝素(azadirachtin)10烟碱(nicotine)11除虫菊素(pyrethrins)12鱼藤酮(rotenone)13藜芦碱(sabadilla)14杀虫磺(bensultap)15杀螟丹(cartap)16杀虫环(thiocyclam)17杀虫单(thiosultap?monosodium)18杀虫双(thiosultap?disodium)19氯虫酰胺(chlorantraniliprole)20氰虫酰胺(cyantraniliprole)21氟虫酰胺(flubendiamide)22双三氟虫脲(bistrifluron)23噻嗪酮(buprofezin)24氟啶脲(chlorfluazuron)25灭蝇胺(cyromazine)26环虫腈(dicyclanil)27除虫脲(diflubenzuron)28氟螨脲(flucycloxuron)29氟虫脲(flufenoxuron)30氟铃脲(hexaflumuron)31虱螨脲(lufenuron)32氟酰脲(novaluron)33多氟脲(noviflumuron)34氟幼脲(penfluron)35氟苯脲(teflubenzuron)36杀铃脲(triflumuron)37灭幼脲(chlorbenzuron)38苯氧威(fenoxycarb)39烯虫乙酯(hydroprene)40烯虫炔酯(kinoprene)41烯虫酯(methoprene)42吡丙醚(pyriproxyfen)43啶虫丙醚(pyridalyl)44环虫酰肼(chromafenozide)45氯虫酰肼(halofenozide)46甲氧虫酰肼(methoxyfenozide)47虫酰肼(tebufenozide)48呋喃虫酰肼(fufenozide)49氟啶虫酰胺(flonicamid)50噻虫胺(clothianidin)51噻虫嗪(thiamethoxam)52噻虫啉(thiacloprid)53吡虫啉(imidacloprid)54啶虫脒(acetamiprid)55烯啶虫胺(nitenpyram)56呋虫胺(dinotefuran)57哌虫啶(paichongding)58氯噻啉(imidaclothiz)59砜虫啶(sulfoxaflor)60茚虫威(indoxacarb)61乙酰虫腈(acetoprole)62乙虫腈(ethiprole)63氟虫腈(fipronil)64pyrafluprole65pyriprole66丁烯氟虫腈(flufiprole)67吡螨胺(tebufenpyrad)68唑虫酰胺(tolfenpyrad)69嘧虫胺(flufenerim)70嘧螨醚(pyrimidifen)71溴虫腈(chlorfenapyr)72Tralopyril73螺螨酯(spirodiclofen)74螺虫酯(spiromesifen)75螺虫乙酯(spirotetramat)76丁醚脲(diafenthiuron)77Sulcofuron?sodium78灭虫隆(chloromethiuron)79双甲脒(amitraz)80伐虫脒(formetanate)81氟丙菊酯(acrinathrin)82烯丙菊酯(allethrin)83生物烯丙菊酯(bioallethrin)84联苯菊酯(bifenthrin)85乙氰菊酯(cycloprothrin)86氟氯氰菊酯(cyfluthrin)87高效氟氯氰菊酯(beta?cyfluthrin)88三氟氯氰菊酯(cyhalothrin)89精高效氯氟氰菊酯(gamma?cyhalo?thrin)90高效氯氟氰菊酯(lambda?cyhalo?thrin)91氯氰菊酯(cypermethrin)92顺式氯氰菊酯(alpha?cyperme?thrin)93高效氯氰菊酯(beta?cypermethrin)94高效反式氯氰菊酯(theta?cyperme?thrin)95zeta?氯氰菊酯(zeta?cypermethrin)96苯醚氰菊酯(cyphenothrin)97溴氰菊酯(deltamethrin)98右旋烯炔菊酯(empenthrin)99甲氰菊酯(fenpropathrin)100氰戊菊酯(fenvalerate)101高氰戊菊酯(esfenvalerate)102氟氰戊菊酯(flucythrinate)103氟胺氰菊酯(tau?fluvalinate)104炔咪菊酯(imiprothrin)105氯氟醚菊酯(meperfluthrin)106甲氧苄氟菊酯(metofluthrin)107四氟甲醚菊酯(dimefluthrin)108氯菊酯(permethrin)109苯醚菊酯(phenothrin)110炔丙菊酯(prallethrin)111苄呋菊酯(resmethrin)112生物苄呋菊酯(bioresmethrin)113顺式苄呋菊酯(cismethrin)114七氟菊酯(tefluthrin)115胺菊酯(tetramethrin)116四氟醚菊酯(tetramethylfluthrin)117四溴菊酯(tralomethrin)118四氟苯菊酯(transfluthrin)119虫威(bendiocarb)120甲萘威(carbaryl)121丙硫克百威(benfuracarb)122克百威(carbofuran)123丁硫克百威(carbosulfan)124呋线威(furathiocarb)125抗蚜威(pirimicarb)126棉铃威(alanycarb)127涕灭威(aldicarb)128丁酮威(butocarboxim)129丁酮砜威(butoxycarboxim)130灭多威(methomyl)131杀线威(oxamyl)132硫双威(thiodicarb)133久效威(thiofanox)134乙硫苯威(ethiofencarb)135仲丁威(fenobucarb)136异丙威(isoprocarb)137甲硫威(methiocarb)138速灭威(metolcarb)139残杀威(propoxur)140混杀威(trimethacarb)141灭除威(XMC)142灭杀威(xylylcarb)143二硝酚(DNOC)144冰晶石(cryolite)145氟虫胺(sulfluramid)146毒虫畏(chlorfenvinphos)147敌敌畏(dichlorvos)148百治磷(dicrotophos)149甲基毒虫畏(dimethylvinphos)150庚烯磷(heptenophos)151速灭磷(mevinphos)152久效磷(monocrotophos)153二溴磷(naled)154萘肽磷(naftalofos)155磷胺(phosphamidon)156丙虫磷(propaphos)157杀虫畏(tetrachlorvinphos)158稻丰散(phenthoate)159家蝇磷(acethion)160硫线磷(cadusafos)161氯氧磷(chlorethoxyfos)162氯甲硫磷(chlormephos)163乙拌磷(disulfoton)164乙硫磷(ethion)165灭线磷(ethoprophos)166马拉硫磷(malathion)167亚砜磷(oxydemeton?methyl)168甲拌磷(phorate)169治螟磷(sulfotep)170特丁硫磷(terbufos)171甲基乙拌磷(thiometon)172乐果(dimethoate)173灭蚜磷(mecarbam)174氧乐果(omethoate)175蚜灭磷(vamidothion)176辛硫磷(phoxim)177蝇毒磷(coumaphos)178伏杀硫磷(phosalone)179吡唑硫磷(pyraclofos)180哒嗪硫磷(pyridaphenthion)181益棉磷(azinphos?ethyl)182保棉磷(azinphos?methyl)183亚胺硫磷(phosmet)184恶唑磷(isoxathion)185吡菌磷(pyrazophos)186毒死蜱(chlorpyrifos)187甲基毒死蜱(chlorpyrifos?methyl)188二嗪磷(diazinon)189甲基嘧啶磷(pirimiphos?methyl)190丁基嘧啶磷(tebupirimfos)191喹硫磷(quinalphos)192杀扑磷(methidathion)193氯唑磷(isazofos)194三唑磷(triazophos)195杀螟腈(cyanophos)196伐灭磷(famphur)197杀螟硫磷(fenitrothion)198倍硫磷(fenthion)199对硫磷(parathion)200甲基对硫磷(parathion?methyl)201丙溴磷(profenofos)202丙硫磷(prothiofos)203硫丙磷(sulprofos)204双硫磷(temephos)205敌百虫(trichlorfon)206苯硫膦(EPN)207苯线磷(fenamiphos)208乙酰甲胺磷(acephate)209异柳磷(isofenphos)210甲胺磷(methamidophos)211胺丙畏(propetamphos)212硝虫硫磷(xiao chong liu lin)213硫丹(endosulfan)214林丹(lindane)215氟蚁腙(hydramethylnon)216稻瘟灵(isoprothiolane)217哒螨灵(pyridaben)218唑蚜威(triazamate)219氰氟虫腙(metaflumizone)220pyrifluquinazon(二)杀螨剂主要类型与品种221杀螨素(tetranactin)222苯螨特(benzoximate)223溴螨酯(bromopropylate)224三氯杀螨醇(dicofol)225三氯杀螨砜(tetradifon)226苯菌灵(benomyl)227苯硫威(fenothiocarb)228消螨通(dinobuton)229二硝巴豆酚酯(dinocap)230四螨嗪(clofentezine)231氟螨嗪(diflovidazin)232啶蜱脲(fluazuron)233噻螨酮(hexythiazox)234三唑锡(azocyclotin)235三环锡(cyhexatin)236苯丁锡(fenbutatinoxide)237氟氯苯菊酯(flumethrin)238灭螨猛(chinomethionat)239炔螨特(propargite)240灭螨醌(acequinocyl)241磺胺螨酯(amidoflumet)242苯氟磺胺(dichlofluanid)243喹螨醚(fenazaquin)244唑螨酯(fenpyroximate)245嘧螨酯(fluacrypyrim)246嘧螨胺(pyriminostrobin)247丁氟螨酯(cyflumetofen)248SYP?10898249腈吡螨酯(cyenopyrafen)250乙螨唑(etoxazole)251联苯肼酯(bifenazate)252硫黄(sulfur)(三)昆虫驱避剂253避蚊胺(diethyltoluamide)254驱蚊灵(dimethyl carbate)255N?methylneodecanamide(四)拒食剂256三苯锡(fentin)257双胍辛盐(guazatine)258吡蚜酮(pymetrozine)(五)鸟类驱避剂259蒽醌(anthraquinone)260氯醛糖(chloralose)261王铜(copper oxychloride)262福美锌(ziram)(六)交配干扰剂263Disparlure264红铃虫性诱素(gossyplure)265Grandlure(七)杀软体动物剂266四聚乙醛(metaldehyde)267杀螺胺(niclosamide)268五氯酚(pentachlorophenol)(八)熏蒸剂和杀线虫剂269fluensulfone270imicyafos271二甲基二硫醚(dithioether)272Benclothiaz273二硫化碳(carbon disulfide)274噻唑磷(fosthiazate)275氯化苦(chloropicrin)276棉隆(dazomet)277二氯异丙醚(DCIP)278除线磷(dichlofenthion)279丁环硫磷(fosthietan)280线虫磷(fensulfothion)281治线磷(thionazin)282威百亩(metam)283溴甲烷(methyl bromide)284碘甲烷(methyl iodide)285敌线酯(methyl isothiocyanate)286硫酰氟(sulfuryl fluoride)287二氯丙烯(1,3?dicholorpropene)288磷虫威(phosphocarb)289二甲酚(xylenols)(九)杀虫剂增效剂290增效醚(piperonylbutoxide)291增效醛(piprotal)292增效酯(propyl isome)293增效散(sesamex)(十)杀鼠剂294毒鼠碱(strychnine)295溴鼠灵(brodifacoum)296溴敌隆(bromadiolone)297杀鼠醚(coumatetralyl)298鼠得克(difenacoum)299噻鼠灵(difethialone)300氟鼠灵(flocoumafen)301杀鼠灵(warfarin)302磷化锌(zinc phosphide)303溴鼠胺(bromethalin)304氯鼠酮(chlorophacinone)305敌鼠(diphacinone)306 维生素D2(ergocalciferol)307鼠完(pindone)308氟乙酸钠(sodium fluoroacetate)四、常用混剂1阿维·哒螨灵2阿维·哒嗪3阿维·毒死蜱4阿维·高氯5阿维·灭幼脲6阿维菌素·杀虫单7阿维·印楝素8甲维·虫酰肼9甲维·毒死蜱10甲维·氟铃脲11甲维·印楝素12苏云·虫酰肼13虫菊·苦参碱14吡虫啉·毒死蜱15吡虫啉·马拉硫磷16吡虫·噻嗪酮17吡虫啉·三唑磷18吡虫啉·杀虫单19吡虫啉·杀虫双20吡虫啉·辛硫磷21吡虫啉·乙酰甲胺磷22灭脲·吡虫啉23茚威·吡虫啉24吡蚜·毒死蜱25吡蚜·噻嗪酮26氯虫·噻虫嗪27噻虫·高氯氟28毒死蜱·高效氯氰菊酯29毒死蜱·氯氰菊酯30毒死蜱·三唑磷31毒死蜱·杀虫单32毒死蜱·辛硫磷33毒死蜱·溴氰菊酯34虫酰·毒死蜱35辛硫·三唑磷36辛硫磷·溴氟菊酯37辛硫磷·溴灭菊酯38氯氟氰菊酯·马拉硫磷39氯氰·辛硫磷40二嗪·辛硫磷41氰戊·辛硫磷42丙溴·辛硫磷43除脲·辛硫磷44虫酰·辛硫磷45哒嗪·辛硫磷46氟氯氰菊酯·辛硫磷47氟铃·辛硫磷48高氯·辛硫磷49马拉·辛硫磷50丙溴·敌百虫51丙溴磷·高效氯氰菊酯52丁硫克百威·马拉硫磷53哒嗪·丁硫54氟腈·三唑磷55高效氯氰菊酯·三唑磷56马拉硫磷·三唑磷57四溴菊酯·三唑磷58乙酰甲胺磷·三唑磷59唑磷·高氯氟60敌畏·氧乐果61高氯·氧乐果62唑酮·氧乐果63噻嗪·杀扑磷64氯氰菊酯·杀虫双65氯氰菊酯·三唑磷66高氯·虫酰肼67高氯·氟铃脲68高氯·灭多威69高氯·灭幼脲70高效氯氰菊酯·杀虫单71高效氯氰菊酯·乙酰甲胺磷72甲氰菊酯·三唑磷73甲氰·氧乐果74甲氰菊酯·乙酰甲胺磷75甲氰菊酯·乙酰甲胺磷76氰戊·灭多威77氰戊·氧乐果78氟氯氰菊酯·乙酰甲胺磷79氟腈·高氯氟80哒螨·灭幼脲81哒灵·炔螨特82哒螨·三唑锡83哒螨灵·氧乐果84丁醚·哒螨灵85噻螨·哒螨灵86四螨·哒螨灵87丁醚·虫螨腈88抗蚜威·乙酰甲胺磷89聚醛·甲萘威90灭多威·杀虫单91灭多威·杀虫双92灭威·毒死蜱93噻嗪酮·异丙威94杀虫单·乙酰甲胺磷附录1农药剂型中英文名称一览表2重要虫害相关名称对照表3作用机理分类一览表4世界农药市场相关情况主要参考文献索引1CAS登录号索引2分子式索引3试验代号索引4中文名称索引5英文通用名称索引6英文商品名称索引7公司名称索引
由于氯菊酯及其后来许多第二代光稳定性农用拟除虫菊酯类杀虫剂的研究开发成功,促进了该类化合物研究的进展。这些化合物所存在的种种不足如对鱼毒性较高,对螨类和土壤害虫效果较差以及缺乏内吸性等已经有了突破。
1.在结构中导入氟原子
含氟化合物作为农药使用历史悠久,但早期的含氟无机化合物因毒性太高使其开发受到限制。在有机合成农药分子的适当部位用氟取代氢,由于氟原子的特殊性质,其理化性质变化较小,但确使原来的化合物增添了新的活性。同时,具有选择性好、活性高、用量少或者毒性降低等优点,受到农药研究(包括医药研究)领域的高毒重视。在菊酯分子中引入氟原子,证明不仅仍保持或提高了原化合物的活性,而且对螨类表现了很好的毒效,但对鱼和蜜蜂的毒性并未降低。通过在结构中导入氟原子开发成功的菊酯类杀虫有杀螨剂有联苯菊酯、氟氯氰菊酯、氯氟氰菊酯和七氟菊酯等。
2.在结构中导入硅原子
除了氟原子外,在新的农药结构中引入硅和锡原子均有不少成功的例子。日本住友公司20世纪80年代开发了以硅原子取代菊酯结构中的碳原子,开发出了含硅的拟除虫菊酯。虽然此类取代品种在活性方面并没有较大的突破,但在发展拟除虫菊酯的结构上增添了一个新的领域。
3.改变酯的结构
如醚菊酯。在醚菊酯的结构中已经无菊酸部分,但因其空间结构与菊酯化合物有相似之处,且有拟除虫菊酯化合物类似的生物活性,仍将其以“菊酯”称谓。醚菊酯对蜜蜂毒性大大降低,且对稻田的捕食性蜘蛛相对安全。这一结构的改进,打破了通常认为拟除虫菊酯类杀虫剂具有高活性必须是“酯”结构的说法。
论文关键词: 结核病;化学治疗;药物
抗结核药物是结核病化学治疗(简称化疗)的基础,而结核病的化学治疗是人类控制结核病的主要手段。结核病化疗的出现使结核病的控制有了划时代的改变,全球结核病疫情由此得以迅速下降。最早出现的有效抗结核药物当数链霉素(SM)。它发现于20世纪40年代,当时单用SM治疗肺结核2~3个月后就可使临床症状和X线影像得以改善,并可暂获痰菌阴转。对氨水杨酸(PAS)被应用于临床后发现,SM加PAS的治疗效果优于单一用药,而且可以防止结核分支杆菌产生耐药性[1]。发明异烟 肼 (INH)后,有人单用INH和联用INH PAS或SM进行对比治疗试验,再一次证明了联合用药的优势[2]。于是在此基础上产生了著名的结核病“标准”化疗方案,即SM INH PAS,疗程18个月~2年,并可根据药源和患者的耐受性将PAS替换为乙胺丁醇(EMB)或氨硫 脲 (TB1),俗称“老三化”[3]。70年代随着利福平(RFP)在临床上的应用以及对吡 嗪 酰胺(PZA)的重新认识,在经过大量的实验后,短程化疗成为结核病治疗的最大热点,并取得了令人瞩目的成就[4,5]。当人类迈入2000年的今天,抗结核药物的研究已经获得了更进一步的发展,其中最引人注目的主要是利福霉素和氟 喹 诺酮这两大类药物,尤以后者更为突出。
一、利福霉素类
在结核病的化疗史上,利福霉素类药物的研究一直十分活跃。随着RFP的发现,世界各国出现了研制本类新衍生物的浪潮,相继产生了数个具有抗结核活性的利福霉素衍生物,但杀菌效果都不如RFP,RFP仍是利福霉素类药物中最经典的抗结核药物。
1.利福布丁(rifabutin,RFB,RBU):RBU对RFP敏感菌的最低抑菌浓度(MIC)是低的(<0.06 μg/ml),而对RFP耐药菌株的MIC明显增高(0.25~16.0 μg/ml)。此结果显示RFP与RBU存在交叉耐药;这么宽的MIC范围,又提示RFP耐药菌株对RBU有不同程度的敏感性,敏感比例高达31%。在MIC<0.5 μg/ml的结核分支杆菌株,或许可把RBU考虑为中度敏感[6]。RBU的亲脂性、透过细胞壁和干扰DNA生物合成的能力高于RFP,使之能够集中分布在巨噬细胞内而具有较强的活性。
RBU也有其不足之处。如RBU的早期杀菌作用不如RFP[7],可能与其血浆浓度低有关。有研究结果表明,RBU口服剂量300 mg 4 h后的峰值浓度仅为0.49 μg/ml,比同剂量RFP的峰值约低10倍。究其原因,可能与RBU的口服生物利用度和血清蛋白结合率均低有关,前者只有12%~20%,后者仅为RFP的25%。
临床上已将RBU试用于不同类型的结核病人。香港胸腔协会的研究结果表明,在治疗同时耐INH、SM和RFP的结核病患者中,RBU和RFP的效果几乎相等[8]。但已有研究表明,RBU对鸟分支杆菌复合群有明显的作用。
2.苯并恶 嗪 利福霉素-1648(KRM-1648):苯并恶 嗪 利福霉素-1648属于3-羟-5-4-烷基 哌 嗪 ,为苯并恶 嗪 利福霉素5种衍化物之一。本品比RFP的MIC强16~32倍。小鼠实验结核病治疗结果显示:单剂KRM-1648 3 mg/kg的疗效明显优于RFP 10 mg/kg,与HE联用亦比RFP HE疗效佳。KRM-1648和其它利福霉素类的交叉耐药也必然是一问题,但纲谷良一[9]认为:由于KRM-1648比RFP有更强的杀菌作用,即使结核分支杆菌对RFP具耐药性,本药也能发挥一定的杀菌作用。
最近芝加哥的一份动物实验研究结果表明,KRM-1648、RBU和RFP这三种相类似的药物均对耐多药结核病(MDR-TB)无效[10]。
3. 利福喷丁(rifapentine, DL473, RPE, RPT):RPT又名环戊基 哌 嗪 利福霉素,于1976年由意大利Leptit公司首先报道,我国紧跟其后于1977年就已着手研制,并在1984年应用于临床。该药为RFP的环戊衍生物,据Arioli等[11]报告,其试管中的抗菌活力比RFP高2~10倍。本品口服后,胃肠道吸收良好,并迅速分布到全身组织中,以肝脏为最高,其次为肾、脾、肺及心脏,在脑组织中也有分布。人口服后4 h即达血浓度高峰。RPT的蛋白结合率可达98%~99%,因此组织停留时间长,消除半衰期时间亦较RFP延长4~5倍,是一种高效、长效抗结核药物。
我国使用该药替代RFP对初、复治肺结核进行了对比研究,每周顿服或每周2次服用RPT 500~600 mg,疗程结束时痰菌阴转率、病变有效率和空洞关闭率与每日服用RFP组相比,疗效一致,未见有严重的药物毒副反应。本药不仅有满意的近期效果,而且有可靠的远期疗效[12]。由于RPT可以每周只给药1~2次,全疗程总药量减少,便于督导,也易为病家所接受。
二、氟 喹 诺酮类(FQ)
第三代氟 喹 诺酮类药物中有不少具有较强的抗结核分支杆菌活性,对非结核分支杆菌(鸟胞分支杆菌复合群除外)亦有作用,为临床治疗开拓了更为广阔的前景。由于结核分支杆菌对氟 喹 诺酮产生自发突变率很低,为1/106~107,与其他抗结核药之间无交叉耐药性,目前这类药物已成为耐药结核病的主要选用对象。
氟 喹 诺酮类药物的主要优点是胃肠道易吸收,消除半衰期较长,组织穿透性好,分布容积大,毒副作用相对较小,适合于长程给药。这类化合物抗菌机制独特,通过抑制结核分支杆菌旋转酶而使其DNA复制受阻,导致DNA降解及细菌死亡。氟 喹 诺酮在肺组织、呼吸道粘膜组织中有蓄积性,浓度均超过结核分支杆菌的MIC。感染部位的组织浓度对血药浓度的比值较正常组织中高,在痰、支气管粘膜、肺等组织的药浓度/血清浓度为2或更高,显示了对肺结核的强大治疗作用。
1.氧氟沙星(ofloxacin, OFLX):OFLX对结核分支杆菌的MIC约0.5~2 μg/ml,最低杀菌浓度(MBC)为1~2 μg/ml,在下呼吸道的组织浓度远高于血清浓度。OFLX有在巨噬细胞内聚积的趋势,在巨噬细胞中具有与细胞外十分相近的MIC,与PZA在巨噬细胞中产生协同作用。OFLX与其他抗结核药之间既无协同作用也无 拮 抗作用,可能为相加作用[13]。
OFLX的临床应用已有若干报道,尽管人体耐受量仅有中等程度抗结核作用,但不论对鼠实验结核或人结核病治疗均有肯定疗效。现在香港将OFLX与其它可供使用的配伍药一起,常规用于少数耐多药的慢性肺结核病人[8]。
我院采用含有OFLX的化疗方案治疗耐多药肺结核,获得了痰菌培养2个月阴转率50%、3个月62%以及6个月75%的可观效果。厂家推荐的用于治疗严重呼吸道感染的剂量为400 mg 2次/日。有人对22例单用OFLX 300 mg/d或800 mg/d治疗,持续9个月到1年,所有病人耐受良好,并显示较大的剂量效果较好[6]。多次用药后,血清或各种体液中无临床上明显的蓄积作用,有利于肺结核的长程治疗。人体对OFLX的最大耐受量为800 mg/d,我院选择的经验剂量为300 mg 2次/日。
2.环丙沙星(ciprofloxacin,CPLX, CIP):CIP对结核分支杆菌的MIC和MBC与OFLX相似,具有很好的抗菌活性,但由于有人认为该药在试管内和RFP一起应用有 拮 抗作用,所以临床应用的报道也还不多。CIP因胃肠吸收差,生物利用度只有50%~70%,体内抗结核活性弱于OFLX。基于上述因素,OFLX被更多地用于耐药结核病。
3.左氟沙星(levofloxacin, DR-3355, S-OFLX, LVFX):1986年开发的LVFX为OFLX的光学活性L型异构体,抗菌活性要比D型异构体大8~128倍。在7H11培养基中,LVFX抗结核分支杆菌的MIC50、MIC90均为0.78 μg/ml。在7H12培养基中对敏感菌及耐药菌的MIC为0.25~1 μg/ml(MBC1 μg/ml,),比OFLX强1倍。与OFLX一样,LVFX亦好聚集于巨噬细胞内,其MIC为0.5 μg/ml(MBC是2 μg/ml),抗结核分支杆菌的活性也是OFLX的2倍。两者之间之所以产生这样的差异,可能与它们抗DNA旋转酶的活性不同有关[14]。
LVFX口服吸收迅速,服药后1 h血药浓度达3.27 μg/ml,达峰时间(1.05±0.17) h。服用LVFX 4 h后痰中药物浓度平均4.44 μg/ml,高于同期平均血液药物浓度1.89 μg/ml,证明本品在体内吸收后渗透入支气管-肺屏障的浓度极高。而且,该药的副反应发生率只有2.77%。LVFX良好的抗菌活性、优良的药物动力学和较高的安全性以及与其他抗结核药间的协同作用[15],使LVFX正逐步替代OFLX而成为MDR-TB的主要治疗药物。
4.司氟沙星 (sparfloxacin, AT-4140, SPFX) 与洛美沙星(lomefloxacin, LMLX):SPFX是现行氟 喹 诺酮类中抗结核分支杆菌活性较高的品种。SPFX的MIC为0.25 μg/ml,MBC 0.5 μg/ml,较OFLX和CIP强2~4倍,亦优于LVFX。采用SPFX 50 mg/kg(仅相当于OFLX的1/6)就完全能够控制鼠结核病,临床上为达到最佳治疗结核的效果,宜采用400 mg/d。但SPFX对脑脊液的渗透有限,单次口服200 mg后脑脊液中的药物浓度分别低于0.1或0.4 mg/L。
LMLX对结核分支杆菌亦具有活性,但弱于对其它革兰阴性菌和阳性菌的活性。用于抗结核的剂量为400 mg 2次/日,如治疗超过一个月的患者可改为400 mg 1次/日。Primak等对43例初治肺结核用本药或RFP联用其它抗结核药进行疗效对比,3个月的痰菌阴转率不逊于RFP组。
SPFX与LMLX和氟罗沙星(fleroxacin)一样,因光毒性,使其在临床上的应用受到一定限制。
5. 莫西沙星(moxifloxacin, MXFX, Bay12-8039):MXFX因附加的甲基侧链可增加抗菌活性,属第三代 喹 诺酮药物。对结核分支杆菌的MIC为0.25 mg/L,虽体外活性大致与SPFX和克林沙星(clinafloxacin)相当;体内如在鼠实验结核中,克林沙星无活性,而MXFX的杀菌力较SPFX更高[16]。MXFX对治疗结核具有一定的开发潜力。
尽管上述氟 喹 诺酮类药物具有较好的抗结核作用,但无论如何也不能和RFP相提并论[17]。由于氟 喹 诺酮类药物影响年幼动物的软骨发育,对儿童和孕妇的安全性至今尚无定论,原则上暂不考虑用于这二类人群。
三、吡 嗪 酰胺
PZA是一种传统的抗结核药物,后来对它的杀菌作用又有了新的认识。根据Mitchison[18]的新推论,虽治疗开始时病灶内大多数细菌存在于细胞外,但当其中某些菌引起炎症反应使pH下降,部分细菌生长受抑制,此时PZA较INH更具杀菌作用。所以在短程化疗开始的2个月中加用PZA是必需的,可以达到很高、几乎无复发的治愈率。目前国外正在研制新的吡 嗪 酸类衍化物[20]。
四、氨基糖苷类
1.阿米卡星(amikacin,AMK):卡那霉素由于它的毒性不适合于长期抗结核治疗,已逐渐被AMK所替代。AMK在试管中对结核分支杆菌是一种高效杀菌药,对大多数结核分支杆菌的MIC约为4~8 μg/ml。肌注7.5 mg/kg(相当于0.375 g/50 kg),1 h后平均血的峰浓度(Cmax)为21 μg/ml。美国胸科学会(ATS)介绍的肌注和静脉滴注的剂量均为15 mg/kg[6] ,并将AMK列入治疗MDR-TB的主要药物中。
尽管AMK的耳毒性低于卡那霉素,但在条件许可的情况下,应监测该药的血浓度以确保剂量足够但不过高。具体做法可考虑每月测定一次高峰血液药物浓度,推荐峰浓度(静脉注射30 min后,肌肉注射60 min后)为35~45 μg/ml,可据此进行剂量调节。如果患者年龄在60岁或以上时,需慎用,因为AMK对年老患者的肾脏和第八对听神经的毒性较大。
2.巴龙霉素(paromomycin):巴龙霉素是从链霉菌(streptomyces rimosus)的培养液中获得的一种氨基糖苷类药物,有研究认为它具有抗结核作用[19]。Bates[20]则将其作为一种新的抗结核药物,并用于MDR-TB。
五、多肽类,结核放线菌素-N(tuberactinomycin-N,TUM-N;enviomycin,EVM)
结核放线菌素-N的'抗结核作用相当于卡那霉素的1/2,它的优点是对肾脏和听力损害比紫霉素和卡那霉素低。鉴于此药对耐SM或KM菌株有效,可用于复治方案。常用剂量为1 g/d,肌肉注射,疗程不超过3个月。上海市肺科医院临床应用的结果表明,密切观察下肌肉注射结核放线菌素-N 1 g/d 14个月,未观察到明显的药物副反应。
六、氨硫 脲 衍生物
较引人注目的是2-乙酰 喹 啉 N4吡咯烷氨硫 脲 ,MIC为0.6 μg/ml,优于TB1。国内单菊生等报告的15种氨硫 脲 衍生物有4种具体外抗结核分支杆菌作用,MIC范围在0.78~12.5 μg/ml之间,其中以乙 烯 基甲基甲酮缩TB1对小鼠实验性结核病的疗效为著。
七、吩 嗪 类
这是一类用于麻风病的药物,近年来也开始试用于耐药结核病,其中对氯法齐明(氯苯吩 嗪 , clofazimine, CFM, B663)的研究最多[21]。CFM是一种吩 嗪 染料,通过与分支杆菌的DNA结合抑制转录而产生抑制分支杆菌生长的效果,对结核分支杆菌和牛分支杆菌的MIC为0.1~0.33 μg/ml。一般起始剂量为200~300 mg/d,当组织饱和(皮肤染色)时减为100 mg/d。它的另外一个重要作用是与β干扰素合用,可以恢复由结核分支杆菌25片段引起的细胞吞噬和杀菌活性的抑制作用,从而成为吞噬细胞的激发剂,属于免疫治疗的一部分,已经超出了单纯化疗的范畴[22]。CFM可引起严重威胁生命的腹痛和器官损害,应予以高度重视[23]。
有人报道,在11个吩 嗪 类似物中有5个体外抗结核分支杆菌活性等于或优于CFM(MIC90≤1.0 μg/ml),其中以B4157最强(MIC90为0.12 μg/ml),但仍在进一步研究之中[21]。
八、β内酰胺酶抗生素和β内酰胺酶抑制剂
结核分支杆菌也产生β内酰胺酶,但β内酰胺酶抑制剂如克拉维酸、舒巴坦在单用时并不能抑制结核分支杆菌的生长,而是通过抑制β内酰胺,使β内酰胺酶类抗生素免遭破坏[24]。当β内酰胺酶抑制剂与不耐酶的广谱半合成青霉素联合使用时,能大大增强这类青霉素的抗结核分支杆菌作用。其中的最佳联用当数氨 苄 西林或阿莫西林与克拉维酸的等摩尔复合剂[25]。一项27株结核分支杆菌的试管实验结果显示,阿莫西林单用时的MIC>32 mg/L,而与克拉维酸联用时MIC下降至4~11 mg/L,效果增加了2~7倍。这类代表性的复合剂有阿莫西林-克拉维酸(奥格孟汀,augmentin),氨 苄 西林-克拉维酸和替卡西林-克拉维酸(特美汀,timentin)[26]。值得注意的是,氨 苄 西林加丙磺舒远远高于氨 苄 西林与克拉维酸联用时对结核分支杆菌的MIC90。如单用氨 苄 西林口服3.5 g后的血清峰值为18~22 mg/L,加用1 g丙磺舒后可上升至25~35 mg/L。
由于β内酰胺酶类抗生素很难穿透 哺 乳动物的细胞膜而进入细胞内,有可能限制这类药物抗结核治疗的效果[27]。目前,这类药物的抗结核研究还限于实验阶段。
九、新大环内酯类
本类抗结核分支杆菌作用最强的是罗红霉素(roxithromycin, RXM, RU-28965),与INH或RFP合用时有协同作用。其它还有甲红霉素(克拉霉素,clarithromycin, CAM, A-56268)和阿齐霉素(azithromycin, AZM, CP-62933),主要用于非结核分支杆菌病的治疗[28]。
十、硝基咪 唑 类
近年来的研究认为,5-硝基咪 唑 衍生物作为新的抗结核药物具有相当好的开发前景。此类药物中的CGI-17341最具代表性,体外抗结核分支杆菌活性优于SM,可与INH和RFP相比拟,对结核分支杆菌的敏感菌株的MIC为0.1~0.3 μg/ml。实验动物中该药对感染结核分支杆菌小鼠的半数有效量(ED50)为7.7 mg/kg,而INH和RFP的半数有效量分别为3.04(1.67~4.7)和4.81(3.5~6.69) mg/kg。其疗效与剂量显著相关,20、40、80 mg/kg的生存时间分别为(30.9±1.9) d、(43.5±4.24) d和(61.3±3.9) d。但是,5-硝基咪 唑 衍生物的抗结核研究尚未应用于临床。
十一、吩噻 嗪 类
吩噻 嗪 类中的氯丙 嗪 在早期的文献中报告能改善临床结核病,其浓度为0.23~3.6 μg/ml时能抑制巨噬细胞内结核分支杆菌,并增强SM、INH、PZA、RFP和RBU对抗细胞内结核分支杆菌的作用,该类药物中的 哌 嗪 衍生物三氟拉 嗪 (triluoperazine),也有与之相类似的效果。
十二、复合制剂
抗结核药物复合制剂的研制主要是为了提高病人的依从性和增加药物的杀菌效果。复合制剂有杀菌剂与抑菌剂、杀菌剂与增效剂等多种形式,一般是两药复合,也有三药复合的情况。部分复合制剂的药效仅仅是单药累加效应,目的是提高病人的依从性;另一部分则不仅提高了依从性,也起到了增进药物疗效的作用。
在众多复合剂中,力排肺疾(Dipasic)是最为成功的一个品种,它以特殊方法将INH与PAS分子化学结合。动物实验结果显示,力排肺疾较同剂量INH的效果高5倍,亦明显高于以物理方式混合的INH加PAS,而且毒性低、耐受性良好、容易服用、耐药发生率低。近年来,国内已开始自行生产这类制剂,如结核清、百生 肼 、力康结核片和力克肺疾等。
力排肺疾的临床应用有两大趋势,一是用于耐药结核病,二是用于轻型儿童结核病。用于耐药结核病的理论依据是:自从短程化疗问世以来,临床上已很少使用PAS,可望结核分支杆菌对PAS有较好的敏感性;再就是二药分子化学结合而产生的增效结果。力排肺疾服用方便,毒副反应少,更适合于儿童结核病患者。
其它复合剂型还有卫肺特(Rifater,HRZ)和卫肺宁(Rifinah,HR),这些复合剂只是物理性混合药物,本质上和组合药型类似。
已有的研究结果表明:使用复合剂的头8周痰菌阴转率为87%,高于单剂联合的78%;副作用前者为10.9%,低于后者的14.6%,但也有副作用以前者为高的报道;使用上复合剂较单剂联合更方便,有助于提高病人的可接受性[29]。
以上虽罗列了数大类药物在抗结核研究方面的进展,但应该认识到这些只不过是抗结核药物研究重新开始的序幕。因开发一种新的抗结核药物既需要财力和时间,还要评估其在试管和临床试用的效果,并非易事。从前一段时间看,由于发达国家的结核病疫情已经下降,而且认为已经有了有效的抗结核药物,而发展中国家无能力购置昂贵的药物,这些都是为什么尚无治疗结核病新药问世的一些理由。由于目前伴有HIV感染的结核病发病率增加和耐多药结核分支杆菌的出现,以及预料今后耐RFP菌株的发生率将会增高,所以导致急需迅速开发新的抗结核药物。抗结核新药的研究,在美国、欧洲和亚洲的实验室,已经从过去10年基本静止状态发展到一个活力相当大的时期。虽然Hansen疾病研究实验室筛选了可能用于抗结核的近5 000种化合物,但还没有发现高质量的化合物,而且该项目的因素评估工作还需要数年之久。何况即使在实验室初步证实有效的药物,用于人体是否有效和足够安全,尚待揭示,可谓任重道远。抗结核药物研究除直接开发新药外,还要认识到随着靶向释药系统的发展,利用脂质体或单克隆抗体作载体,使药物选择作用于靶位,增加药物在病变局部或细胞内的浓度,以改进疗效。文献早已报道了脂质体包埋的INH和RFP对鼠实验结核病的治疗取得良好效果。有人以携有吞噬刺激素(tuftsin)的RFP脂质体治疗实验鼠结核病,每周2次,共2周,使小鼠肺脏活菌数下降的效果比游离RFP至少强2 000倍,其疗效非同一般。目前脂质体虽尚无制剂上市供临床应用,但为今后提高难治性结核病的疗效、降低副反应,提供了令人鼓舞的前景。由此来看,未来结核病化疗的研究重点将仍在于寻找更为高效的杀菌剂或(和)灭菌剂,进而减少服药数量和服药次数、缩短化疗疗程、提高病人的依从性。
(1)用于周围环境、用具、器械的消毒如甲酚,5%~10%溶液用于浸泡场地、排泄物的消毒;1%~2%用于皮肤及手的消毒;0.5%~1%用于口腔、直肠黏膜的冲洗。甲醛多用于熏蒸消毒;氢氧化钠以2%的热溶液泼洒场地厩舍消毒;优氯净、百毒杀、复合酚多以喷洒消毒。(2)用于皮肤、黏膜消毒药如乙醇:70%的乙醇杀菌力最强,主要用于皮肤、手术部位、体表、注射针头等的消毒,在急性关节炎、腱鞘炎等也可用浓乙醇涂擦和热敷。碘:2%~5%碘酊作手术部位,注射部位的消毒;碘甘油涂布口腔黏膜,用于口炎、咽炎。硼酸:2%~4%溶液冲洗各种黏膜、创面、眼睛;3%硼酸甘油涂抹口腔及鼻黏膜炎症。(3)用于创伤的防腐消毒药如新洁尔灭:0.05%~0.1%溶液用于外科手术前洗手浸泡;0.1%溶液用于皮肤消毒、霉菌感染及器械消毒;高锰酸钾:0.05%~0.1%溶液用于肠道冲洗及洗胃;0.1%~0.2%溶液用于冲洗创伤;过氧化氢溶液:0.3%~1%溶液用于冲洗口腔或阴道;1%~3%溶液清洗深部创伤。
杀菌剂是用于防治由各种病原微生物引起的植物病害的一类农药,一般指杀真菌剂。但国际上,通常是作为防治各类病原微生物的药剂的总称。根据杀菌剂的化学成分,可以分为无机杀菌剂和有机杀菌剂两类。例如,氯、溴、二氧化氯、臭氧和次氯酸钠等属于无机杀菌剂;氯酚类、季铵盐类、氯胺类和大蒜素等则属于有机杀菌剂。按药剂杀生的机制来分,一般可分为氧化型和非氧化型杀菌剂两类。例如,氯、次氯酸钠、溴、臭氧和氯胺等为氧化型杀菌剂;季铵盐、二硫氰基甲烷等属于非氧化型杀菌剂。杀菌剂按来源分,除农用抗生素属于生物源杀菌剂外,主要的品种都是化学合成杀菌剂,杀菌剂是一类用来防治植物病害的药剂。凡是对病原物有杀死作用或抑制生长作用,但又不妨碍植物正常生长的药剂,统称为杀菌剂。杀菌剂可根据作用方式、原料来源及化学组成进行分类。从杀灭微生物的程度将杀菌剂分成两类(1)微生物杀菌剂这是杀生作用很强的化学药剂,它们能在短时间内产生各种生物效应,能够真正杀死有关的微生物。一般而言,它们大都是强的氧化剂,常以冲击性的方式加入循环冷却水系统中,毒性一般比较大。(2)微生物抑制剂这类药品不能大量的杀死在循环冷却水中的微生物,而是阻止它们的繁殖,不让其发展到出现系统故障的水平。这类药剂的毒性比杀生剂类要小。按杀菌剂的原料来源分1、无机杀菌剂如硫磺粉、石硫合剂、硫酸铜、升汞、石灰波尔多液、氢氧化铜、氧化亚铜等。2、有机硫杀菌剂如代森铵、敌锈钠、福美锌、代森锌、代森锰锌、福美双等。3、有机磷、砷杀菌剂如稻瘟净、克瘟散、乙磷铝、甲基立枯磷、退菌特、稻脚青等。4、取代苯类杀菌剂如甲基托布津、百菌清、敌克松、五氯硝基苯等。5、唑类杀菌剂如粉锈宁、多菌灵、恶霉灵、苯菌灵、噻菌灵等。6、抗菌素类杀菌剂井冈霉素、多抗霉素、春雷霉素、农用链霉素、抗霉菌素120等。7、复配杀菌剂如灭病威、双效灵、炭疽福美、杀毒矾M8、甲霜铜、DT杀菌剂、甲霜灵·锰锌、拌种灵·锰锌、甲基硫菌灵·锰锌、广灭菌乳粉、甲霜灵—福美双可湿性粉剂等。8、其他杀菌剂如甲霜灵、菌核利、腐霉利、扑海因、灭菌丹、克菌丹、特富灵、敌菌灵、瑞枯霉、福尔马林、高脂膜、菌毒清、霜霉威、喹菌酮、烯酰吗啉·锰锌等。按杀菌剂的使用方式分1、保护剂在病原微生物没有接触植物或没浸入植物体之前,用药剂处理植物或周围环境,达到抑制病原杀菌剂孢子萌发或杀死萌发的病原孢子,以保护植物免受其害,这种作用称为保护作用。具有此种作用的药剂为保护剂。如波尔多液、代森锌、硫酸铜、绿乳铜、代森锰锌、百菌清等。2、治疗剂病原微生物已经浸入植物体内,但植物表现病症处于潜伏期。药物从植物表皮渗人植物组织内部,经输导、扩散、或产生代谢物来杀死或抑制病原,使病株不再受害,并恢复健康。具有这种治疗作用的药剂称为治疗剂或化学治疗剂。如甲基托布津、多菌灵、春雷霉素等。3、铲除剂指植物感病后施药能直接杀死已侵入植物的病原物。具有这种铲除作用的药剂为铲除剂。如福美砷、五氯酚钠、石硫合剂等。按传导特性分类1、内吸性杀菌剂能被植物叶、茎、根、种子吸收进入植物体内,经植物体液输导、扩散、存留或产生代谢物,可防治一些深入到植物体内或种子胚乳内病害,以保护作物不受病原物的浸染或对已感病的植物进行治疗,因此具有治疗和保护作用。如多菌灵、力克菌、绿亨2号、多霉清、霜疫清、噻菌铜、甲霜灵、乙磷铝、甲基托布津、敌克松、粉锈宁、甲霜铜、杀毒矾、拌种双等。2、非内吸性杀菌剂指药剂不能被植物内吸并传导、存留。目前,大多数品种都是非内吸性的杀菌剂,此类药剂不易使病原物产生抗药性,比较经济,但大多数只具有保护作用,不能防治深入植物体内的病害。如硫酸锌、硫酸铜、多果定、百菌清、绿乳铜、表面活性剂、增效剂、硫合剂、草木灰、波尔多液、代森锰锌、福美双、百菌清等。此外,杀菌剂还可根据使用方法分类,如种子处理剂、土壤消毒剂、喷洒剂等。
杀菌剂是用于防治由各种病原微生物引起的植物病害的一类农药,一般指杀真菌剂。但国际上,通常是作为防治各类病原微生物的药剂的总称。
根据杀菌剂的化学成分,可以分为无机杀菌剂和有机杀菌剂两类。例如,氯、溴、二氧化氯、臭氧和次氯酸钠等属于无机杀菌剂;氯酚类、季铵盐类、氯胺类和大蒜素等则属于有机杀菌剂。
按药剂杀生的机制来分,一般可分为氧化型和非氧化型杀菌剂两类。例如,氯、次氯酸钠、溴、臭氧和氯胺等为氧化型杀菌剂;季铵盐、二硫氰基甲烷等属于非氧化型杀菌剂。
杀菌剂使用注意事项
1、在选择杀菌剂时要弄清杀菌剂的性质。杀菌剂有两种类型,一种是保护剂,这类杀菌剂是预防植物发病的,如波尔多液、代森锰锌、多菌灵等;另一种是治疗剂,是在植物发病后施用的,以杀灭或抑制侵入植物体内的病原菌,治疗剂在发病初期施用效果较好,如抗枯宁、保治达等复合型杀菌剂。
2、杀菌剂应在上午9时前或下午4时后喷施,避免烈日下使用,若在烈日下喷施,药剂易分解、蒸发,不利于作物吸收。
3、杀菌剂不能与碱性农药混用。不能随意加大或减少杀菌剂的使用量,且应随配随用。
4、杀菌剂多为粉剂、乳剂和胶悬剂,在施用前一定要稀释。稀释时先放药,后对水,再用棍棒搅拌。与其他农药混用时,也应先稀释杀菌剂后混入其他农药。
5、使用杀菌剂喷施的间隔期为7—10天。对黏附性不强、内吸性差的药剂,喷药后3小时内遇雨,雨后须重喷。
树叶是树进行光合作用的部位。
树叶是植物进行光合作用、制造养分的主要器官。通过吸收二氧化碳,释放氧气(释放场所:气孔),提供食物,遮风挡雨。树叶光合作用是通过叶绿体来完成的。
光合作用是地球上利用日光能最重要的过程,粮食、煤炭中所含的能量,都是通过光合作用贮藏起来的。是地球上最大规模的由二氧化碳和水等无机物质制造碳水化合物、蛋白质、脂肪等有机物质的过程, 也是大气中氧的来源。
绝大多数生物(包括人类)都直接或间接依靠光合作用所提供的物质和能量而生存。
扩展资料
树叶的应用
1、桉树叶具有消毒作用
日本冈山大学教授滨田博喜和研究员富良德等人通过实验发现,桉树叶子的培养细胞能够有效消除有害化学物质双酚A的毒性。
2、花椒、柿树叶有降血压作用
日本一家综合研究所通过动物实验发现,花椒、月桂树和柿树叶等物质有扩张血管的作用,但是迄今还未发现发挥这种作用的特定物质。
3、树叶制作饮料
酸枣叶加工制成的叶茶,具有利尿、促进胆酸合成及消炎作用。山楂树叶可制成山楂酮果汁饮料。此外,柿树叶、柳树叶、侧柏叶、竹叶都可代茶饮用。
参考资料来源:百度百科-树叶
参考资料来源:百度百科-3-光合作用
绿化植物具有调节气候、保持水土、防风固沙、保护农田的作用,还具有净化空气、净化污水和降低噪声等功能。 净化空气 植物净化空气的功能是多方面的: ①保持大气层中氧和二氧化碳(CO2)平衡。随着工业的发展和人口的增加,大气层中CO2浓度有逐渐增加的趋势。绿色植物是氧气的主要制造者和CO2的消耗者,对保持氧和CO2的平衡有重要作用。据计算,每公顷植物一年释放的氧:农作物为3~10吨,落叶林为16吨,针叶林为30吨,常绿阔叶林为20~25吨。一株树龄百年的山毛榉(Fagus sуlvatica),其叶片总面积约为1600平方米,进行光合作用时,每小时可吸收CO2约2352克,释放氧1712克。据计算,大约150平方米的叶面积,可以满足一个人的需氧量。 ②降低大气中有害气体的浓度。植物能吸收氟化氢、二氧化硫、氯、二氧化氮、氨、臭氧、汞蒸汽、铅蒸汽以及过氧乙酰硝酸酯、乙烯、苯、醛、酮等气体。如氟化氢通过40米宽的刺槐(Robinia pseudoacacia)林带比通过同距离的空旷地后的浓度可降低近50%。二氧化硫通过一条高 15米、宽15米的法国梧桐 (Platanus acerifolia)林带浓度可降低 25~75%。绿化植物能阻挡、过滤和吸收有害气体,起到净化空气的作用。 ③减少空气中的放射性物质。绿化植物不但能够阻隔放射性物质及其辐射,而且能够过滤和吸收放射性物质。如一些地区树林背风面叶片上的放射性物质颗粒只有迎风面的1/4。树林背风面的农作物中放射性物质的总放射性强度一般为迎风面的1/20至1/5。又如每立方厘米空气中含有1毫居里的放射性131碘时,在中等风速的情况下,1公斤叶子在1小时内可吸滞1居里的放射性碘,其中2/3吸附在叶子表面,1/3进入叶组织。不同的植物净化放射性污染物的能力也不相同,如常绿阔叶林的净化能力要比针叶林高得多。 ④减少空气中的灰尘。绿化植物能够阻挡、过滤和吸附空气中的灰尘。据测定,一个位于绿化良好地区的城镇,其降尘量只有缺乏树木的城镇的1/9至1/8。草地也有显著的减尘作用,它不仅能吸附空气中的灰尘,还能固定地面尘土。如有草皮的足球场比无草皮的足球场上空的含尘量少2/3至5/6。 ⑤减少空气中的细菌。一方面由于树木可以减少灰尘,从而减少了附着在灰尘上的细菌;另一方面由于一些植物能分泌挥发性物质,具有杀菌或抑菌的能力。如在一个城市绿化差的街道上每立方米空气中所含的细菌数目,比同一城市绿化好的街道上高1~2倍以上,比同一城市树木茂盛的植物园中高40~50倍。松、柏、樟等树木能够分泌挥发性抑菌物质,在这类树林中,空气中细菌含量比植物园还少。 净化污水 森林有净化水源的作用。据测定,从每平方公里无林山坡流下来的水中溶解物质的含量为16.9吨,而从有林山坡流下来的水中含量则为6.4吨。如果水流过30~40米宽的林带,其中氨含量可降低到原来的1/2至2/3。森林还可以减少水中细菌的数量。水流通过30~40米宽的林带后,每升水中所含细菌数量比不经过林带的减少1/2。水流通过 50米宽的生长 30年的杨、桦混交林后,所含细菌数量能减少9/10以上。此外,各种水生和沼生植物也能净化污水。如在试验水池中种植芦苇(Phragmites communis)后,水中悬浮物减少30%,氯化物减少90%,有机氯减少60%,磷酸盐减少20%,氨减少66%,总硬度减少33%。又如在含有十几种有机化合物的污水中栽植水葱(Scirpus validus),经过一定时间,有机化合物全部被水葱吸收。 降低噪声 声波传至树冠后,能被浓密的枝叶不定向反射或吸收。因此可以利用林带、绿篱、树丛来阻挡噪声(见绿化降噪)。 调节气候 大面积的森林、绿地以及宽阔的防护林带和浓密的城市行道树,对温度、湿度和风速都有一定的调节作用。例如中国南京市有行道树遮荫的马路在夏季的最高气温比无行道树的马路低3℃左右,而且相对温度高10~20%。林带和绿地还能促进城市中的空气对流,白天使热空气上升,夜间使冷空气下降,从而使市内受污染的空气及时得到更新。 保持水土 树木和草地有显著的保持水土功能。例如降雨时,雨水首先冲击树冠,然后穿过枝叶落地,不直接冲刷地表,从而减少表土的流失;同时,树冠本身还能积蓄一定数量的雨水。据测定,树龄61年的云杉树冠一般可阻留降雨量的24~70.8%。此外,树木和草本植物的根系能够固定土壤,而林下往往又有大量落叶、枯枝、苔藓等覆盖物,既能吸收数倍于本身的水分,也有防止水土流失和减少地表径流的作用。如果树林和草地遭到破坏,就会造成严重的水土流失,在有石山地还能形成泥石流。 保护农田 绿化植物能减轻风、旱、涝等对农作物和蔬菜的危害。例如一条防护林带可使20~25倍树高距离内的风速降低10~50%,结构良好的林带能把有害的6级风变成对农田无害的3级风。风速降低,土壤水分的蒸发也随之减少,相对湿度和绝对湿度都会增加。防护林还可以阻止沙土飞扬,防止尘害。 绿化植物在环境保护中具有维护生态平衡、美化环境和保护人体健康的作用。但是,如果污染超过了绿化植物所能忍受和缓冲的限度,它们的生长和繁殖就会受到影响。所以要在减少污染的基础上发挥绿化植物的有效功能
植物保护专业本科毕业论文(设计)开题报告
紧张又充实的大学生活即将结束,大学生们马上就要开始最难熬的毕业设计阶段,而我们做毕业设计之前要先写好开题报告,快来参考开题报告是怎么写的吧!以下是我整理的植物保护专业本科毕业论文(设计)开题报告,欢迎大家借鉴与参考,希望对大家有所帮助。
毕业论文题目:
菌寄生真菌纤细齿梗孢蛋白酶基因的克隆与表达
姓名: xx 学号: xxxx
年级: xxx 专业: 植物保护
指导教师:姓名 xxx 职称 教授
学科 植物病理
山东农业大学教务处
20XX年x月x日
一、选题依据(拟开展研究项目的研究目的、意义)
菌寄生(Mycoparasitism)是发生在菌寄生真菌与寄主真菌之间的一种寄生方式,是自然界普遍存在的一种真菌与真菌之间的相互作用。一直以来,生物间相互作用及信号传导的分子机制,是当今生命科学研究的热门。利用菌寄生真菌与寄主真菌作为研究的模式系统来揭示生物相互之间的相互作用机制有重要理论和实践意义。李多川(Li,1996)先生发现纤细齿梗孢(Olpitrichum tenellum)和串珠镰刀菌(Fusarium moniliforme)的菌寄生关系以来,我们实验室试图通过研究纤细齿梗孢和串珠镰刀菌,来建立菌寄生真菌与寄主真菌相互作用机制研究的模式系统,从而揭示菌寄生真菌与寄主真菌之间相互作用的分子机制。纤细齿梗孢(Olpitrichum tenellum)是串珠镰刀菌的一种重寄生真菌,该菌是一种接触性活体重寄生菌,离体试验发现其分生孢子只有在串珠镰刀菌细胞壁提取物刺激下才能萌发。这说明两者之间的重寄生关系是建立在二者识别与互作的分子机制上的(Li,2004)。在纤细齿梗孢和串珠镰刀菌相互作用过程中,几丁质酶、蛋白酶等细胞壁裂解酶可能起到重要作用。其中,蛋白酶在木霉属菌寄生真菌中的功能已经得到初步证明,而纤细齿梗孢的蛋白酶的研究还未见报道。因此,克隆纤细齿梗孢蛋白酶编码基因对于从分子水平上研究重寄生真菌和寄主识别和互作机制有着重要的意义。
二、文献综述内容(在充分收集研究主题相关资料的基础上,分析国内外研究现状,提出问题,找到研究主题的切入点,附主要参考文献)
纤细齿梗孢(Olpitrichum tenellum)是李多川教授分离得到的一种活体营养接触型菌寄生真菌[1~3],其寄主包括Fusarium moniliformeAlternaria alternata等。近年来,我们实验室一直在努力以其为基础研究菌寄生真菌与寄主真菌之间的相互作用的分子机制。经过多年的研究,人们渐渐认识到真菌细胞壁蛋白在细胞与外界的相互作用过程中扮演着重要的角色。细胞壁蛋白研究已经成为生物间相互识别机制研究的热点。鉴于以上原因,我们实验室成功分离纯化了纤细齿梗孢的寄主之一Alternaria alternata菌丝细胞壁上的一种特异性糖蛋白——凝集素,并初步证明其在A.alternaria和O.tenellum孢子吸附过程中起到识别因子的作用[4]。近年来,菌寄生真菌细胞壁裂解蛋白酶在菌寄生过程中的作用被人们逐渐重视起来。克隆和表达菌寄生真菌的蛋白酶编码基因变得很有意义。本研究试图以菌寄生真菌纤细齿梗孢(Olpitrichumtenellum)作为研究材料克隆了其蛋白酶基因。根据氨基酸的保守序列设计兼并引物,然后采用RT-PCR和RACE是一个较为快速、简单和高效的方法。本实验根据同源保守序列设计兼并引物,通过RT-PCR及RACE-PCR的方法,克隆了O.tenellum蛋白酶的编码基因的全长cDNA序列,并对该基因进行了序列分析,为后续试验打下了基础。
由于Olpitrichum tenellum在离开寄主的人工培养基中很难生长,纯化其蛋白酶变得非常困难。因此,我们需要使用外源蛋白表达系统得到蛋白,进一步研究其性质,从而搞清楚其在重寄生过程中的作用。在过去的几十年间,随着DNA重组技术的不断发展,通过构建遗传工程菌株,人们可以较容易地使各种各样的天然酶的基因在微生物系统中高效表达,从而在很大程度上摆脱对天然酶源的依赖。
基因工程的表达系统有原核表达系统和真核表达系统两大类。在原核表达系统中,大肠杆菌表达系统是目前了解最深入,实际应用最为广泛的表达系统。与其他表达系统相比,大肠杆菌表达系统具有遗传背景清楚、目标基因表达水平高、培养周期短、抗污染能力强等特点。在基因表达技术中占有重要的地位,是分子生物学研究和生物技术产业化发展进程中的重要工具[5]。
Pichia pastoris基因表达系统经过十几年发展,已基本成为较完善的外源基因表达系统,具有易于高密度发酵,表达基因在宿主基因组中稳定整合,能使产物有效分泌并适当糖基化,培养方便经济等特点。利用强效可调控启动子AOX1,已高效表达了HBsAg、TNF、EGF、破伤风毒素C片段、基因工程抗体等多种外源基因[6],证实该系统是高效、实用、简便,能提高表达量并保持产物生物学活性的外源基因表达系统。P.pastoris表达系统在生物工程领域将发挥越来越重要的作用,促进更多外源基因在该系统的高效表达,提供更为广泛的基因工程产品[7]。
我们已经分离到O.tenellum蛋白酶的编码基因,本研究中将该基因的去掉信号肽序列的正确阅读框融合于原核表达载体pET-22b(+)和毕赤酵母表达载体pPIC9K上,分别转化E.coli BL21及Pichia pastoris GSxx5,以期在这些菌株中有效表达该基因的编码产物,从而为以后功能研究打下基础。
1 李多川.1998.菌寄生真菌分子生物学研究进展.吉林农业大学学报,20:37~65.
2 21.李多川.1998.菌寄生真菌分子生物学研究进展.微生物学通报,25:345~347.
3 .李多川,沈崇尧.1997.菌寄生菌物与寄主菌物相互作用的研究进展.西北农业学报,6:94~98.
4 张成省,李多川,孔凡玉.2005.Alternaria alternata菌丝细胞壁凝集素的纯化与特性研究.植物病理学报,35(2):141~147.
5 .xx.何诚,朱运松.1998.甲醇营养型酵母表达系统的研究进展.生物工程进展,18:7~xx.
6 彭毅,杨希才,康良仪.2000.影响甲醇酵母外源蛋白表达的因素.生物技术通报,4:33~36.
7 韩雪清,刘湘涛,尹双.2003.毕赤酵母表达系统.微生物学杂志,3:35~40.
三、研究方案(主要研究内容、目标,研究方法、进度):
1、研究内容:
本课题选择纤细齿梗孢(Olpitrichum tenellum)做为研究对象,通过RT-PCR及RACE技术分离克隆了其丝氨酸蛋白酶基因,并进行原核及真核表达,并对其的性质进行了研究,为进一步的研究工作打下基础。
2、研究的目标:
克隆了纤细齿梗孢(Olpitrichum tenellum)的丝氨酸蛋白酶基因,进行原核及真核表达,并对其的性质进行了研究。
3、研究方法:
将纤细齿梗孢(Olpitrichum tenellum)接种到LB培养基上,培养14个小时后,收集菌丝,然后采用总Trizol法提取RNA。再从GenBank数据库中搜索到大量的蛋白酶氨基酸序列,并根据同源性进行分类,分别设计兼并引物。再通过RT-PCR、3’-RACE、5’-RACE获得全长cDNA、DNA克隆,并将其连接到载体上,然后采用电击法将将重组质粒转入到全长cDNA、DNA克隆中,通过透析纯化蛋白酶,最后研究其特性。
四、研究进度:
20xx年5月23日~20xx年5月29日 整理收集资料,并跟着研究生学习基本实验技术。
20xx年5月30日~20xx年6月18日 提取RNA,设计引物、全长cDNA、DNA克隆 。
20xx年6月19日~20xx年7月15日 转化大肠杆菌、毕赤酵母表达,获得纯纯产物,并研究其特性。
20xx年3月~20xx年6月 对实验结果不理想的实验重做,整理实验数据,完成毕业论文,并准备毕业答辩。
五、技术路线:
收集菌丝
总RNA提取
同源序列 设计引物
特性研究
RT-PCR、
3’-RACE、5’-RACE
纯化表达产物
全长cDNA、DNA克隆 转化大肠杆菌、毕赤酵母
四、进程计划(各研究环节的时间安排、实施进度、完成程度)
20xx年5月23日~20xx年5月29日 整理收集资料,并跟着研究生学习基本实验技术。完成实验的1%。
20xx年5月30日~20xx年6月18日 提取RNA,设计引物、全长cDNA、DNA克隆。完成实验的50%。
20xx年6月19日~20xx年7月15日 转化大肠杆菌、毕赤酵母表达,获得纯纯产物,并研究其特性。完成实验的95%。
20xx年3月~20xx年6月 对实验结果不理想的实验重做,整理实验数据,完成毕业论文,并准备毕业答辩。完成100%。
五、导师对文献综述的评语
签字:
20xx年xx月xx日
六、专业意见
专业主任签字:
20xx 年 月 日
七、学院意见
学院(章): 负责人签字:
20xx年xx月xx日
摘要:
针对目前浙江农林大学植物保护研究法实验教学方法、内容及手段等方面存在的一系列问题,提出了相关改革对策:优化实验课程内容,整合实验模块,学生自行设计实验方案等教学方法和手段的改革,以及课程考核方式和时间安排的调整,旨在培养学生的科研兴趣及创新能力。
关键词:
目前,国内外很多农业院校的植物保护专业均开设了昆虫研究法和植病研究法课程。为优化本科培养方案,浙江农林大学通过调整教学大纲,将植病研究法、昆虫研究法和农药研究法合并成一门植物保护研究法课程。植物保护研究法是植物保护专业重要的专业限选课程之一,是植物保护研究的重要组成部分,也是培养和提高学生专业实验技能和学习兴趣的重要课程,是一门专业性、实践性很强的实验学科。通过这门课程的教学,能使学生掌握植物保护研究的基本方法及基本原理,培养植物保护研究常规操作能力,以及查阅资料、设计实验方案和实际操作能力,提高学生的逻辑思维、整理资料、总结归纳和论文撰写的能力。笔者分析了浙江农林大学植物保护研究法实验教学中存在的问题,提出教学改革内容,并总结了改革成效。
1.实验教学存在的问题
1.1传统实验教学的弊端传统实验教学的主要特征是“灌输式”“填鸭式”,学生在2个小时的实验过程中就是简单地按照实验指导书和实验大纲中的实验方法和步骤依葫芦画瓢,实验完成后,又按照统一的模式填写实验报告。在整个实验过程中,学生无需独立思考和分析,更谈不上发挥创新能力了。因此,很难让学生对实验产生兴趣,培养学生的创造性思维就更无从谈起了。虽然这种传统实验模式简明、清晰,有利于学生对相关结论的认可、理解和记忆,也有利于教师对整个教学过程的控制,教师和学生很轻松愉快地就能完成实验教学任务。学生走上工作岗位后,传统实验教学的弊端立即显现。学生缺乏设计实验的能力,在实验过程中缺乏发现问题、分析问题和解决问题的能力,实验后缺乏正确分析实验结果的能力。因此,传统的实验教学模式急需改革。
1.2实验教学内容系统性不强植物保护研究法是植物保护专业本科学生的一门专业课程,其涉及的内容有昆虫研究法、植病研究法和农药研究法。在以往的实验课程中,只是简单地把这3门课的实验合在一起上,并没有把内容紧密联系在一起,如昆虫实验时,指导教师一般是教授昆虫学科的教师;而在进行植病实验时,则由讲授植病学科的教师指导。这样的实验模式难以使植物病虫害系统联系起来,学生学习专业知识不够系统和深入,容易造成理解上的片面性和孤立性,不利于掌握该专业的系统知识和技能。
1.3实验考核不科学以往实验课程成绩评定的主要依据是实验报告,而每次实验课结束后,学生递交的实验报告只是把实验大纲(包括实验口的、原理、仪器与试剂、内容及方法)原文不动地抄一遍,实验结果更是千篇一律,这样实验就变成了预演过程,学生在实验中缺乏思考,不利于培养发现问题、提出问题、分析问题和解决问题的能力,背离了实验课教学的初衷。同时,还会导致每位学生的实验成绩差异微乎其微,不具有良好的区分度。
2.教学改革内容
2.1重视教学环节在以往的实验课程中,实验教学所需要的实验用具和材料大多数都是实验教辅人员提前准备,导致他们的工作量非常大。让学生参与实验材料的准备和管理,一方面提高了教辅人员的工作效率;另一方面可以让学生对实验过程有全面了解,获得整个科研实践过程的训练,从而养成好的实验习惯,在未来的科研工作中做到计划周密、有条不紊地安排和实施实验计划。同时,在实验教学过程中,必须教育学生认真操作、仔细观察、实事求是地记录实验结果,并对实验进行科学分析。一日_发现弄虚作假的学生,一定要严厉批评,同时帮助他们分析失败的原因,找出解决的方法,有条件的情况下,让其重新做实验,让学生充分意识到科学研究允许失败,但是不能有半l从虚假。2.2提高学生的实践能力实践教学是培养和训练学生实践操作能力,独立分析问题、解决问题能力的重要手段,尤其对于学生创新能力的培养,具有其独特的地位和作用。该项口分别以某种农作物病虫害为主轴展开一系列的实践性实验教学,要求学生自主设计实验和执行各项实验内容,指导教师负责答疑和提供技术帮助。学生通过自己分组、调查、取样、鉴定、查阅资料、讨论制订实验方案和动手实验等一系列步骤,不仅可以很好地将课堂上所学的理论知识与实践相结合,而且还有助于提高自学能力、实践能力和团队协作能力,进一步培养科学思维和创新能力。2.3优化实验教学内容结构将整个实验课程设置成一个综合性的大实验:分别以某个农作物上的病虫害发生规律及防治措施贯穿整个课程。将口前昆虫研究法的昆虫标本的采集与制作、昆虫人工饲养技术、昆虫生态学研究方法、昆虫生理生化研究方法、昆虫分子生物学研究方法和害虫综合治理研究方法5个实验和植病研究法的植物病害调查、植物病原菌分离与鉴定技术、植物病原菌分子生物学鉴定技术、植物病原真菌遗传转化技术和植物病害综合治理技术5个实验合并成1个综合性大实验,将植物病虫害研究以故事的形式紧密地整合在一起,让学生将课堂知识与田间实际应用有机地联系在一起,加深对理论知识的理解,提高学习兴趣。整个实验就是以具体的作物病虫害发生为时间轴,具有很强的连贯性和系统性,学生只有认真完成每一个实验,才能很好地保证后续实验的顺利进行,有助于增强学生的责任感和团队合作精神,同时也改变了学生实验报告千篇一律的`现象。2.4改革成绩评定方式实验课成绩一方面是对学生实验完成好坏的肯定,另一方面也对学生起到了一定的督促作用。为了做到对学生的全面评价,实验成绩除实验报告和考勤成绩外,应将实验过程中学生的学习主动性、动手操作能力、实验结果记录规范性量化纳入成绩考核。在实验过程中,教师应主动观察并记录每个学生的实际动手、操作能力,量化后按一定比例记入总成绩,对那些既有独立操作能力,又有创新意识的学生,适当给予创新学分。实验过程中,学生是否遵守实验室规则、是否具有团队合作精神,实验结束后,学生是否打扫卫生、是否清洗实验器材等,这些看似小问题,但也体现着一个人的品质和素养,做得好的学生也可以适当加分。
3.改革成效
3.1提高学生的专业技能及其对专业知识重要性的认识学生能在同一时间完成植病研究法、昆虫研究法和农药研究法3门实验课程,体现了实验课程很强的连贯性和系统性。学生在实践过程中将这3门课程的相关内容紧密、有机地联系起来,对植物病虫害防治有了更深入的认识,同时也提高了学生的专业技能及其对专业知识重要性的认识。在实验的过程中,强调把学生的动手能力放在首位,让学生更多地参与到实验中,切身体会到所学专业的意义。
3.2培养学生发现、提出、分析和解决问题的能力植物保护研究法实验教学模式具有系统化和整体化特点,同时涉及昆虫研究法、植病研究法、农药研究法等相关学科课程。在实验过程中,学生在对病虫害的认知及其防治等问题的处理上始终处于主体地位,在独立思考、查找资料、咨询专业教师、综合分析之后,拟定出具体的处理方案,能够融会贯通地掌握植物保护学科的理论知识和基本实践技能。
3.3提高指导教师的业务水平新的实验教学模式综合运用了3门相关课程的理论知识,加强了课程的综合实践环节,因此指导教师自身的知识面、操作技术、实践应用和协调能力都需要提升。所以,这种实验教学模式促使教师在教学过程中同学生一起不断学习,丰富专业理论知识,完善专业实践体系,提高发现、提出、分析和解决问题的能力,了解和掌握学科及相关学科的发展动态、研究的新进展、出现的新技术,从而提高了指导教师的业务水平。
4.结语
植物保护研究法在植物保护专业2013级和2014级本科生实验课程教学中进行了实践,通过问卷调查,95%的学生认为在实验过程中有较多的动手机会,激发了自己对实验的兴趣,提高了自己分析和解决问题的能力。因此,认为该教学方法可以发挥学生的主观能动性、拓展学生的科研思路、激发学生的创新创造力和提高学生的独立应用实践能力,具有良好的教学效果。
沈小杰 请采纳 环境保护是我国的一项基本国策。植物的作用主要为对污染物的治理及其预防和监测。但由于各环境要素存在差异,植物在各环境要素保护中的作用不尽相同。本文从各个环境要素出发,概括了植物在各环境要素保护中的作用,包括在大气环境中的作用,在水环境保护中的作用和在土壤保护中的作用等等。 关键词:环境保护 植物 环境要素 净化作用 监测作用 随着生产力的发展和工农业的现代化,排放到环境的污染物日益增加,大大超过了生态系统自然净化的能力,造成了环境污染。为了减少环境污染,措施很多,其中一条就是利用植物以防止环境污染,因为植物有净化环境的能力,对各种污染物都有吸收、积累、分解和代谢作用,能降低大气中有毒气体的浓度,而且能保持大气层中氧和二氧化碳的平衡,减少空气中放射性物质的浓度,减弱躁声,杀菌除尘,净化环境污染。同时,由于不同植物对不同污染物的敏感性不同,又可用来监测预报环境污染。本文将主要从大气、水、土壤三个环境要素主要阐述植物在环境保护中的作用。 植物在大气环境保护中的作用 1.1净化作用 植物对于大气的净化,主要有三方面的作用,即去除环境中微生物,对粉尘等的物理吸附作用和对化学物质的吸收转化作用。 绿色植物具有抑制或杀死细菌的功能。利用这一功能栽植适当的绿化植物,可使大气中细菌数量下降。一方面绿化地区空气中灰尘减少,细菌失去滋生的场所,从而使细菌数量下降;另一方面植物的分泌物本身具有杀菌作用。目前,已经发现许多植物能分泌出具有杀死细菌、真菌和原生动物能力的挥发物质,例如洋葱的碎糊能杀死葡萄球菌、链球菌及其他细菌;地榆的水浸液能在1分钟内杀死伤寒、副伤寒A和B的病原菌和痢疾杆菌的各菌系;柠檬桉分泌的杀菌素可杀死肺炎球菌、痢疾杆菌、结核病和流感病毒等病菌;柑桔、迷迭香和吊兰,可使空气中的细菌和微生物大为减少。。 植物一般具有吸附灰尘的作用,植物的叶面有皱纹、粗糙或分泌油脂,可吸附或粘着粉尘,从而降低植物中灰尘等颗粒物的含量,净化环境作用。蒙尘的植物,一经雨水冲洗,又能迅速恢复吸附的能力;此外,草坪也有显著的减尘作用。常春藤、无花果、蓬莱蕉和普通芦荟,都可以吸纳灰尘。 植物对环境中的化学物质,能够通过吸收、转化等方式去除一部分的化学物质。植物可以吸收环境中的二氧化碳、二氧化硫、甲醛等物质,并将这些物质转化为自身物质,降低环境中的化学物质浓度。如酚进入植物体后,大部分参加糖代谢,和糖结合成酚糖苷,对植物无毒,贮存于细胞内;另一小部分呈游离酚,则会被多酚氧化酶和过氧化物酶氧化分解,变成CO2、水和其他无毒化合物,解除其毒性。氰化物在植物体内能分解转变为营养物质。地衣、垂柳、臭椿、山楂、板栗、夹竹桃、丁香等吸收SO2能力较强,积累较多硫化物;垂柳、拐枣、油茶具有较大的吸收氟化物的能力。芦荟、吊兰和虎尾兰等可吸收甲醛。紫苑属、黄耆、含烟草和鸡冠花,这类植物能吸收大量的铀等放射性核素。常青藤、月季、蔷薇、芦荟和万年青,可有效清除室内的三氯乙烯、硫比氢、苯、苯酚、氟化氢和乙醚等。天门冬可清除重金属微粒。龟背竹、虎尾兰和一叶兰,可吸收室内80%以上的有害气体。月季,能较多地吸收硫化氢、苯、苯酚、氯化氢、乙醚等有害气体。 1.2调节作用 植物能够进行光合作用。光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。光合作用除了能转化太阳能,制造有机物之外,还能调节大气中氧和二氧化碳的含量,使大气中的氧和二氧化碳的含量相对稳定。据估计,全世界所有生物通过呼吸作用消耗的氧和燃烧各种燃料所消耗的氧,平均为10000 t/s(吨每秒)。以这样的消耗氧的速度计算,大气中的氧大约只需二千年就会用完。然而,这种情况并没有发生。这是因为绿色植物广泛地分布在地球上,不断地通过光合作用吸收二氧化碳和释放氧,从而使大气中的氧和二氧化碳的含量保持着相对的稳定。 1.3监测作用 植物对大气污染还有监测和指示作用。植物监测是利用植物对某些大气污染物的反映,监测空气中有害气体的种类和含量或大气污染程度,以了解大气环境质量状况。在植物受到有害物质的侵害时,一般有害气体都是从叶片上的气孔钻入的,因此叶片上往往出现肉眼看得见的各种伤斑。不同气体引起的伤斑也会有所不同。因而可以通过调查叶片受害症状,测量植物生长量、解析年轮等症状判断空气中的环境质量。如果伤斑是二氧化硫引起的,则多出现在叶脉间,呈点状或块状,严重时出现鲱骨效应;而由氟引起的伤斑大多集中在叶子的尖端和叶片边缘,呈环状或带状。比如,苔藓枯死;雪松呈暗竭色伤斑,棉花叶片发白;各种植物出现“烟斑病”。这是SO2污染的迹象。菖蒲等植物出现浅褐色或红色的明显条斑,是氮氧化物中毒的显示。假如丁香、垂柳萎靡不振,出现“白斑病”,说明空气中有臭氧污染。要是秋海棠、向日葵突然发出花叶,则是氯化物污染引起的。其他的指示植物还有:紫花苜蓿、胡萝卜、菠菜可以监测SO2污染;菖兰、郁金香可以监测氟污染;苹果、玉米可以监测氯污染等等。 2.植物在水环境保护中的作用 利用水生植物净化污水是一种成本低廉,节约能源、效益较高的简便易行方法,目前,国内外有关部门正广泛应用生物处理措施净化污水。 曾有人做过这样一个实验:在一个实验水池中栽培了芦苇后,从水中排除的悬浮物减少了30%,氯化物减少90%,有机氮减少60%,磷酸盐减少20%,氨减少66%,总硬度减少了33%。水池中的水经芦苇的净化,明显清洁多了。 植物对水域的净化,主要有以下途径:首先是植物能分解和转化某些有毒物质。在低浓度的情况下,植物能吸收某些有毒物质,并在体内将有毒物质分解和转化为无毒成分。例如,植物从水中吸收丁酚,丁酚进入植物体后,就能与其他物质形成复杂的化合物,而失去毒性。其中最常见的为酚糖苷,它可以贮藏在液泡内变成对植物无毒的结合态物质,在以后的生长发育过程中,可以被分解和利用,参加细胞正常的代谢过程。其他苯、氰等也都有相似的情况;其次是植物的富集作用。水生植物能吸收和富集水中的有毒物质,其富集能力依植物种类不同而异,但一般可高于水中有毒物质浓度的几十倍、几百倍甚至几千倍以上。 经试验证明,多种高等水生植物对氮、磷和各种金属以及酚、氰、农药等有机物都有吸收、积累、分解和转化的能力。其中,水葫芦、水花生、水葱、浮萍、紫萍、水浮莲等都能有效地吸收、积累、分解废水中的营养盐类和多种有机污染物在最适宜的生长条件下,一公顷水葫芦能将800人排放的氮、磷元素当天吸收掉。通过试验进一步证明,在自然界中的多种水生植物,对水中的重金属元素也有去除作用。如水葫芦、水花生能从污水中除去镉、铅、汞、铊、银、钴、锶等重金属元素。除此之外,浮萍在夏秋也能大量吸收、积累电厂洗煤废水中的重金属元素。另外,水生植物还能净化废水中的多种有机污染物。 水生植物在净化污水方面各显神通:水葱、田蓟、水生薄荷等植物可以有效杀死水中的细菌;凤眼莲、浮萍、菹草、金鱼藻等植物有较高的吸收水中重金属的能力。 我国水生植物资源十分丰富,对进一步研究、开发利用新的种类净化污水,还有很大潜力。 3.植物在土壤环境保护中的作用 土壤污染可以由大气污染和水质污染而引起。工厂排出的含有重金属的废气、烟尘和其他有害气体、工业废水、废渣,以及农业上施用化学农药、某些毒性除莠剂及污水灌溉等都会污染土壤。其他放射性物质也会对土壤污染。土壤污染后,能引起土壤酸化或碱化,以及影响有些作物的正常生长发育,因此,利用某些植物对土壤中污染物质的吸收,就能达到消除和净化的目的,降低土壤污染。 植物除能吸收有害物质外,还具有防风固沙,涵养水源的作用。对于一些已经遭受污染或本身环境不好的土壤,植物也能够对此进行调节和改善,保护土地资源。这类具有改良土壤能力的植物,称为“绿肥”。人们常常请它们当开路先锋,到十分艰苦的旱、涝、盐、碱、酸、瘠的盐碱荒地或红壤荒地去“落户”。它们不仅能在这些地区扎根生长,而且还积极地替庄稼创造美好的生活环境。此外,绿肥植物多有强大的根系,能够充分吸收利用深层的水分和养分。因此,在它们死亡腐烂后,土壤表层就留下了丰富的养分。据计算,每亩如果收1500公斤苕子,土壤里就相当于增加了57公斤氮肥、12公斤磷肥、13 公斤钾肥!像紫云英、苜蓿等一些豆科绿肥,自身就是一个小小的化肥厂——它们利用根瘤中的固氮菌,将空气的氮气合成为氮肥,每亩可产氮肥50公斤左右。这些植物大大的改善了土壤环境,有利于土壤资源的保护和永续利用。 4.结论: 植物以其特有的生理特性,在环境保护中起着非常重要的作用。不仅能够净化大气、水、土壤等环境,还能指示监测环境污染,改善环境条件,在保护和预防环境中起着非常重要的作用。此外,植物在环境保护中的作用远不只此。植物能够降低噪声,减弱噪声污染。绿色的环境还能创造舒适环境,改善心情。另外,环境保护重在人人参与,发挥群众的作用。而植树造林,可以让大家见到环境保护的成果,改善环境,增强大家的环保信心与动力,更好地保护环境。由此可见,植物在环境保护中的作用是非常巨大的,用植物改善环境的发展前景也是相当巨大的。求采纳
当前我国剧本杀行业应怎样推动优秀剧本作品的创作:未来剧本杀将普遍走向创作流程标准化,剧情设计、道具设计、游戏机制和流程把控将被拆成不同的模块,由不同的作者来负责,以此来降低剧本创作门槛,挖掘更多玩法,打磨优质内容。此外,线下店铺的迅猛增长对上游内容供给的倒逼,未来圈内将会出现具有一定粉丝量、知名度较高的作者。剧本创作流程的专业化会衍生出专门的职业剧本编辑,此外一些剧本杀门店也会尝试和演艺公司合作,或是到传媒院校招募一批专业表演人员,来承担DM的角色,在专业剧本、专业NPC等推动下,剧本杀行业专业化提高,进入门槛也会提升。
如今,年轻人的聚会方式丰富多彩,逛景区、逛商场、看电影……
也有不少人会选择到剧本推理馆玩一把剧本杀。几个玩家待在一间小房间里,分饰剧本中的角色,穿上与剧本背景相吻合的服饰,大家围绕剧情展开推理、还原人物关系,互动交流、探讨、交换线索,最终从迷雾般的剧情中,推理出“凶手”,还原出真相,这就是时下非常流行的游戏——剧本杀。
近日,关于剧本杀的话题频上热搜,#剧本杀成过年聚会新潮流#、#剧本杀成90后00后社交新潮流#等话题阅读量均过亿,引发众多网友参与讨论。
初女士供图年轻人的社交“新宠”近两年,这种起源于国外的“剧本杀”游戏在我国十分流行,受到年轻人的青睐。记者发现,在南宁的大街小巷也出现了多家这类游戏场馆,2月28日,记者通过某团购平台搜索到这类游戏场馆接近50家。初女士是南宁十二宫侦探社·剧本体验馆的经营者,“2018年9月开的店,也算是南宁第一批开推理馆的人,我自己非常喜欢玩这类游戏,后来就想干脆开一家店好了。”在初女士的店里,剧本类型主要有恐怖、推理、欢乐、情感等,故事背景有古风、欧式、日式、恐怖等。初女士告诉记者,为了让玩家有更真实的游戏体验,他们会根据剧本搭建实景,提供契合剧情的服装和道具,全程配合剧本播放音乐,由真人演绎剧情。在初女士的店里共有4个房间,节假日和周末玩家会爆满,一天能接下十几场,这对于一场需要玩4-5小时的剧本杀来说,上座率已经颇高。“来到我们店里的顾客都是年轻人比较多,也有很多回头客,如果有100个人进店,大概有85个回头客,有些是下班了来放松放松,也有的是朋友聚会、公司团建。”
南宁市JOKER推理社的老板张先生告诉记者,在他的店里,共有240多个剧本,店内主打情感沉浸本,一些城市限定的爆款剧本也能在这家店里体验,“像《洋葱》《猞猁》《想见你》这些剧本,一般一个城市最多只有两到三家推理馆会有,需要推理馆打造自身特色,根据剧本打磨、排练,配置音乐、场景、道具。”
据美团研究院报告显示,剧本杀群体以20岁至35岁的年轻人为主,占行业玩家的83.86%,在一线城市,剧本杀用户消费单价为140元,新一线城市和二线城市分别为95元、78元。今年22岁的市民李女士是剧本杀爱好者,她通过一档热播的综艺节目了解推理游戏,2019年开始接触剧本杀之后,每个星期几乎有四到五天都在玩
剧本杀,一个突然爆红的社交游戏,牢牢占据了桌游吧的 C 位。很多职场人即便忙到双目通红,四脚朝天,下班后依然会扎进剧本杀店,酣战到天明。不仅如此,剧本杀也成了许多男女老少的周末新去处。剧本杀究竟有何魅力?玩剧本杀的人群有何特点?1为什么年轻人普遍爱玩剧本杀?在沉浸产业全面发展的过程中,剧本杀无疑是“跑”得最快的那一个。根据艾瑞咨询的调研数据:2020年,在线下店面集体受到疫情冲击的逆势之下,剧本杀的市场规模仍实现了7%的增长。预计到2021年底,行业市场规模将达到170.2亿元,增速重回45%。良好的发展前景也在驱动着更多资本入场。企查查数据显示,截至今年7月15日,我国剧本杀相关企业的融资事件共计31起,涉及项目共14个,融资总额超252.5亿元人民币。市场和资本的乐观表现,在于年轻人对剧本杀的消费需求不断增长。伴随着互联网发展成长起来的这届年轻人,有两个重要特点。一个是在现实中,他们大多都是独生子女。很多人也将这一代人称为“最孤独的一代”,“社恐”、社交焦虑是普遍问题。另一个是他们同时处在高度发达的虚拟世界中,这个世界不断借助技术拓展自我表达空间,他们不仅人人都有“麦克风”,短视频、直播的发展,还让他们人人都有了“打板喊咔”的机会。渐渐地,表达、社交、互动、沉浸感等等,年轻人在虚拟世界中得到的满足也开始向现实映射,剧本杀很快就成为连接虚拟与现实的“完美桥梁”,而互联网时代圈层文化的浸染,加速了剧本杀在年轻人中成为新的流行。甚至于,这个虚拟情境成了年轻人情感宣泄的出口,那些在现实中被压抑的情绪,可以通过“角色”赋予的身份释放出来。而挑选角色的过程就像一次人生重启,做出选择之前,谁也不知道自己将演绎怎样的人生。经历“未知”的体验总是充满刺激和新鲜感,让越来越多年轻人欲罢不能。2爱玩剧本杀的都是怎样的人?剧本杀有强烈的扮演属性,花五个小时就可以体验不同的人生,在深夜走进这个平行宇宙的人,都有着特殊的目的。我们对剧本杀到店人群进行了分析并举例分析,一共有以下几种。有寻找自我认同的人:Jarvis喜欢推凶成功的认同感,尽管他从不缺少关注。他来店的阵仗超乎想象:开玛莎拉蒂,身边一圈小弟环绕,撩开袖子是让人眼晕的花臂,这个众星捧月的富二代,尤其喜欢在发言的时候自我肯定,“那肯定是这样”是
剧本杀核心是游戏体验感 年轻玩家愿意为此“氪金”2018年,线上剧本杀兴起;2020年之后,因疫情“宅家”,娱乐方式受限,剧本杀入局者明显增多。2020年春节期间,《我是谜》用户数骤增800万;同一年里,《百变大侦探》累计注册用户也已超过千万。艾媒咨询的数据显示,2021年中国54.4%的网民体验过线上剧本杀。39.8%的网民体验过的剧本杀形式为线下圆桌,此外15.1%的网民表示均未体验过上述剧本杀形式。近来,线下实体剧本杀因场景设计、服装道具等环境铺设让玩家有充足的沉浸感,从而得到快速扩张。根据艾媒报告中心发布的《2021年中国剧本杀行业市场规模数据分析》显示,在剧本杀消费用户中,有56.2%的剧本杀玩家为女性用户。女性玩家的增多,让情感本、哭哭本、CP本等一些感情色彩较为浓郁的剧本大受欢迎,在一定程度上带动了情感本市场。据悉,目前线下剧本杀行业中流通的剧本主要分为独家授权(一个城市只有一家剧本店购买)、城市限定(一个城市有2~3家剧本店购买)和盒装本(有正规营业资格的剧本店均可购买)三类,平均创作周期在1-6个月左右。由于剧本杀玩家通常只会玩一次游戏,复玩率较低,因此门店通常为吸引顾客不断购入新主题,这也促使创作者不断推陈出新。剧本杀发行工作室空然新语的CEO格子认为,剧本杀的核心还是为玩家服务,最重要的是要好玩。小说和影视剧有主角配角之分,为了突出主角会有明确的故事线,将其他角色弱化,但剧本杀要求让所有玩家都参与进来,在一场游戏中,每一个玩家都是故事中的主角,都有属于自己的故事线。玩家的任务就是要在游戏过程中把所有的线都拼起来,理清来龙去脉,最后整体复盘。大学生小迹是兼职剧本杀作者,她介绍大部分作者都会选择团队合作,和剧本杀发行商签订长期合作,而兼职作者大多会在一些公众号平台“找活”,或者直接向征稿的工作室和店家投稿。空然新语推出了不少高质量剧本。格子告诉北青报记者,剧本杀是一种有社交性质的游戏,“我们把它定义为第二人称文学+游戏的模式,核心还是游戏。”玩剧本杀就像在看一场电影,玩家身处其中不是以第三者的角度去观看、欣赏,而是真正地以电影中主角的视角去感受。“玩家在这部电影中都有属于自己的故事,可以与故事中别的角色产生交流,有交流就有发展,才可以推动剧情。”店主张豪表示。每个人在这个剧本中的体验都不一样,对于很多玩家来说,剧本杀不只是一场游戏,它也可以是展示自己生活态度的一种方式。年轻玩家愿意为此付出,花钱氪金充会员,为的就是享受游戏的乐趣,剧本杀最核心的就是游戏体验感。“我们也经常会去剧本杀店里测本,观察玩家听他们聊什么。”格子表示,一个剧本的好与不好是可以根据玩家的讨论程度来评估的。
我国是自然灾害严重多发国家,农作物病虫灾害是我国的主要自然灾害之一,它具有种类多、影响大、并时常暴发成灾的特点。我国的重要农作物病虫草鼠害达1400多种,其中重大流行性、迁飞性病虫害有20多种。几乎所有大范围流行性、暴发性、毁灭性的农作物重大病虫害的发生、发展、流行都与气象条件密切相关,或与气象灾害相伴发生。农作物病虫害的发生、发展和流行必须同时具备以下三个条件:一是有可供病虫滋生和食用的寄主植物;二是病虫本身处在对农作物有危害能力的发育阶段;三是有使病虫进一步发展蔓延的适宜环境,其中气象条件是决定病虫害发生流行的关键因素。 虫害与气象条件---害虫生长、繁育和迁移活动的主要气象要素有温度、降水、湿度、光照和风等,特别是其综合影响对于虫害发生发展有重要作用。这些气象要素还通过对寄主作物和天敌生长发育与繁殖的影响,间接地影响虫害的发生与危害。 温度: 农作物害虫的活动要求一定的适宜温度范围,一般为6℃—36℃。在适宜温度范围内,害虫发育速度随温度升高呈直线增长,害虫生命活动旺盛,寿命长,后代多。 湿度和雨量: 湿度和降雨量是影响害虫数量变动的主要因素。对害虫生长繁育的影响,因害虫种类而不同。喜湿性害虫要求湿度偏高(相对湿度≥70%),喜干性害虫要求湿度偏低(相对湿度<50%)。例如,春季雨水充足,相对湿度高,气候温和,常有利于玉米螟的大发生。 光照: 对害虫的影响主要表现为光波、光强、光周期三个方面:光波与害虫的趋光性关系密切;光强主要影响害虫的取食、栖息、交尾、产卵等昼夜节奏行为,且与害虫体色及趋集程度有一定的关系;光周期是引起害虫滞育和休眠的重要因子。自然界的短光照会刺激害虫休眠。 风:风与害虫取食、迁飞等活动的关系十分密切。一般弱风能刺激起飞,强风抑制起飞;迁飞速度、方向基本与风速、风向一致。 病害与气象条件---病害发生发展的主要气象要素是温度、降水、湿度和风等,低温、阴雨、干旱和大风等不利条件将明显影响寄主作物的抗病能力。 掌握病虫害的发生与气象条件之间的规律,用前期气象因子和病虫因子就可以预测未来病虫害的发生情况。农作物病虫害与气象密切相关作者:我国是自然灾害严重多发国家,农作物病虫灾害是我国的主要自然灾害之一,它具有种类多、影响大、并时常暴发成灾的特点。我国的重要农作物病虫草鼠害达1400多种,其中重大流行性、迁飞性病虫害有20多种。几乎所有大范围流行性、暴发性、毁灭性的农作物重大病虫害的发生、发展、流行都与气象条件密切相关,或与气象灾害相伴发生。农作物病虫害的发生、发展和流行必须同时具备以下三个条件:一是有可供病虫滋生和食用的寄主植物;二是病虫本身处在对农作物有危害能力的发育阶段;三是有使病虫进一步发展蔓延的适宜环境,其中气象条件是决定病虫害发生流行的关键因素。虫害与气象条件害虫生长、繁育和迁移活动的主要气象要素有温度、降水、湿度、光照和风等,特别是其综合影响对于虫害发生发展有重要作用。这些气象要素还通过对寄主作物和天敌生长发育与繁殖的影响,间接地影响虫害的发生与危害。农作物害虫的活动要求一定的适宜温度范围,一般为6℃—36℃。在适宜温度范围内,害虫发育速度随温度升高呈直线增长,害虫生命活动旺盛,寿命长,后代多。湿度和雨量是影响害虫数量变动的主要因素。对害虫生长繁育的影响,因害虫种类而不同。好湿性害虫要求湿度偏高(相对湿度≥70%),好干性害虫要求湿度偏低(相对湿度<50%)。春季雨水充足,相对湿度高,气候温和,常有利于玉米螟的大发生。对害虫的影响主要表现为光波、光强、光周期三个方面:光波与害虫的趋光性关系密切;光强主要影响害虫的取食、栖息、交尾、产卵等昼夜节奏行为,且与害虫体色及趋集程度有一定的关系;光周期是引起害虫滞育和休眠的重要因子。自然界的短光照会刺激害虫休眠。风与害虫取食、迁飞等活动的关系十分密切。一般弱风能刺激起飞,强风抑制起飞;迁飞速度、方向基本与风速、风向一致。病害与气象条件病害发生发展的主要气象要素是温度、降水、湿度和风等,低温、阴雨、干旱和大风等不利条件将明显影响寄主作物的抗病能力。与气候变化造成的温度和降水异常相对应,暖冬可造成主要农作物病虫越冬基数增加、越冬死亡率降低、次年病虫发生加重、全国大部地区病虫发生期提前、危害加重,使农作物害虫迁入期提前、为害期延长。做好病虫害预测工作病虫害气象预测与病虫害造成的严重危害极不相适应的是,我国农作物病虫害的中长期预测预报技术研究进展缓慢,现有预报技术的准确性和可靠性离实际生产的要求尚有较大的距离,其主要原因是对我国农作物病虫害发生流行的气候背景及其影响机制尚不十分清楚,进而影响到模式预报因子的筛选。为此,为大力增强农作物病虫害的防灾减灾能力,开展农作物病虫害气象预测工作已成为当务之急。在掌握病虫气象规律的基础上,用前期气象因子和病虫因子可以预测未来病虫害的发生情况。仅以稻瘟病、稻纹枯病、稻飞虱,白粉病,玉米螟、棉铃虫等17种重要病虫害统计,做好大发生年份的预测,充分发挥现有防治技术的作用就可望多挽回30%—50%的损失。因此,做好农作物病虫害气象预测工作,通过进行调控,变成灾因素为防治因素,就能遏制病虫灾害日益严重的势头。目前,农作物病虫害的气象预测,从内容上看,主要有病虫害发生期(流行期)预测、发生量(发生程度)预测和流行程度预测;从预报时效上看,有长期趋势预测、中期预测和短期预测;从预测范围上看,有县、地、省或一个发生区的。预测对象不仅包括多种粮食作物、经济作物,而且还对油料、果树、蔬菜、热带作物等的主要病虫害进行气象预测服务;从技术方法上看,在以经验为基础的综合分析法基础上,摸索出许多统计预报方法,使病虫害的气象预测进入到以多种统计分析方法并举的阶段,并向着数学模式化方向发展。随着科学技术的不断进步,农作物病虫害的气象预测将会向利用区域气候模式的输出结果,建立不同气候区的病虫害长期数值预报模式、长期统计预报模式及其综合集成预报方向发展。
Plant Diseases and Pests(植物病虫害研究:英文版)双月刊,是美国Wu Chu(USA-China)Science and Culture Media Corporation(美中科技文化传媒公司)创办的英文学术期刊。2010年1月创刊,国际刊号ISSN2152-3932。《Plant Diseases and Pests》面向世界,主要报道植物病虫害的诊断、治疗和预防等方面的研究和创新性研究成果.该刊面向世界,旨在反映我国植物病虫害防治研究领域的最新研究进展,提高我国该领域研究的国际影响力. 期刊简介:报道中国植物保护领域的植物病害、虫害、草害、鼠害、农药等方面的研究论文、文献综述及研究简报等,以期促进该领域的国际间学术交流。 该期刊不属于SCI、EI收录,甚至中文核心期刊都未收录,仅为普通外文期刊!